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ABSTRACT
Head and neck squamous cell carcinoma (HNSCC) 
encompasses a set of cancers arising from the epithelia of 
the upper aerodigestive tract, accounting for a significant 
burden of disease worldwide due to the disease’s 
mortality, morbidity, and predilection for recurrence. 
Prognosis of HNSCC in the recurrent and/or metastatic 
(R/M-HNSCC) setting is especially poor and effective 
treatment options increasingly rely on modulating T-cell 
antitumor responses. Still, immunotherapy response rates 
are generally low, prompting the exploration of novel 
strategies that incorporate other effector cells within the 
tumor microenvironment. Within the last decade, important 
advances have been made leveraging the powerful innate 
antitumor function of natural killer (NK) cells to treat 
solid tumors, including head and neck squamous cell 
carcinoma. NK cells are hybrid innate-adaptive effector 
cells capable of directly eliminating tumor cells in addition 
to initiating adaptive antitumor immune responses. In 
the setting of HNSCC, NK cells are important for tumor 
surveillance and control, and NK cell infiltration has 
repeatedly been associated with a favorable prognosis. 
Yet, HNSCC-infiltrating NK cells are susceptible to an array 
of immune evasion strategies employed by tumors that 
must be overcome to fully realize the antitumor potential 
of NK cells. We believe that a conceptual framework 
informed by the basic biological understanding of the 
mechanisms underlying NK cell activation can improve 
treatment of HNSCC, in part by selecting for patients 
most likely to respond to NK cell-based immunotherapy. 
Herein, we review the activity of NK cells in HNSCC, 
paying special attention to the role of environmental 
and genetic determinants of NK cell antitumor function. 
Moreover, we explore the evidence that NK cells are a 
crucial determinant of the efficacy of both established and 
emerging treatments for HNSCC.

BACKGROUND
Head and neck squamous cell carcinoma 
(HNSCC) is an anatomically and etiolog-
ically diverse set of cancers arising in the 
upper aerodigestive tract, including the 
oral cavity, nasopharynx, oropharynx, hypo-
pharynx, and larynx. The most commonly 
cited risk factors for HNSCC are environ-
mental and include high-risk human papil-
lomavirus (HPV) infection, tobacco smoke, 

and alcohol usage, among others.1 While 
the incidence of HPV-negative HNSCC has 
decreased in the USA over the last decades 
primarily due to decreased tobacco consump-
tion, the incidence of HPV-positive HNSCC is 
rising rapidly.2 Although HPV-associated and 
HPV-unassociated HNSCC are anatomically 
related, their pathophysiology and clinical 
behaviors are remarkably distinct.3 Accord-
ingly, HPV-associated and unassociated 
HNSCC tumors are now clinically regarded 
as separate entities, and where possible, we 
have treated them as such in this review. 
Immune checkpoint inhibitors that unleash 
T cells against recurrent HNSCC tumors have 
led to remarkable results for some patients, 
although in the majority of cases these agents 
will fail. As such, there is now interest in 
investigating other immune effector cells, 
including natural killer (NK) cells, as targets 
for immunotherapy .

NK cells are CD3-CD56+ innate lymphoid 
cells that develop in the bone marrow and 
secondary lymphoid tissue, including the 
spleen, tonsils, and lymph nodes.4 NK cells 
possess features of both innate and adaptive 
immune cells, in the sense that they do not 
undergo genetic recombination to assemble 
a diverse set of antigen-specific receptors, but 
are still capable of long-term ‘memory-like’ or 
‘recall’ immune responses to antigens.5 6 NK 
cells are critical for the elimination of virally 
infected and transformed cells. Further-
more, NK-mediated cytolysis occurs more 
quickly than adaptive lymphocytes because 
NK cells are not reliant on in situ licensing.6 
Taken together, these properties make 
NK cells attractive targets for emerging 
immunotherapies.

Regulation of NK cell activation
NK cell functions are mediated through 
a process of ‘education’ defined as the 
training of NK cells to distinguish diseased 
or allogeneic cells, which exhibit perturbed 
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expression of human leukocyte antigen (HLA) class I.7 
Broadly speaking, human NK cells are primarily educated 
via inhibitory signaling through either the NKG2A or 
KIR receptors, which bind HLA-E or HLA-A, HLA-B, 
HLA-C, HLA-F, and HLA-G, respectively7–9 (figure  1). 
The evidence suggests that the path through which NK 
cells are educated is dominantly determined by a single 
dimorphism at the −21 residue of the HLA-B leader 
sequence and the presence or absence of KIR ligands.8 
HLA-B −21 methionine (−21 M) individuals (approxi-
mately 50 % allelic frequency7) encode a methionine at 
this residue in the signal sequence and are capable of 
producing HLA-B-derived leader peptides that provide 

stability to the HLA-E protein, whereas −21 threonine 
(−21 T) produces peptide that binds unstably to HLA-E 
and results in restricted cell-surface expression.8 10 The 
−21 M/T HLA-B dimorphism has significant implica-
tions for a range of clinically important immunological 
processes, such as HIV viral load control,11 response to 
interleukin (IL)-2 immunotherapy,12 and incidence of 
graft-versus-host disease after hematopoietic stem cell 
transplantation,13 although to date its potential role in 
solid tumor control has not been investigated.

NK cells are directly activated via signaling through 
the CD16 receptor, which crosslinks after binding the 
Fc region of immunoglobulin (Ig)G bound to target 
cells and triggers antibody-dependent cellular cytox-
icity (ADCC). Additionally, direct activating signals are 
generated through activating receptors expressed on 
the NK cell surface such as NKG2D and natural cytotox-
icity receptors (NCRs) such as NKp30 and NKp46, which 
bind activating ligands that are upregulated on stressed, 
virally infected, and tumor cells.14 15 Common human 
NKG2D ligands include, but are not limited to, the major 
histocompatibility complex (MHC) class-1 chain-related 
protein A and B (MICA and MICB) and the ULBP protein 
family.15 Indirect activation, on the other hand, is accom-
plished through soluble factors, most notably interleukin 
(IL)-2, IL-12, IL-15, IL-18, IL-21, tumor necrosis factor-ɑ 
(TNF-ɑ), and type I interferon (IFN).16–18 Activation of 
NK cells requires that the net total of activating signals 
exceeds inhibitory signals.19

NK cells and cancer
There is extensive evidence that NK cells are critical 
components of tumor control. NK cells are a major 
source of IFN during early-phase immune responses, 
underscoring their role as rapid-acting immune effec-
tors.20 IFNγ acts directly on tumor cells to enhance their 
immunogenicity and sculpts the immune response by 
differentiation of naive CD4+ T cells toward Th1 cells that 
promote cell-mediated antitumor responses (figure 2).20 
IFNγ additionally strengthens crosstalk between myeloid 
cells (dendritic cells (DCs) and macrophages), effector 
memory CD4+ T cells, and naive effector CD8+ T cells.21 
NK cells are also capable of producing the chemokines 
CCL5, XCL1, and Flt3L, which recruit conventional 
type I DCs (cDC1s) and naive effector CD8+ T cells that 
bolster antitumor immunity.22 23 In addition to their role 
as cytokine producers, NK cells are also able to directly 
kill tumor cells via cytotoxic granules or expression of 
death-receptor ligands, including but not limited to 
Fas-ligand and TNF-related apoptosis-inducing ligand.24 
More generally, the TNF family of ligands and receptors 
plays a central role in tumor elimination.25

Loss of inhibitory signals is a common pathway of NK 
activation in response to tumors. During the process 
of viral infection or oncogenic transformation, cells 
frequently lose their repertoire of surface MHC.26 While 
HLA-A, HLA-B, and HLA-C are necessary to promote 
tumor-specific activation of CD8 T cells, they may 

Figure 1  Natural killer (NK) cell interactions with tumor 
cells. Activation of NK cells requires that the net total of 
activating signals outweighs inhibitory signals. NK cells 
rely on a set of germline-encoded receptors to recognize 
‘altered-self,’ or ‘missing-self’ patterns of protein expression 
on tumor cells. The diverse range of activating and inhibitory 
receptors expressed on NK cells are of interest as targets 
for immunotherapy. HLA, human leukocyte antigen; IL-10, 
interleukin-10; Tim-3, T cell immunoglobulin mucin-3; TRAIL, 
tumor necrosis factor-related apoptosis-inducingligand 
(TRAIL); TGFβ, transforming growth factor beta; TIGIT, T cell 
immunoreceptor with Ig and ITIM domains.
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simultaneously inhibit NK cells through provision of 
inhibitory KIR ligands and by increasing expression of 
HLA-E. Therefore, loss of HLA permits evasion of adap-
tive immune responses that require antigen presentation 
via MHC, but it simultaneously disinhibits NK cells and 
allows for activation of their cytotoxic function. In other 
words, what is effective for triggering NK cell activation 
may prove suboptimal for CD8+ T cells and, conversely, 
what is optimal for CD8+ T cells may prove deleterious for 
NK cell activation. Elimination of tumors that have lost 
or altered their HLA expression pattern has been postu-
lated as a mechanism of NK-mediated nascent tumor 
elimination, although measuring the true frequency 
of this phenomenon has not been established in vivo.6 

The persistence of some tumors that lack HLA, however, 
implies that isolated HLA loss alone is not sufficient for 
NK-mediated tumor elimination in all cases.

NK cells in HNSCC
NK cell activity in the tumor microenvironment and the clinical 
prognosis of HNSCC
Pan-cancer transcriptomic analyses have revealed that 
both HPV+ and HPV- HNSCC are among the most 
highly infiltrated tumors, and that immune infiltration 
is higher among HPV+ than HPV- HNSCC.27 Further-
more, based on these transcriptional analyses, HNSCC 
exhibits the highest median CD56dim NK cell infiltration 
of any major tumor type.27 HPV+ HNSCC is more highly 

Figure 2  Natural killer (NK) cells form dynamic interrelationships with immune, stromal and tumor cells with the tumor 
microenvironment (TME) of head and neck cancer. cDC1, conventional type 1 dendritic cells (DCs). (a) NK cells produce 
interferon (IFN)-gamma within the TME, which acts on both tumor and neighboring immune cells to enhance antitumor 
responses. NK cells both recruit cDC1 and provide differentiation and maturation signals for DCs with the TME. (b) Cell–cell 
interactions between NK cells and neighboring cells determine strength of activation. (c) Cetuximab, monalizumab, and 
ipilimumab represent some, but not all, monoclonal antibodies that at least in part rely on NK cell activation for full antitumor 
function. HLA, human leukocyte antigen.
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infiltrated with NK cells than HPV- HNSCC.28 Increased 
infiltration of NK cells, specifically CD56dim, is associated 
with improved disease-free and overall survival indepen-
dent of HPV status.27–31 Peripheral NK cell activity also 
correlates with fewer pharyngeal cancer metastases.30 
Compared with circulating NK cells, HNSCC-infiltrating 
NK cells more frequently express the inhibitory receptor 
NKG2A and less frequently express the inhibitory KIR 
(KIR3DL1 and KIR2DL1/2/3).32 33 Although the domi-
nant NK cell subset in HNSCC tumors is mature CD56 
dim NK cells, compared with other major tumor types, 
HNSCC is enriched in immature, cytokine-producing 
CD56bright, CD16dim/negative NK cells lacking expression of 
CD57.28 32 34 Basal ADCC activity in HNSCC tumors varies 
considerably.35

The presence or absence of activating and inhibitory NK ligands in 
the TME sculpts the NK response to HNSCC
NKG2D is an activating transmembrane receptor 
expressed on NK cells and on a subset of T cells.36 The 
ligands for NKG2D, including MICA/B, ULBP1/2/3, 
and Rae-1, are preferentially overexpressed on trans-
formed cells and render them susceptible to NK-me-
diated tumor elimination.15 Tumors are capable of 
shedding soluble NKG2D ligands via proteolytic cleavage, 
which can paradoxically render NK cells less cytotoxic, 
possibly by non-functional occupation of the NKG2D 
receptor binding site.37 Levels of soluble NKG2D ligands 
(MICA/B and ULBP1/2/3) in the plasma of patients 
with HNSCC are significantly elevated compared with 
healthy controls, presumably due to shedding from 
the primary tumor after proteolytic cleavage.34 Primary 
healthy human NK cells incubated with plasma derived 
from patients with HNSCC were significantly less efficient 
at killing target cells in vitro; this effect was reversed by 
depletion of soluble NKG2D ligands prior to incubation, 
which suggests that NKG2D ligand shedding may be an 
important mechanism of HNSCC immune evasion.34

Defects in HLA expression in HNSCC are a common 
event.38 HLA class I expression is lower in HPV+ than 
HPV- oropharyngeal HNSCC.39 Interestingly, low HLA 
class I expression is associated with favorable prognosis in 
HPV+ HNSCC, but a poor prognosis in HPV- HNSCC.39 40 
This may reflect the observation that HPV- HNSCC are 
relatively less infiltrated with NK cells compared with 
HPV+ HNSCC,28 41 and therefore may be protected from 
the consequences of HLA loss.

Distinguishing virally associated head and neck cancers
HPV+ and HPV- HNSCC primary tumors share a similar 
mutational and copy-number alteration burden; however, 
their mutational profiles, mechanism of malignant trans-
formation, and clinical behavior are markedly distinct.42 43 
HPV-associated tumorigenesis occurs via expression of the 
viral proteins E6 and E7, which inactivate p53 and retino-
blastoma protein (RB), respectively. High-risk HPV infec-
tion also leads to upregulation of the cyclin-dependent 
kinase inhibitor p16, which is widely used as a surrogate 

marker for HPV positivity in diagnostic testing.44 HPV+ 
HNSCC most commonly arises in the oropharyngeal 
tonsillar tissue and is associated with a more favorable 
prognosis than HPV- HNSCC, even when controlling 
for tumor stage, smoking status, and other potential 
confounders.3 Recent large-scale tumor sequencing 
initiatives such as The Cancer Genome Atlas and MSK-
IMPACT revealed that HPV- and HPV+ HNSCC harbor 
distinct mutational profiles.42 43 Overall, HPV- HNSCC 
mimicked the mutational landscape of lung and esoph-
ageal squamous cell carcinoma, which share tobacco 
smoke as a common risk factor.42 The tumor suppressor 
gene TP53 is mutated in the majority of HPV- HNSCC 
primary, locoregionally advanced, and recurrent/meta-
static tumors, and it is independently associated with a 
poor prognosis.42 43 45 TP53 is rarely mutated in HPV+ 
HNSCC.45 Even when controlling for HPV and smoking 
status, TP53 mutations in HNSCC correlated with 
reduced NK cell infiltration and markers of NK cytolytic 
activity.46 The authors observed HLA downregulation 
in specimens with TP53 mutations, which may explain 
why these tumors were more immunosuppressed, even 
though they bore a higher mutational—and therefore 
neoantigen—burden.46

The Epstein-Barr virus belongs to the herpesvirus 
family and is an etiologic agent of nasopharyngeal carci-
noma (NPC). The immune landscape of NPC and asso-
ciated NK cell characterization is not as well-defined as 
non-nasopharyngeal HNSCC. NPC are characteristically 
well-infiltrated, ‘immune-hot’ tumors. Like oropharyn-
geal carcinoma, NK cell infiltration is correlated with 
longer overall survival and progression-free survival.31 
Pretreatment blood sampling demonstrated NPC tended 
to have lower expression of the NCRs NKp30 and NKp46 
compared with healthy donors.47 It is still unknown, 
however, how highly NKG2A, HLA-E, and other important 
ligands or receptors are expressed in NPC.

Over 50% of the US population is latently infected with 
cytomegalovirus (CMV), and some countries approach 
near 100% CMV seroprevalence.48 Although infection is 
not a risk factor for HNSCC, CMV exposure profoundly 
shapes the repertoire of NK cells (and T cells) within an 
individual. CMV infection serves as a useful case study 
of how environmental exposures imprint on NK and T 
cell diversity, with important consequences for immu-
notherapy. For instance, CMV infection may lead to 
stable increases in numbers of adaptive or ‘memory-like’ 
NK cells that express the activating isoform of NKG2A: 
NKG2C.49–51 Like NKG2A, NKG2C similarly recognizes 
HLA-E, but preferentially binds.51 Expansion of NKG2C+ 
NK cells in response to CMV infection is dependent on 
sequence variation in the viral UL40-derived peptides, 
which form a complex with HLA-E.50 This effect can be 
highly significant—as much as 60% of CD56dim NK cells 
in some CMV-seropositive individuals are composed of 
clonally expanded, educated NKG2C+ NK cells.51 NKG2A 
expression on NK cells mutually exclusive of NKG2C 
expression. CMV-expanded NKG2C+ NK cell populations 
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have subsequently been found to bear epigenetic changes 
that alter inhibitory receptor expression, cytokine 
production and responsiveness, proliferative capacity, 
and signaling protein expression.52 53

Immunotherapy: moving beyond T cells
Although immunotherapy has heralded a new era in the 
treatment of HNSCC, rates of response to treatment have 
remained low. As a result, research has begun to focus 
on how combination regimens may synergize to improve 
responses by unlocking the activity of other effector cells. 
NK cells are at the nexus of these investigations. Given 
our understanding of the complex interrelationships 
between NK cells and other critically important antitumor 
effector cells, it is worth considering how NK cell function 
and dysfunction may contribute to the success or failure 
of immunotherapy in head and neck cancer.

Anti-epidermal growth-factor receptor
Before the approval of pembrolizumab and nivolumab, 
cetuximab was the only monoclonal antibody approved 
for the treatment of HNSCC.54–56 Cetuximab targets and 
prevents signaling through the transmembrane protein 
epidermal growth-factor receptor (EGFR), which is over-
expressed on over 80% of head and neck cancers and is 
associated with increased risk of recurrence and worse 
overall survival.57 Cetuximab monotherapy benefits only 
10% – 15% of patients with R/M-HNSCC; it is therefore 
important to understand what distinguishes responders 
from non-responders.57 The efficacy of cetuximab has 
been hypothesized to be due at least in part to its ability 
to activate NK cells and trigger ADCC and cytokine secre-
tion.58 Evidence for this claim comes from the observa-
tion that HNSCC patients with higher baseline levels of 
ADCC and EGFR expression had greater overall survival 
after cetuximab treatment; additionally, other anti-EGFR 
agents that do not trigger NK-mediated ADCC fail to 
provide benefit for R/M-HNSCC.35 58 59 Cetuximab-
activated NK cells promote DC maturation through IFN-
gamma secretion, which leads to increased tumor antigen 
cross-presentation to CD8+ T cells and subsequent expan-
sion of EGFR-specific T cells.60 NK:DC crosstalk is bidi-
rectional—IFN-gamma produced by cetuximab-activated 
NK cells leads to increased DC expression of the NKG2D 
ligand MICA, which reciprocally bolsters NK cell activa-
tion (figure 2).61

FcR polymorphisms have been shown to predict cetux-
imab response rates in colorectal cancer, although a 
similar analysis in cetuximab-treated head and neck 
cancer patients did not reveal any association between 
FcRIIIa genotype and disease-specific survival.60 62 63 None 
of these studies, however, stratified patients according to 
HLA-B −21 M/T genotype, which has been shown experi-
mentally to influence capacity for ADCC.8 Various agents 
are now being investigated, including IL-12, lenalidomide, 
monalizumab (anti-NKG2A), and the CD137/4-1BB 
agonist urelumab, in combination with cetuximab, in 

order to enhance NK activation and ADCC in head and 
neck cancer.33 64–66

Cetuximab is also associated with the induction of several 
immunosuppressive axes which may limit its overall effec-
tiveness. Patients with locoregionally advanced HNSCC 
treated with cetuximab had expansion of CD39+ Foxp 
3+ regulatory T cells (Treg) intratumorally, the extent 
of which was associated with a worse overall survival.67 
HNSCC-derived Tregs suppress cetuximab-mediated NK 
cell ADCC in vitro. 67 Cetuximab treatment is also asso-
ciated with increased expression of CTLA-4, TIM-3, and 
TGF-beta on intratumoral Tregs, likely involving NK-me-
diated DC maturation.67 CTLA-4 signaling in Treg cells 
leads to production of TGF-beta, which directly inhibits 
NK cell effector functions (figure 2).68 69 Because of these 
findings, the anti-CTLA4 mAb ipilimumab is now being 
studied in phase I trials in combination with cetuximab 
for HNSCC (NCT01935921).

Anti-PD-(L)1
Most previously published studies have provided evidence 
suggesting Programmed cell death protein 1 (PD-1) is 
not induced on human NK cells. However, several groups 
have shown PD-1 expression on NK cells in certain clin-
ical settings,70 71 including head and neck cancer.72 To 
date, the data are inconclusive, and PD-1 expression on 
NK cells is outside the scope of this review. This topic has 
been discussed extensively by Judge et al.73 Regardless, 
the observation that depletion of NK cells eliminated the 
efficacy of PD-1/PD-L1 blockade in tumor-bearing mice 
suggests that PD-1-based immunotherapy for HNSCC may 
benefit from proper NK cell function.74 This is possibly 
by preventing immunosuppressive interactions between 
NK cells and other PD-1-expressing cells within the tumor 
microenvironment (TME), such as myeloid-derived 
suppressor cells (MDSCs).75 However, there are no data 
suggesting direct interactions between NK cells and PD-1-
expressing MDSCs. Strikingly, high levels of pretreatment 
NK cell gene expression signatures in tumors predicted 
longer progression-free survival for patients with solid 
tumors—including HNSCC—after anti-PD-1 therapy, 
more than any other immune signature, including PD-1 
expression and CD8+ T cell signatures.76 It is worth noting, 
however, that the NK cell gene signature in Prat et al was 
minimally defined by the expression of three genes (SPN, 
XCL2, NCR1). Further analyses are required, as these 
genes are not unique to NK cells. Tumors are capable of 
responding to IFN-gamma produced by NK cells, which 
leads to increased PD-L1 expression.77 Intratumoral NK 
cells are also indirectly responsible for PD-1 responsive-
ness by producing FLT3L, CCL5, and XCL1, which collec-
tively enrich cDC1 in the TME that themselves closely 
correlate with PD-1 inhibitor responsiveness.22 23

Anti-NKG2A
NKG2A is an immunoreceptor tyrosine-based inhibition 
motif (ITIM)-bearing receptor that forms a heterodimer 
with CD94. On binding of NKG2A with its ligand HLA-E, 
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the tyrosine phosphatase SHP-1 is recruited, which ulti-
mately leads to downstream inhibition of NK-mediated 
cytotoxicity, including ADCC.78 NKG2A is stably expressed 
on approximately half of circulating and tumor-filtrating 
NK cells, and it was enriched on HNSCC-infiltrating CD8+ 
T cells.33 HLA-E expression protects tumor cells from 
NK-mediated killing.79 80 HLA-E is enriched on a broad 
range of carcinomas, including HNSCC, and is associated 
with poor prognosis.81–83 Expression of soluble HLA-E by 
tumors has been observed in ex vivo studies of human 
melanoma cells and in cell lines derived from various 
tumor types, but has not yet been directly described in 
HNSCC.84

In 2018, André et al reported the results of an ongoing 
trial investigating a humanized IgG4 anti-NKG2A mono-
clonal antibody, monalizumab, for R/M-HNSCC. In 
combination with cetuximab, monalizumab treatment 
led to an objective response rate (ORR) of 27.5% in 
patients with HNSCC, per Response Evaluation Criteria 
in Solid Tumors (RECIST) criteria.33 Although of course 
direct comparisons cannot be made without a random-
ized controlled trial, monalizumab-cetuximab compared 
favorably to single-agent cetuximab, which has a historical 
ORR of 13%.85 In vitro studies revealed that monalizumab 
enhanced NK cell and CD8+ T cell effector functions, and 
this effect synergized with both durvalumab and cetux-
imab separately.33 Monalizumab monotherapy is inef-
fective at promoting ADCC in vitro but synergizes with 
cetuximab to enhance ADCC. This suggests that monal-
izumab provides the additional benefit of potentiating 
cetuximab-induced NK-mediated ADCC. To date, no 
results have been published on monalizumab in combi-
nation with PD-(L)1 axis blockade in HNSCC, but this 
combination is actively being studied in microsatellite-
stable colorectal cancer (NCT02671435), and will be 
included as an expansion cohort in NCT02643550. 
It remains to be seen how HLA genetics may stratify 
responders and non-responders, and whether HLA-E 
expression levels during NK cell education at steady-
state predict the magnitude of response to monalizumab. 
Furthermore, stable expansion of NKG2C+ cells, such as 
occurs after CMV infection, may modulate the response 
to monalizumab, as NKG2C:HLA-E binding leads to NK 
cell activation rather than inhibition.83 Thus, we advocate 
that future studies of anti-NKG2A treatment substratify 
patients according to CMV-seropositivity, HLA-E expres-
sion and HLA-B genotype.

New directions
KIR blockade
The observation that allogeneic transfer of NK cells lacking 
inhibitory KIR for recipient HLA prevents relapse in 
patients with some hematological malignancies has gener-
ated interest in KIR blockade for cancer treatment.86–88 To 
that end, the anti-KIR2D monoclonal antibody lirilumab 
(IPH-2101) was developed to limit inhibitory KIR2DL1, 
KIR2DL2, and KIR2DL3 signaling and improve NK anti-
tumor response.89 Lirilumab is capable of binding to and 

blocking KIR2DL1, KIR2DL2, and KIR2DL3 expressed on 
approximately half of peripheral NK cells, blocking their 
inhibitory interaction with HLA-C, in addition to some 
off target blockade of KIR2DS1 and KIR2DL2.89 Liri-
lumab showed considerable efficacy in preclinical mouse 
studies, where it was capable of clearing leukemic blasts 
after just a single injection.89 Lirilumab was studied in 
combination with nivolumab for patients with platinum-
refractory R/M-HNSCC (NCT01714739). Early results of 
this phase I/II study showed an encouraging improve-
ment in objective response rate, although the trial was 
abandoned in November 2017 due to lack of evidence for 
benefit provided by the combination regimen. Lirilumab 
is now being studied in the neoadjuvant setting alongside 
nivolumab for HNSCC (NCT03341936).

Why have the promising preclinical results of KIR 
blockade not yet been realized in the clinic? Separate 
analyses in patients with smoldering multiple myeloma 
have shown that NK cells derived from patients receiving 
lirilumab unexpectedly showed NK cell hyporesponsive-
ness.90 Lirilumab treatment induced significant contrac-
tion of KIR2DL-positive NK cells by triggering trogocytosis 
of lirilumab-bound KIR protein.90 This observation raises 
special concern for KIR2D+ NK cells that express no other 
self-reactive inhibitory KIR, as loss of KIR2D signaling 
may compromise the education of this subset of NK cells 
and induce functional hyporesponsiveness.

TIGIT blockade
The poliovirus receptor (PVR), or CD155, is the ligand 
for TIGIT, an inhibitory receptor expressed on NK 
cells and subsets of T and Treg cells.91 TIGIT signaling 
prevents NK-mediated cellular lysis and is associated with 
depressed capacity for cytokine production and degran-
ulation capacity.92 TIGIT competes with the DNAM-1 
receptor (CD226), which similarly binds CD155 but with 
lower affinity than TIGIT and provides an activating 
rather than inhibitory signal to NK cells93; DNAM-1 is 
enhanced on educated NK cells.94 Thus, TIGIT and 
DNAM-1 provide opposing regulatory signals to NK cells, 
and this opposition has important functional implica-
tions for tumor control. In melanoma, NK cells rely on 
DNAM-1:CD155 signaling to prevent metastasis.95 Anti-
body blockade of TIGIT in vitro and in mice reduces NK 
cell exhaustion, inhibits tumor growth, and enhances 
NK-mediated proinflammatory cytokine production.96 97 
TIGIT blockade monotherapy was insufficient to induce 
tumor regression, but TIGIT/PD-1 co-blockade produced 
durable antitumor responses and prolonged survival 
compared with anti-PD-1 monotherapy in tumor-bearing 
mice.98 Based on these promising preclinical results, 
several anti-TIGIT mAbs have been developed and now 
are being investigated in phase I/II trials either as mono-
therapy or in combination with other checkpoint inhibi-
tors for patients with advanced malignancies (table 1).99 
The results of the ongoing phase III SKYSCRAPER trials 
in the setting of advanced lung cancer may be the first 
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indication of the true clinical efficacy of anti-TIGIT 
agents (NCT04294810, NCT04256421).

The importance of TIGIT in head and neck cancer is 
poorly understood. CD155 is highly expressed on HNSCC 
tumor cells and intratumoral myeloid cells compared 
with healthy mucosa, and high expression independently 
associated with worse overall survival.100 Bulk expression 
analysis of HNSCC tumors shows that, compared with 
HPV- tumors, HPV+ tumors exhibit significantly higher 
expression of TIGIT, although it could not be assessed 
whether increased TIGIT expression was selective to 
NK cells, T cells, or both.41 Notably, in HPV+ HNSCC, 
high bulk TIGIT expression correlated with improved 
survival, whereas in HPV- HNSCC, TIGIT expression did 
not significantly correlate with either improved or wors-
ened survival.41 TIGIT blockade delayed tumor growth 
and prevented T cell exhaustion in a mouse model 
of HNSCC.100 Taken together, these findings warrant 
further investigation into NK cell PVR-receptor expres-
sion dynamics and TIGIT blockade for HNSCC.

Anti-TIM3
Several early-phase clinical trials are now underway investi-
gating the use of T cell immunoglobulin mucin-3 (TIM3) 
checkpoint inhibition for the treatment of advanced 
solid malignancies, including HNSCC (NCT02608268, 
NCT03744468). Although the clinical efficacy of these 
agents has yet to be determined, there is promising 
evidence that TIM3 plays a role in the progression of head 
and neck cancer. TIM3 is an inhibitory receptor that is 
upregulated on the NK cell surface after activation via the 
Fc receptor.101 102 The major ligand for TIM3 is Galectin-9. 
Although the precise functional status of TIM3+ NK 
cells remains controversial,102 previous studies in mela-
noma have shown that TIM3 inhibition can reverse NK 
cell exhaustion.103 Bulk expression analyses have shown 
that TIM3 is upregulated in HNSCC tumors compared 
with healthy or dysplastic mucosa and correlated with 
increased likelihood of a lymph node metastasis and 
disease recurrence.72 104 Further, anti-TIM3 suppressed 
tumor growth in a mouse model of HNSCC.104

Anti-LAG-3
Similarly, several large trials have now begun using 
anti-lymphocyte activating gene 3 (LAG3) monoclonal 
antibodies for the treatment of advanced solid tumors 
(NCT01968109, NCT03311412). LAG-3 is an inhibitory 
receptor expressed on the surface on some NK cells 
and binds to the major histocompatibility complex II 
(MHCII). LAG-3 is highly expressed on tumor-infiltrating 
lymphocytes (TILs) in HNSCC—especially in recurrent 
or metastatic disease—and correlates with worse overall 
survival.105 LAG-3 blockade in a mouse model of HNSCC 
restricted tumor growth.105 Still, the extent to which the 
beneficial effects of LAG-3 blockade can be attributed to 
NK cells is unknown, as LAG-3 expression is also observed 
on adaptive lymphocytes.

Other modalities
Several new modalities have emerged that do not rely 
on immune checkpoint inhibition, but instead unleash 
NK cell function through other various mechanisms. 
WEE1 is a nuclear kinase that activates the G2/M check-
point, allowing for DNA repair prior to mitotic division. 
Conversely, granzyme B deactivates the G2/M check-
point, which prevents cells from performing DNA repair 
and leads to mitotic catastrophe among cells with high 
DNA damage burden, such as irradiated cells.106 Aber-
rant tumor WEE1 expression is capable of preventing 
granzyme B-induced tumor cell apoptosis.107 Therefore, 
inhibition of WEE1 was hypothesized to resensitize tumor 
cells to granzyme B and render them vulnerable to NK 
and T-cell mediated cytotoxicity. Furthermore, because 
normal cells have a functioning G1 checkpoint, whereas 
TP53-mutated cancers rely solely on G2 for DNA repair, 
WEE1 inhibitors are potentially tumor-specific.

In vitro WEE1 inhibition using the small molecule 
inhibitor AZD1775 (adavosertib) effectively radiosensi-
tized tumor cells, regardless of TP53 mutation status.108 
The results of this study prompted a single-arm dose-
escalation trial (NCT02037230) studying adavosertib in 
combination with gemcitabine for patients with unresect-
able locally advanced pancreatic cancer receiving chemo-
radiation. Compared with historical data on gemcitabine 
monotherapy, addition of adavosertib prolonged overall 
survival with tolerable side effects, and it is now heading 
to phase II studies.109 Although adavosertib sensitizes 
HNSCC tumor cells in vitro to NK-mediated killing, 
including via ADCC,110 no trials have investigated adavo-
sertib for HNSCC. Given the available evidence, adavo-
sertib is a promising combination agent to improve 
NK-driven treatments, such as cetuximab, for HNSCC.

As mentioned previously, HNSCC tumors tend to shed 
NKG2D ligands that lead to inhibition of NK cells.34 
Several strategies have been tested in preclinical studies 
to counteract the effect of NKG2D ligand shedding in 
order to improve NK cell activity, including apheresis 
of ligands from peripheral blood,34 as well as antibody-
mediated inhibition of MIC cleavage.111 Rhesus macaques 
injected with soluble MICA and subsequently apheresed 
had near-complete clearance of soluble MICA compared 
with non-apheresed controls.34 Antibody-mediated 
blockade of soluble MICA/MICB synergized with anti-
PD-L1 to enhance the antitumor potential of intratu-
moral NK cells, CD8+ T cells, and DCs in a MIC+ mouse 
tumor model.112

Several clinical trials are underway investigating adop-
tive NK cell transfer for the treatment of solid tumors, 
such as HNSCC (NCT03319459). Adoptive NK cell 
transfer provides several advantages over T cell transfer, 
including the possibility of a universal ‘off-the-shelf’ 
product and a more favorable side-effect profile. The 
sources of NK cells for adoptive transfer are numerous 
and include autologous expansion, allogeneic transfer 
from KIR-ligand mismatched donors, and infusion of 
irradiated NK cells derived from transformed NK cell 
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lines.113 Likewise, several strategies have emerged to 
maximize the antitumor activity of NK cells prior to infu-
sion. It has been previously shown that preactivating NK 
cells with IL-12, IL-15, and IL-18 induces a memory-like 
NK cell phenotype114 capable of producing remission in 
patients with acute myeloid leukemia.115 This strategy is 
now being investigated in R/M-HNSCC in combination 
with CTLA-4 checkpoint inhibition (NCT04290546). 
Genetic engineering of NK cells using transduction of 
chimeric antigen receptors (CAR-NK) has shown promise 
in leukemia116 and is now being investigated in solid 
tumors, including HNSCC (NCT03415100).

CONCLUSION
The deluge of ongoing clinical trials investigating combi-
nation regimens shows the urgency of improving immu-
notherapy response rates for patients with HNSCC, while 
minimizing the toxicity of current therapy. Given their 
natural antitumor functionality, NK cells are attractive 
targets for future research. Determinants such as HLA-B 
−21 M/T genotype and CMV exposure demonstrate the 
remarkable importance of genetic and environmental 
factors in shaping an individual’s NK cell repertoires. 
Centering future development around rational consider-
ations of the basic biological principles governing NK cell 
activation is imperative to maximizing the clinical success 
of NK-driven immunotherapy for head and neck cancer.
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