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Abstract

Animal behavior is not driven simply by its current observations, but is strongly influenced by 

internal states. Estimating the structure of these internal states is crucial for understanding the 

neural basis of behavior. In principle, internal states can be estimated by inverting behavior 

models, as in inverse model-based Reinforcement Learning. However, this requires careful 

parameterization and risks model-mismatch to the animal. Here we take a data-driven approach 

to infer latent states directly from observations of behavior, using a partially observable switching 

semi-Markov process. This process has two elements critical for capturing animal behavior: 

it captures non-exponential distribution of times between observations, and transitions between 

latent states depend on the animal’s actions, features that require more complex non-markovian 

models to represent. To demonstrate the utility of our approach, we apply it to the observations of 

a simulated optimal agent performing a foraging task, and find that latent dynamics extracted by 

the model has correspondences with the belief dynamics of the agent. Finally, we apply our model 

to identify latent states in the behaviors of monkey performing a foraging task, and find clusters 

of latent states that identify periods of time consistent with expectant waiting. This data-driven 

behavioral model will be valuable for inferring latent cognitive states, and thereby for measuring 

neural representations of those states.
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Introduction

An animal’s survival depends on effective planning for future costs and rewards. One of the 

most fundamental purposes of the brain is to create and execute such plans. However, these 

plans cannot be directly observed from behavior. To understand how the brain generates 
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complex behaviors and learn how an animal builds a representation of the surrounding 

environment, it is valuable to construct hypotheses about the brain’s internal states that 

narrow the search space for neural implementations of planning. These hypotheses often 

come from models of the task implemented as artificial agents, whose internal state 

representations provided a latent space. However, differences between the model task 

and agent and the real task and animal create the potential for severe model-mismatch, 

injecting unknown biases into scientific conclusions. Here we use a latent-variable model 

to impute latent behavioral states based on observed behavior directly, using a data-driven 

latent-variable analysis that is designed to match the dependency structure of agent-based 

models without enforcing parametric structure.

To understand the mechanisms underlying behaviors, it is crucial to study hard tasks that 

involve inferring latent variables, since only then will an animal need to create a mental 

model of the world; otherwise the animal could perform well simply by responding to 

its immediate sensory input. Naturalistic foraging is one such task where an agent has to 

make decisions from many difficult choices in an uncertain environment. When foraging, an 

animal must take actions to procure rewards, and these actions have costs. How the animal 

schedules its actions determines the balance between total costs and rewards, Charnov & 

Orians (2006). The animal’s goal in foraging is to use its energy resources for short term 

and long term sustenance. Decisions must be made continuously, and therefore time is a key 

ingredient in foraging: An animal benefits from tracking when reward is likely accessible 

at different locations. A natural way to represent such temporal quantities is in terms of 

dynamic event rates. For this reason, our work highlights the continuous-time aspects of 

decision problems.

Fig 1 illustrates our motivation for the foraging problem. An agent develops an internal 

model and takes an action, which may result in a reward. As a result, the agent 

updates its internal model in an attempt to learn the environmental dynamics. We 

explore the plausibility that an animal’s internal states in continuous time manifest as 

measurable consequences on its behavior, using a switching hidden semi-Markov model, 

and demonstrate the model’s applicability in inferring latent states on a foraging task.

In the remainder of the document, we provide background, discuss the presented model and 

procedure followed by the experiments, results and discussion.

Background

Behavior identification using computational models has a rich history, and clear value–the 

ability to learn rich representations of behavioral constituents provides important insights 

into underlying neural processes which can also be incorporated into the development 

of artificial agents (Anderson & Perona (2014)). Early behaviorists explored behavioral 

sequences in an attempt to learn determining causal factors underlying behavior, aiming 

to explain effects like when an agent switches to an alternate choice. These approaches 

are still common in animal ecology, where hidden Markov time series models (HMMs) 

have been used to analyse animal’s internal states Nathan et al. (2008); Langrock et 

al. (2012). Macdonald & Raubenheimer (1995) proposed using HMMs to capture causal 
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structure in putative motivational states. However, they also observed that there are no 

one-to-one correspondences between the learned states and behavior, and Zucchini et al. 

(2008) found that behavior also influences internal states through feedback, challenging the 

dependency structure assumed by HMMs. To capture non-stationarity in behavior, Li & 

Bolker (2017) use temporally varying transition probabilities to model animal movement. 

However, behavior identification has struggled to produce more than a description of the 

behavior, with unknown relationships between the elicited latent states and the animal’s 

representations. These failures are less surprising when it’s realized the behavior expressible 

by HMMs is incompatible with key characteristics of observed behavior.

In these works and others, an important question left unanswered is what kind of latent 

belief states could be inferred that not only represent belief dynamics but also the 

choices that an animal or an agent makes. We attempt to uncover latent state beliefs in 

a continuous time model and apply it to a complex ecological process, foraging, which has 

multiple underlying sub-processes including satisfaction of needs, searching for alternatives, 

motivation, decision making, and control. We show that by generalizing allowing action-

dependent transitions and more complex temporal dynamics, we can capture the expressivity 

of artificial agents designed for these domains, and highly interprable representations from 

animal behavior.

Model

Ecological behavior in animals is often well characterized by quick transitions between 

discrete behavioral modes. These transitions are difficult to predict from external events, and 

instead reflect a shift of the animal’s internal state based on integrating events over a longer 

time scale. A process with quick transitions separated by long inter-event intervals can be 

approximated by a discrete-time hidden Markov process involving transition probabilities, 

but many of the probabilities (those for which the state is unchanged) will be close to 

one, while the remaining probabilities will be very small and decrease with the discrete 

time scale. Instead, we expect there will be advantages in treating these latent dynamics in 

continuous time, based on rates or time intervals between transitions and events.

A natural model to account for these point-like transitions in continuous time is the 

semi-Markov Jump Process, Rao & Teh (2013). This process is a simple but powerful 

class of continuous-time dynamics featuring discrete states that transition according to a 

generator rate matrix, producing rich and flexible timing that is potentially better matched 

to animal behavior. In contrast, times of transitions between states in a Markov process are 

exponentially distributed, which describe animal behavior poorly.

However, agents who control their environment affect transition rates through their actions, 

which means a single generator rate matrix is not sufficient to model behavior. An important 

example are Belief MDPs, which is a representation of a Partially Observable Markov 

Decision Process (POMDP, Kaelbling et al. (1998)). POMDPs are a model for inference 

and control when sensory measurements provide only partial observations of the state of the 

world. Belief MDPs have distinct transition matrices that update beliefs differently for each 
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action. Action-dependent transitions imply that a standard semi-Markov model with a single 

transition generator is not expressive enough to match action-dependent belief dynamics.

To allow for action-dependent belief dynamics, we propose a switching semi-Markov 

(SMJP) model that matches an agent’s belief dynamics by switching its generator depending 

on the action a: As′|s,a. Let s ∈ S be a discrete latent state, and As′|s be an N × N generator 

rate matrix that can be interpreted as an instantaneous transition matrix Adt = P(s′(t + 

dt)|s(t)). This generator defines a point process that jumps from state s to s′ at time t 
according to the time-dependent matrix Pt = exp(At). The process can be implemented by 

sequentially sampling a time ti(si) from the total rate leaving state si, followed by sampling 

a new destination state s′ according to the matrix Pti(si)(s′|si) evaluated at this sample time 

(Gillespie’s algorithm Gillespie (1977)). An analogous process occurs for the generation of 

observable events o, through the emission generator matrix Bo|s. The resulting process is 

similar to a simple Markov process, except that the time between transitions is stochastic 

and depends on the starting state (but not the end state), illustrated in Fig 3; the animal’s 

behaviors and decision making are continuous, albeit partially observable only at discrete 

recording times.

The Markov Jump Process extends discrete time Markov processes in continuous time. 

Rao & Teh (2013) introduced Markov chain sampling methods that simplify structures 

by introducing auxiliary variables. We adapt jump structures to provide a continuous-time 

representation for the free foraging task and the trajectory is introduced using a generator 

matrix. Let A ∈ ℝN × N be the generator matrix, which is skew symmetric and negative 

diagonal entries. We can represent Pt ∈ ℝN × N as continuous-time transition matrix 

given by Pt = exp(At), Bt ∈ ℝN × N as discrete time transition matrix that is induced by 

uniformization, and Lt ∈ ℝN × O  as observation matrix P(O|s).

Uniformization instantiates the Markov Jump Process as a sequence of discrete time 

transition matrices (Fig 2), by introducing a latent sequence of random times that are 

adapted to the process generator but occur at a rate Ω ≥ maxs As. For each interval, a random 

discretization vector of sampled times is W = [w1, w2, …, wn], and we impute sampled 

times for a trajectory. Using this notation, we sample both random times as a Poisson 

process with intensity Ω and states using the generator matrix. The hidden Markov model 

characterizes a sample path of a piecewise constant stochastic process over these sampled 

and event times as (s0,S,T) where T is now an ordered union of event times and randomly 

sampled discretized times. The chain can jump from a state to the same state or any other 

state, while the emissions are observed only at certain specified times. Since we sample 

intervals with these virtual jump times, the constructed process represents the same chain.

To learn the discrete time transition matrix B and emission matrix L, we consider an 

ensemble of sample sequence of observed emissions as generated from an HMM, and 

update the matrices using an EM algorithm to best account for the available observations. 

However, if we sample discrete times once, the estimates would be biased, so we resample 

latent trajectories repeatedly and randomly based on uniformization. The learned B matrix 

is then used to update the generator matrix using the relation Anew = (Bnew − I)Ωold while 
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preserving its structure, and the random times are resampled to adapt to the modified Anew. 

The resulting algorithm exploits uniformization to enable learning the generator via an 

EM-algorithm, which is orders of magnitude more efficient than Gibbs sampling.

Belief MDPs are a convenient representation for POMDPs that treats current beliefs 

(posterior probabilities) over partially observable world states as fully observable. Agents 

following a Belief MDP exhibit transitions between beliefs bt+1 = f (bt,at,ot), take actions 

according to a policy π(at|bt), and expect observations according to their beliefs via p(ot|bt) 

(Fig 3). The proposed SMJP model matches the agent’s action-dependent belief dynamics 

by switching its generator conditional on the action a: As′|s,a. To infer the agent’s model 

from experimental observations, we develop an EM algorithm to infer it’s parameters. When 

applied to our switching model, the forward α, backward β and update ξ equations of 

hidden Markov model, Rabiner (1989), can be written as:

αt + 1
k′ (j) = ∑

i = 1

N
αtk(i)Bij

k Lj ot + 1 ;

1 ≤ t ≤ T − 1; 1 ≤ j ≤ N; 1 ≤ k, k′ ≤ K
(1)

βt
k(i) = ∑

j = 1

N
Bij

kLj ot + 1 βt + 1
k′ (j);

t = T − 1, T − 2, …, 1; 1 ≤ i ≤ N; 1 ≤ k, k′ ≤ K
(2)

where k,k′ are the action switching indices at time t and t+1 respectively. We adjust the 

model parameters to maximize the probability of the observation sequence given the model 

and train using EM. Updates are made using the ξ variable, which is the probability of being 

in state i at time t and state j at time t+1, and is given as

ξi
k(i, j) =

αik(i)Bij
kLj ot + 1 βt + 1

k′ (j)
∑i = 1

N ∑j = 1
N αik(i)Bij

kLj ot + 1 βt + 1
k′ (j)

;

1 ≤ t ≤ T − 1; 1 ≤ i, j ≤ N; 1 ≤ k, k′ ≤ K;
(3)

The usual semi-Markov model is a special case of the switching semi-Markov model 

where the generator remains the same without action dependent switching. Our model is 

a switching model that changes rate, transition and emission matrices in accordance with 

the action taken by the agent. We learn the model using an EM approach , updating model 

parameters given transition times sampled by the uniformization process, and resampling the 

transitions given the new model parameters.

Procedure

We provide a brief description of the procedure, illustrated in Fig 4, that consists of pre-

processing, initialization, training and validation steps. The overhead video, lever press and 

reward time sequences were used to set up observations and actions sequence required for 

training and validation. We processed the video recording using blob tracking to estimate 

position and velocity. Estimated positions and velocities were then clustered using k-means 
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to assess different locations. By matching the time sequence of lever presses with the time 

sequence of locations, we augmented the observation space with locations. Therefore, the 

augmented observations for the model were lever press, reward delivery, and location. The 

actions were pressing either of the levers, stay at a location or move. The lever pressing 

actions were directly available from recording and we identified stay and move actions 

from the video location tracking. We defined similar observation and action spaces for 

simulations. To facilitate cross validation, we used a fixed 5-fold split to form training and 

validation sequences.

The proposed SMJP model has two main procedural components. The trajectorySampling 

function samples time intervals between consecutive observations using uniformization. 

It gives us imputed time sequences with missing observations within time intervals, 

allowing the model to transition between its hidden states at missing observations and use 

observations only at the end of the time interval. The switchHMM function implements 

EM approach using action switching and imputed sequences. We instantiated the transition, 

emission and rate matrices by training the model on observation and action sequences 

without imputed trajectories. Upon learning the emission and transition matrices for a 

sampled sequence, we use scaling factor, see model description, and make gradient like 

updates to the rate matrix while preserving its structure in the function GeneratorUpdate. 

The procedure of trajectory sampling and training on re-sampled sequence is repeated until 

the log-likelihood on held out data stops changing within a small tolerance. Therefore, 

we learn transition, emission probabilities and a rate matrix that capture the underlying 

continuous time process.

Experiment

We perform three experiments. We use the simulated toy data both to estimate a required 

training size and to ensure that the switching model is able to learn latent states, establish 

correspondence between partially observable Markov decision process belief states with 

SMJP latent states using theoretical optimal agent model and, then, apply our method to a 

real agent in a free foraging task. The number of states were selected by estimating the value 

at which the log-likelihood on the validation set stops improving.

Simulated toy data

To create a toy test data generated by the assumed model, we set up two transition matrices 

and one emission matrix with 5 states, 2 emissions and observation dependent actions. The 

expected size of the output sequence is set to 5000. Initial action is selected randomly 

and based on the action index, a transition matrix is selected. Thus, the selected transition 

matrix and emission matrix combination is used to estimate state transition and generate 

an emission. The observations, times and actions are added to the output sequence and 

the observation dependent action value is updated to get new observations. The simulated 

toy data sequence is used as a basic check if the SMJP model can learn and explain the 

observations. We fit SMJP model to the simulated data and observe that the log-likelihood 

starts stabilizing as it reaches the true number of states. It means that the model is able to 

explain the test data with an equivalent number of latent states (Fig 5). Therefore, we pursue 
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a similar procedure to estimate the required number of latent states for both the optimal 

agent and the real agent.

Optimal agent

To test our SMJP model we fit it on an optimal agent performing a foraging task. We 

model the beliefs of an ideal observer in this task using a POMDP. There is a one-to-one 

correspondence between a POMDP over partially observable world states z and a fully 

observed Belief MDP in which the ‘state’ is the ‘belief’ b or posterior distribution bt = 

p(zt|o1:t) over the world state z. We solve this optimal actor problem using a Belief MDP on 

a discretized belief space. The agent keeps track of its belief state about the world following 

transition dynamics p(b′|b,a), where b′ is the new belief state, b is the current state, and a 
is an action. The agent’s sensory information depends on the world state according to the 

probability p(o|b,a). Upon taking action a, the agent receives immediate reward R(b,b′,a). 

The goal of the agent is to maximize the long-term expected reward E ∑t = 0
t = ∞γtR bt, b′t, at . 

Our model agent achieves this goal using a policy that solves for its policy Bellman (1957), 

by value iteration on the discretized belief states.

The beliefs serve as latent states which control the agent’s behaviors, and give its actions 

a non-exponential interval distribution, which is recapitulated by the fitted SMJP. We find 

that the likelihood of the observed data is maximal for a number of states that is smaller 

than the true size of the underlying POMDP belief space, indicating that the semi-Markov 

process is able to compress the agent’s dynamics into a smaller effective number of latent 

states. To validate the semi-Markov model in our foraging task, we discover the latent 

states of the artificial agent for whom we know the ground truth. We model this agent as 

a near-optimal actor that maximizes reward given partial observations of the true process. 

This agent maintains beliefs about the availability of food at different locations. Our agent is 

suboptimal because we do not store the beliefs with arbitrary precision, but rather discretize 

the beliefs to a finite resolution, and allow some diffusion between those belief states.

Application to the free-foraging task

We apply the SMJP model to infer latent states of agents performing a simple foraging task. 

We applied the model to both theoretical agents with near-optimal behavior, and real agents 

(macaques) whose behavior we measured experimentally. In this task, two boxes contained 

rewards that became available after random exponentially-distributed time intervals. If an 

agent presses a lever on one box when the food is available, that reward is released and 

that box timer is reset. The benefit of the reward is offset by two action costs: pressing the 

lever, and switching boxes. The state of the box is not observable, so the agent must choose 

its action based on an internal belief about the box, with the presumed goal of maximizing 

total reward minus costs. This internal belief constitutes a latent state that we infer using the 

semi-Markov process, both from the artificial agent and behaving monkeys.

We applied the SMJP model to infer latent states of macaques performing a simple two-box 

foraging task. The animal freely moved between two feeding boxes with levers that released 

food after an exponentially-distributed random time interval (mean of 10 or 30 sec) had 

passed. The model observations were lever pressing, reward delivery, and location within 
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the box (Fig 7a). Actions were: stay, move, or press either lever. The monkey’s movements 

were tracked using overhead video, and quantized by k-means into different locations. 

The number of latent states is estimated by the log-likelihood maximization (Fig 7b). 

The resultant process constructs the monkey’s latent states to explain the non-exponentially-

distributed intervals between lever presses (Fig 7).

Results and Discussion

Optimal agent

We trained the SMJP on an observation sequence generated by the optimal agent, and 

optimized the number of SMJP latent states by maximizing the log-likelihood of held-out 

data (Fig 6a). While the Belief MDP agent’s relevant states Z (including location, reward, 

and beliefs b) should be implicitly embedded in the SMJP latent states s, these two state 

representations are not immediately comparable.

To establish a correspondence, we compute the joint distribution over s and 

Z at any one time point using the shared time series of observations: 

p(s, Z ∣ obs) = 1
T ∑t p st ∣ o1:T p Zt ∣ o1:T . This joint distribution shows which SMJP and 

POMDP states tend to occur at the same time. It therefore provides a dictionary for 

translating the interpretable POMDP Z states into our learned and unlabeled SMJP s states.

To increase interpretability, we cluster p(Z|s,o) using information theoretic co-clustering, 

Dhillon et al. (2003), which provides a principled coarse-graining of the states with 

improved semantic interpretability. We determine the required numbers of SMJP and 

POMDP co-clusters by finding minimum information loss in information theoretic co-

clustering. Fig 6b shows that latent SMJP states are associated with different belief states. 

Co-clustering also reveals that the SMJP latent states have dynamics that match the belief 

dynamics (not shown). These results demonstrate that the switching SMJP model can 

capture latent belief states and dynamics for behavioral data.

Real agent

We trained the SMJP on an observation sequence generated by the real agent (Fig 7a), and 

optimized the number of SMJP latent states by maximizing the log-likelihood of held-out 

data (Fig 7b). The SMJP model constructs latent states and dynamics using the real agent’s 

observations to predict choices and timing, including the non-exponentially-distributed 

intervals between lever presses. Fig 7c shows states extracted for the action ‘stay’. Beliefs 

precede an action and the extracted states reflect beliefs for the next action. For example, 

being in states 5,8 are rewarding to the monkey. States that can be interpreted as ‘expectant 

waiting for reward’ are highlighted (Fig 7c): these states form a self-exciting delay network 

that is activated from other rewarded belief states. Moreover, the lower entropy of latent 

states associated with lever 1 revealed guarding behavior we identified from video. Overall, 

the model network encodes a set of complex but interpretable dynamics of the animal’s 

beliefs and reward expectations which emphasize the complex computations underlying the 

decision making process.
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Each transition matrix acts like an action operator and the real agent performs operations 

in sequences. So, we examine joint operators Tji = TiTj, where Ti and Tj are operators 

for actions i and j respectively. We use an off-the-shelf package using, Brandes et al. 

(2008) to extract subgraphs and then persistent subspaces from all the six joint operators 

corresponding to different action pairs. Fig 7d shows subgraphs for two joint operators of 

interest (involving actions: lever press and stay). The latent states (within subspaces p and 

q) appearing in the same subgraphs of the joint operators illustrate the real agent’s persistent 

reward belief states. The states outside the subspaces p and q correspond to other beliefs, 

for example, switching. These results demonstrate that the presented model is able to extract 

subtleties, albeit complex, in the belief states and their dynamics. The extracted latent states 

and dynamics will be useful regressors for finding neural correlates of the computations 

underlying the monkey’s behavioral dynamics.

Conclusion

We presented a continuous-time switching semi-Markov model that learns the latent states 

dynamics in conformance with the belief structure of a partially observable Markov decision 

process. The revealed latent states are capable of inferring complex animal behavior and its 

belief dynamics in naturalistic tasks like foraging. Several aspects of the inferred behaviors 

and belief dynamics were examined to reveal that indeed, the internal latent structural 

representation match the agent’s belief structure. The data-driven switching semi-Markov 

model provides useful estimates of the structure of the internal latent states for hard 

tasks. The latent states from this behavioral model could potentially be used to understand 

correspondences between neural activity and the latent belief dynamics that govern how an 

animal selects actions.
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Figure 1: 
Overview: In complex natural tasks such as foraging, an animal faces a continuous 

stream of choices. Some of the choices pertain to hidden variables in the world, such 

as food availability at a given location and time. These variables determine time- and 

context-dependent rates for observation events and rewards. To perform well at these tasks, 

animals must learn these hidden rates and act upon what they have learned. Our goal is to 

develop a data-driven, continuous-time model for inferring an animal’s latent states and their 

dynamics.
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Figure 2: 
A discrete-state Hidden Markov Model. a: Discrete state diagram shows latent states (blue 

circles) and their transitions (blue lines), as well as the possible emissions from each state 

(red circles) with their emission probability (red lines). b: Directed probabilistic graphical 

model showing dependence of state variable st+1 and observation ot on the previous state st. 

c: We present a continuous-time extension for latent states and discrete time observations 

using uniformization, Rao & Teh (2013)

Kumar et al. Page 12

Cogsci. Author manuscript; available in PMC 2020 December 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Comparison of graphical models of behavior. Left: In Belief MDP, belief transitions depend 

on actions selected by a policy. Center: Transitions in Semi-Markov Jump Process are 

independent of actions. Right: The Switching SMJP allows transition rates to depend on 

actions.
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Figure 4: 
Overview of the algorithm.
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Figure 5: 
The model is able to explain simulated test data and the log-likelihood on held out data starts 

flattening out at the true number of states.
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Figure 6: 
Latent states inferred by SMJP for an optimal agent implementing a POMDP. (a) Log-

likelihood on held out data provides an estimate of the required number of latent states. (b) 

Co-clustering of states in a POMDP and our SMJP, based on the conditional probability of 

observing each POMDP state Z from each SMJP state, P(Z|s,obs). The POMDP states Z 
are depicted below the horizontal axis. Clustered structure in the plot reveals that the SMJP 

states have information about the agent’s belief dynamics.
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Figure 7: 
Analyzing behavioral data from a freely moving monkey using the SMJP. (a) Overhead 

video (background image) tracked the locations and normalized velocities (vectors) of the 

monkey. These data were then clustered by the k-means algorithm. (b) We get an estimate 

of the required number of latent states by observing log-likelihood on held out data. (c) 

SMJP model for observed monkey behavioral data for the action stay. Highlighted reward 

expectant waiting states illustrate that the latent states as regressors for the beliefs dynamics 

are useful in understanding monkey’s behavior. (d) Subspaces p and q (blue and red dotted), 

within the subgraphs (green and gray highlighted) for the joint operators T31 and T13 reveal 

persistent reward belief states.
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