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Abstract

Complex human diseases are affected by genetic and environmental risk factors and their 

interactions. Gene-environment interaction (GEI) tests for aggregate genetic variant sets have been 

developed in recent years. However, existing statistical methods become rate limiting for large 

biobank-scale sequencing studies with correlated samples. We propose efficient Mixed-model 

Association tests for GEne-Environment interactions (MAGEE), for testing GEI between an 

aggregate variant set and environmental exposures on quantitative and binary traits in large-scale 

*Corresponding author: Han.Chen.2@uth.tmc.edu (Han Chen). 

CONFLICT OF INTERESTS
The authors declare that there is no conflict of interests.

DATA AVAILABILITY STATEMENT
The individual-level data that support the findings of this study are available upon application to the UK Biobank (https://
www.ukbiobank.ac.uk/register-apply/).

SOFTWARE
We have implemented MAGEE in an R package, available at https://github.com/xwang21/magee.

SUPPORTING INFORMATION
Supporting information includes eight supplemental figures and six supplemental tables.

HHS Public Access
Author manuscript
Genet Epidemiol. Author manuscript; available in PMC 2021 November 01.

Published in final edited form as:
Genet Epidemiol. 2020 November ; 44(8): 908–923. doi:10.1002/gepi.22351.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.ukbiobank.ac.uk/register-apply/
https://www.ukbiobank.ac.uk/register-apply/
https://github.com/xwang21/magee


sequencing studies with related individuals. Joint tests for the aggregate genetic main effects and 

GEI effects are also developed. A null generalized linear mixed model adjusting for covariates but 

without any genetic effects is fit only once in a whole genome GEI analysis, thereby vastly 

reducing the overall computational burden. Score tests for variant sets are performed as a 

combination of genetic burden and variance component tests by accounting for the genetic main 

effects using matrix projections. The computational complexity is dramatically reduced in a whole 

genome GEI analysis, which makes MAGEE scalable to hundreds of thousands of individuals. We 

applied MAGEE to the exome sequencing data of 41,144 related individuals from the UK 

Biobank, and the analysis of 18,970 protein coding genes finished within 10.4 CPU hours.

Keywords

gene-environment interaction; generalized linear mixed model; correlated data; rare variants; joint 
test

1. INTRODUCTION

The variation of traits among individuals in a population results from genetic and 

environmental factors, as well as their interactions. Gene-environment interaction (GEI) 

studies can improve our understanding on the biological mechanisms of complex diseases 

and lead to discoveries of novel genetic associations with effects that vary with 

environmental exposures (Mcallister et al., 2017).

The advancements in next-generation sequencing technologies over the past decade have 

enabled the increasing availability of large-scale data of low-frequency and rare genetic 

variants (with minor allele frequency (MAF) 1–5% and <1%, respectively). The single-

variant tests conventionally used for testing GEI with common variants are underpowered 

for rare variants. For example, statistical power for testing GEI with a binary environmental 

exposure depends on the minor allele counts in both exposed and unexposed groups. 

Although computationally efficient GEI tests for biobank-scale studies have been developed 

recently in the context of single-variant tests on unrelated individuals (Bi et al., 2019), 

critical methodological bottlenecks still exist to expand the sample size and scope of rare 

variant GEI analyses in large biobank-scale sequencing studies. To increase power for rare 

variants, various set-based methods have been developed to collapse variants in a particular 

gene or functional region to investigate how variants in a set affect a phenotype 

synergistically (Chen et al., 2019; Lee, Wu, & Lin, 2012; Pan, Kim, Zhang, Shen, & Wei, 

2014; Sun, Zheng, & Hsu, 2013), and to demonstrate whether genetic associations with the 

phenotype are modified by environment factors in GEI studies (Chen, Meigs, & Dupuis, 

2014; Lin et al., 2016; Su, Y., Di, & Hsu, 2017). For example, rareGE is a software tool for 

GEI tests on rare variants (Chen et al., 2014) that implements three variance component 

tests: two GEI tests that treat the genetic main effects either as fixed or random effects, and a 

joint test for the genetic main effects and GEI. Lin et al. (2016) proposed the interaction 

sequence kernel association test (iSKAT), which extends the SKAT-O test (Lee et al., 2012) 

for genetic main effects to a GEI test for rare variants that estimates the genetic main effects 

using a ridge regression model (Hastie, Tibshirani, & Friedman, 2009). Mixed effects Score 
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Tests for interaction (MiSTi) proposed by Su et al. (2017) is an extension of MiST (Sun et 

al., 2013) in the context of GEI.

Most of the aforementioned variant set-based GEI tests were developed to analyze unrelated 

samples and directly applying these methods to related samples will lead to invalid statistical 

inference and inflated type I error rates. On the other hand, extending these methods by 

adding a random effects term to account for relatedness in the generalized linear mixed 

model (GLMM) framework would result in an intensive computational complexity of O(N3) 

for each variant set, where N is the sample size (Lim, Chen, Dupuis, & Liu, 2020; Mazo 

Lopera, Coombes, & de Andrade, 2017). For large biobank-scale sequencing studies, such 

as the UK Biobank, related samples are often present. Therefore, there is an urgent need for 

computationally efficient variant set-based GEI tests that are scalable to hundreds of 

thousands of related samples.

Joint tests for genetic main effects and GEI effects are used to identify novel associations 

previously missed in genetic main effect tests, by accounting for heterogeneous genetic 

effects in samples with different environmental exposures (Cornelis et al., 2012). Joint tests 

for common variants have been developed (Chen et al., 2014; Kraft, Yen, Stram, Morrison, 

& Gauderman, 2007; Selinger-Leneman, Genin, Norris, & Khlat, 2003; Sun, R., Carroll, 

Christiani, & Lin, 2018), and a variant set-based joint test has been implemented in rareGE 

(Chen et al., 2014). However, the rareGE joint test relies on a Monte Carlo method to 

compute the p values, which changes slightly with the random number seed used in the 

analysis, and an analytical solution is not currently available.

We propose a computationally efficient method, Mixed-model Association test for GEne-

Environment interactions (MAGEE), to test GEI effects for rare variants that can reduce the 

computational complexity for testing each variant set from O(N3) to at most O(N2) for 

related samples, where N is the sample size. For samples with well-defined family structures 

the use of a block diagonal correlation structure can greatly reduce the complexity to O(nN), 

where n is the maximum number of individuals in each block. For unrelated samples, the 

computational complexity for testing each variant set in MAGEE is O(N), with statistical 

power being close to the existing methods such as rareGE and MiSTi. We also propose 

analytical joint tests in MAGEE that do not require Monte Carlo approaches for p value 

calculations.

2. MATERIALS AND METHODS

2.1 Generalized linear mixed models (GLMMs) and main effect tests

We developed two GEI tests and three joint tests based on GLMMs within the MAGEE 

framework. Table 1 provides a brief summary of these five tests. The full model of MAGEE 

is:

g μi = Xiα + Giβ + Kiγ + ri (1),

where g(∙) is the link function of μi, and μi is the conditional mean of the phenotype for 

individual i given covariates Xi, genotypes Gi and a random intercept ri. Xi is a row vector of 
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p covariates including an intercept, Gi is a row vector of q variants, and Ki is a row vector of 

mq pairwise GEI terms for m environmental factors (which are a subset of the p covariates 

in Xi) and q variants. Accordingly, α is a p × 1 vector for the covariate effects, β is a q × 1 

vector for the genetic main effects, and γ is the mq × 1 vector for GEI effects. The length N 

vector for the random intercept r = r1 r2⋯rN
T N 0, ∑l = 1

L λlψl , where λl are the variance 

component parameters for L random effects, and ψl are N × N known relatedness matrices.

The genetic main effect model assuming no GEI (γ = 0) is

g μi = Xiα + Giβ + ri (2)

Tests for H0: β = 0 can be constructed in the SMMAT framework (Chen et al., 2019). If β 
are treated as random effects, the main effect variance component (MV) test is then SKAT 

(Wu et al., 2011) for related samples (Chen, Meigs, & Dupuis, 2013), from which we can 

acquire a p value pMV. Another main effect test, the main effect hybrid test using Fisher’s 

method (Fisher, 1928) (MF), which combines the burden test and SKAT, is the efficient 

hybrid test SMMAT-E (Chen et al., 2019). In this test, we get two p values, one from the 

burden test, pB, and the other from the adjusted SKAT test, pAS. SMMAT-E (Chen et al., 

2019) combines these two p values to calculate a p value for the MF test using Fisher’s 

method pMF = P χ4
2  >   − 2log pB − 2log pAS .

2.2 Interaction tests

In model (2), the score vector for γ is SK = KT y − μG /ϕ, where y is an N × 1 vector of the 

observed phenotype values, ϕ is the dispersion parameter estimate, μG is a vector of fitted 

values, and K = K1
T  K2

T…KN
T T

 is the N × mq matrix for the GEI terms. Generally, testing 

for GEI H0: γ = 0 requires adjusting for genetic main effects. Therefore, we need to refit 

model (2) for every set of genetic variants in a whole genome GEI analysis. To reduce the 

computational burden, we first fit a global null model without any genetic main effects:

g μi = Xiα + ri (3)

From this model, we can construct score vectors SG = GT y − μ0 /ϕ and SK = KT y − μ0 /ϕ
for genetic main effects and GEI effects, respectively, where μ0 is a vector of fitted values 

from model (3), and ϕ is the dispersion parameter estimate from model (3). Assuming the 

main effect of genetic variants β are small, we then approximate the score vector for GEI 

effects by SK ≈ SK − KTP G GTP G −1SG (in Appendix A), where G = G1
T  G2

T…GN
T T

 is a 

N × q matrix of genetic variants, X = X1
T  X2

T…XN
T T

 is a N × p matrix of covariates, 

P = Σ−1 − Σ−1X XTΣ−1X
−1

XTΣ−1
 is an N × N projection matrix, where 

Σ = V + ∑l = 1
L λlψl, V = ϕIN for continuous traits and diag 1

μ0i 1 − μ0i
 for binary traits, 

which we estimate from model (3).
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Using this approximation, in the interaction variance component (IV) test, we assume 

γ N 0,  τW K
2 , where WK is an mq × mq predefined diagonal weight matrix for GEI. The 

weight matrix can be arbitrarily defined by the users, using either functional annotation 

scores (Kircher et al., 2014; Rentzsch, Witten, Cooper, Shendure, & Kircher, 2019; Rogers 

et al., 2018) or a function of the MAF. For example, Wu et al. (2011) suggested a beta 

density weight function with parameters 1 and 25 on the MAF. Testing for GEI H0: γ = 0 is 

then equivalent to testing the variance component parameter H0: τ = 0, with a test statistic

Tγ = SK
T W KW KSK .

Under the null hypothesis, Tγ asymptotically follows the distribution of ∑j = 1
mq ξγ, jχ1, j

2 , 

where χ1, j
2  are independent chi-square distributions with 1 degree of freedom (df), and ξγ,j 

are the eigenvalues of WK Λ WK, where Λ = KTP K − KTP G GTP G −1GTP K (in Appendix 

A).

Alternatively, we develop the interaction hybrid test using Fisher’s method (IF) to combine a 

burden-type test and an adjusted variance component test that are asymptotically 

independent, to achieve superior power than the IV test when the true mean of interaction 

effects γ is not close to 0. Specifically, in the IF test we assume γ N W K1mqγ0, τW K
2 , where 

1mq is a vector of 1’s with length mq, and testing for GEI H0: γ = 0 is equivalent to testing 

H0: γ0 = τ = 0 simutaneously. We decompose this test into two tests (Chen et al., 2019; Sun 

et al., 2013). In the first test, we assume τ = 0 and test H0: γ0 = 0 using the burden score 

constructed from the global null model (3): 

SKB = 1mq
T W KSK = 1mq

T W K SK − KTP G GTP G −1SG . The test statistic

Tγ0 = SKB
2

follows a distribution of ξγ0χ1
2 under the null hypothesis H0: γ0 = 0, where the scalar 

ξγ0 = 1mq
T W KΛW K1mq = 1mq

T W K KTP K − KTP G GTP G −1GT P K W K1mq.

In the second test, we do not make an assumption that γ0 = 0 but we assume its true value is 

small and we test H0: τ = 0 using adjusted scores accounting for the burden effect 

SKV ≈ SK − ΛW K1mq 1mq
T W KΛW K1mq

−1SKB (in Appendix B). Then the test statistic can 

be constructed as:

Tτ = SKV
T W KW KSKV
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and it asymptotically follows a distribution of ∑j = 1
mq ξτ, jχ1, j

2  under the null hypothesis H0: τ 

= 0, where ξτ,j are eigenvalues for WK ΛKV WK, and 

ΛKV = Λ − ΛW K1mq 1mq
T W KΛW K1mq

−11mq
T W KΛ.

As SKB and SKV  are asymptotically independent (in Appendix B), we combine p values 

from the two tests Tγ0 and Tτ using Fisher’s method to compute 

pIF = P χ4
2 > − 2 log pγ0 − 2 log pτ , where pγ0 and pτ are p values from the burden-type test 

H0: γ0 = 0 (under the assumption τ = 0) and the adjusted variance component test H0: τ = 0, 

respectively.

2.3 Joint tests

As the score vector SG for genetic main effects and the adjusted score vector SK for GEI 

effects are asymptotically normal with covariance

Cov SK, SG ≈ Cov SK − KTP G GTP G −1SG, SG

= KTP G − KTP G GTP G −1GTP G = 0,

they are asymptotically independent and so are the main effect tests and interaction tests 

derived using SG and SK, respectively. Therefore, an analytical form of the joint variance 

component (JV) test for genetic main effects and GEI effects can be constructed by 

combining p values of MV (pMV) and IV (pIV) tests using Fisher’s method as 

pJV = P χ4
2 > − 2 log pMV − 2 log pIV , similar to the IF test above.

We can also construct the joint test using MF and IF since they are also derived using SG and 

SK respectively, and both SKB and SKV  are linear functions of SK that are asymptotically 

independent. The four p values – pγ0 from the GEI burden-type test, pτ from the GEI 

adjusted variance component test, as well as the aforementioned components in the genetic 

main effects MF test, pB and pAS – are asymptotically mutually independent. Therefore, the 

joint hybrid test using Fisher’s method (JF) can be constructed by adding these four p values 

on the log scale, which follows a chi-square distribution with 8 df under the null hypothesis 

of no genetic main effects or GEI effects (Fisher, 1928) 

pJF = P χ8
2 > − 2 log pB − 2 log pAS − 2 log pγ0 − 2 log pτ . Alternatively, we can apply 

Fisher’s method to combine two p values from MF and IF tests, which follows a chi-square 

distribution with 4 df under the null hypothesis of no genetic main effects or GEI effects 

pJD = P χ4
2 > − 2 log pMF − 2 log pIF . This is a joint hybrid test using double Fisher’s 

procedures (JD), since each of MF and IF p values is already computed using Fisher’s 

method (see Table S1 for a summary of all five new tests: GEI tests IV and IF, and joint tests 

JV, JF and JD).
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2.4 Simulations

We conducted extensive simulations to 1) investigate MAGEE’s type I error control in 

unrelated and related samples; 2) compare p values from MAGEE and the existing methods 

rareGE and MiSTi on the scale of 10−10 to 10−5 in unrelated samples; and 3) compare the 

power of each test within the MAGEE framework. All the simulation scenarios were 

performed for both quantitative and binary traits.

2.4.1 Type I error in unrelated samples—HAPGEN2 (Su, Z., Marchini, & Donnelly, 

2011) was used to simulate 200,000 haplotypes on chromosome 22 based on 1000 Genomes 

project CEU data (Sabeti, 2015) as the reference panel. We randomly paired them into 

genotypes of 100,000 unrelated individuals. We simulated 40 genotype replicates, and each 

genotype replicate has a total of 119,317 variants, which were assigned to 1,194 variant sets. 

The first 1,193 groups had 100 variants per group, while the last group contained 17 

variants. The MAF for each variant ranged from 5.0 × 10−6 to 0.5, with a mean of 0.18.

We simulated 1,000 phenotype replicates for each genotype replicate. The quantitative trait 

for individual i was simulated from

yi = 0.1Agei + 0.2Sexi + 0.1BMIi + εi,

where Agei ~ N(50, 5), Sexi ~ Bernoulli(0.5), body mass index BMIi ~ N(25, 4), and the 

random error εi ~ N(0, 1). The binary traits for unrelated sample were simulated as a cohort 

study from

log
P yi = 1

1 − P yi = 1 = α0 + 0.1 Agei − Age + 0.2 Sexi − Sex + 0.1 BMIi − BMI ,

where yi is the observed phenotype value (either 0 or 1), Age, Sex, and body mass index 

(BMI) follow the same distribution as for the quantitative traits, and Age, Sex, and BMI are 

the mean values for Age, Sex, and BMI, respectively, and α0 was set to log 0.4
1 − 0.4 . For both 

quantitative and binary traits, we tested for gene-BMI interactions using beta density weight 

function with parameters 1 and 25 on the MAF (Wu et al., 2011) for both common and rare 

genetic variants, so that rare variants would have larger weights than common variants.

2.4.2 Type I error in related samples—Since MAGEE can be applied to both 

unrelated and related samples, we also simulated 40 genotype replicates for 25,000 families 

with two parents and two children with a theoretical kinship matrix of 

0.5 0.0 0.25 0.25
0.0 0.5 0.25 0.25
0.25 0.25 0.5 0.25
0.25 0.25 0.25 0.5

, 

totaling 100,000 individuals. The 100,000 haplotypes for the 50,000 founders were 

randomly sampled and paired into genotypes, and each child inherited one random 

haplotype from each parent within the same family. The total number of variants were also 

119,317 and were assigned to 1,194 variant sets.

Wang et al. Page 7

Genet Epidemiol. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We simulated 1,000 phenotype replicates for each genotype replicate. The quantitative trait 

for individual j in family i was simulated from

yij = 0.1Ageij + 0.2Sexij + 0.1BMIij + rij + εij,

where Ageij ~ N(50, 5) for parents and Ageij ~ N(50, 5) for children, Sexij ~ Bernoulli(0.5) 

for both parents and children, BMI for family i BMIi N

25
25
25
25

,

4.0 0.0 1.5 1.5
0.0 4.0 1.5 1.5
1.5 1.5 4.0 1.5
1.5 1.5 1.5 4.0

, by assuming 

a heritability of 0.75 (Elks et al., 2012), the random effects for family i 

ri N

0
0
0
0

,

0.25 0.0 0.125 0.125
0.0 0.25 0.125 0.125

0.125 0.125 0.25 0.125
0.125 0.125 0.125 0.25

, and the random error εij ~ N(0, 0.75).

The binary traits for related sample were simulated as a cohort study from

log
P yij = 1

1 − P yij = 1
= α0 + 0.1 Ageij − Age + 0.2 Sexij − Sex + 0.1 BMIij − BMI + rij,

where Age, Sex, BMI, and the random effects for family i ri follow the same distribution as 

for the quantitative traits, and Age, Sex, and BMI are the population mean values for them, 

respectively, α0 is log 0.4
1 − 0.4 . For both quantitative and binary traits, we tested for gene-BMI 

interactions using beta density weight function with parameters 1 and 25 on the MAF (Wu et 

al., 2011) for both common and rare genetic variants.

2.4.3 Comparison of p values—We simulated both quantitative and binary traits with 

unrelated individuals to compare the p value estimations for MAGEE with existing methods 

rareGE and MiSTi. Quantitative traits were simulated from 

yi = 0.1Agei + 0.2Sexi + 0.1BMIi + ∑t = 1
q βt Git − Gt + ∑t = 1

q γt Kit − Kt + εi, and binary 

traits were simulated from 

log
P yi = 1

1 − P yi = 1 = α0 + 0.1 Agei − Age + 0.2 Sexi − Sex + 0.1 BMIi − BMI

+ ∑t = 1
q βt Git − Gt + ∑t = 1

q γt Kit − Kt

, where Git 

denoted the t-th genetic variant for the i-th individual, and Gt was the mean of the t-th 

variant, Kit = Git BMIi − BMI  was the GEI term for the t-th variant with BMI for 

individual i, and Kt was the mean of the t-th interaction term. We conducted tests with 

sample sizes 2,000, 5,000, and 10,000. In scenario 1, we simulated both genetic main effects 

βt and GEI effects γt from clog10 (MAFt), with different values of constant c. In scenario 2, 

we simulated only genetic main effects βt from clog10 (MAFt), and set GEI effects γt = 0 so 

that it was a null hypothesis simulation for interaction tests but an alternative hypothesis 

simulation for joint tests. The specific values for constant c in each scenario and a summary 

of the simulation scenarios can be found in Table S2. We chose different c values for 
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different sample sizes, so that we could compare the results of MAGEE, rareGE, and MiSTi 

when the p values are in the range of 10−10 and 10−5, as this range is critical in the genome-

wide analysis. We simulated one genotype replicate with 100 variants for 2,000, 5,000, and 

10,000 unrelated individuals, and 1,000 phenotype replicates in each scenario.

To investigate the impact of strong genetic main effects, we performed additional simulation 

studies for both quantitative and binary traits in unrelated sample, with strong genetic main 

effects (γt = 0 and the constant c values for genetic main effects βt are shown in Table S3). 

We chose 40,000 variant sets from our simulated genotype replicates for 2,000, 5,000, and 

10,000 unrelated samples, and simulated 1,000 phenotype replicates for each group. IV and 

IF tests were performed and 40 million p-values under the null hypothesis of no GEI effects 

were computed for each test. In addition, we performed power simulations to compare IV, 

IF, and JV tests with rareGE GEI test, MiSTi test, and rareGE JOINT test in 2,000, 5,000, 

and 10,000 unrelated samples with both strong genetic main effects and GEI effects. One 

genotype replicate and 1,000 phenotype replicates were simulated under the alternative 

hypothesis (constant c values for βt and γt are shown in Table S4).

In all these scenarios, Agei, Sexi, BMIi and εi followed the same distribution as in the null 

simulations for unrelated samples. For βt and γt, we randomly assigned 80% of them to 0, 

10% to have a positive effect, and 10% to have a negative effect.

2.4.4 Power—To investigate the power of each test within the MAGEE framework, we 

simulated six scenarios using related individuals with sample sizes 20,000, 50,000, and 

100,000 in each scenario. In scenarios 1–3, we randomly assigned 80% of genetic main 

effects βt and GEI effects γt to 0, 10% of βt and γt to have a positive effect, and the 

remaining 10% of each of βt and γt to have a negative effect. These proportions were 

changed to 80% null, 16% positive, and 4% negative in scenarios 4–6. In all of the six 

scenarios, Ageij, Sexij, BMIij, ri, and εij followed the same distributions as the null 

simulations for related individuals. We simulated one genotype replicate with 100 variants 

for 100,000 related individuals with the same family structure as the null simulations for 

related individuals, and 1,000 phenotype replicates in each scenario.

Quantitative traits were simulated from 

yij = 0.1Ageij + 0.2Sexij + 0.1BMIij + ∑t = 1
q βt Gijt − Gt + ∑t = 1

q γt Kijt − Kt + rij + εij, and 

binary traits were simulated from 

log
P yij = 1

1 − P yij = 1 = α0 + 0.1 Ageij − Age + 0.2 Sexij − Sex + 0.1 BMIij − BMI

+ ∑t = 1
q βt Gijt − Gt + ∑t = 1

q γt Kijt − Kt + rij

, where Gijt 

was the t-th genetic variant for individual j in family i, and Kijt = Gijt BMIij − BMI  was 

the GEI term for the t-th variant with BMI for individual j from family i. In scenarios 1 and 

4, we simulated both genetic main effects βt and GEI effects γt from clog10 (MAFt), with 

different values of constant c. In scenario 2 and 5, we simulated only genetic main effects βt 

from clog10 (MAFt), and set GEI effects γt = 0. In scenario 3 and 6, we set genetic main 

effects βt = 0, and simulated GEI effects γt from clog10 (MAFt). The detailed simulation 
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settings and choices for constant c in each scenario for both quantitative and binary trait are 

listed in Table S5.

2.5 Application to UK Biobank whole exome sequencing data

We used the first tranche of UK Biobank (Bycroft et al., 2018) whole exome sequencing 

(WES) data released in March 2019 with 49,959 participants, which included 43,386 White 

British individuals with non-missing age. We tested for gene-sex interactions on a 

quantitative trait BMI, as well as a dichotomized trait obesity, which was defined as BMI ≥ 

30 (24.1% of the study samples). After removing samples with missing genetic ancestry or 

gender and sex mismatches, the total number of individuals was 41,144, including 18,925 

men and 22,219 women. The relatedness matrix was constructed using the kinship 

coefficients computed by KING software (Manichaikul et al., 2010) for third-degree and 

closer relatives, provided by the UK Biobank (see UK Biobank Resource 531). For BMI, we 

fit a heteroscedastic linear mixed model (Conomos et al., 2016) that allowed the residual 

variance to be different in men and women, adjusting for sex, age, age2, the interaction terms 

between sex and age, age2, and the top ten ancestry principal components (PCs). For obesity, 

we adjusted for the same covariates in a GLMM. We used the population-level genotype 

data generated from the Functionally Equivalent (FE) pipeline (Regier et al., 2018). The 

variant sets were defined as protein-coding regions for the WES data and a total of 18,970 

protein-coding regions with 9,760,758 variants were available for analysis. Variants with 

MAF less than 0.001 were excluded from the analysis. We applied a beta density weight 

function with parameters 1 and 25 on the MAF (Wu et al., 2011), and performed both GEI 

and joint tests using a single thread on a computing server.

3. RESULTS

3.1 Simulation Studies

3.1.1 Type I error—Table 2 summarizes the empirical type I error rates of MAGEE tests 

for quantitative and binary traits with 100,000 unrelated sample at significance levels of 

0.05, 1.0 × 10−4, and 2.5 × 10−6. In each cell, empirical type I error rates were estimated 

from 47,760,000 p values under the null hypothesis (40 genotype replicates × 1,000 

phenotype replicates × 1,194 variant sets) of the null model for unrelated samples. In Figure 

S1, the quantile-quantile (QQ) plots for both quantitative and binary traits show that all 

MAGEE main effect tests, GEI tests, and joint tests are well calibrated.

Similarly, Table 3 shows the empirical type I error rates of MAGEE tests for 100,000 related 

samples from 25,000 families at the same significance levels as Table 2. Figure 1 shows that 

with related individuals in the sample, existing methods that ignore the correlation structure, 

such as rareGE and MiSTi, give inflated type I error rates. In contrast, MAGEE tests control 

type I errors successfully. Due to the computational speed issue, rareGE and MiSTi do not 

scale up to the sample size of 100,000. Therefore, analyses in Figure 1 were performed 

using 10,000 related samples from 2,500 families, in which 119,400 p values (1 genotype 

replicate × 100 phenotype replicates × 1,194 variant sets) were estimated. Figure S2 shows 

the QQ plots of MAGEE tests for quantitative and binary traits with 100,000 related samples 
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from 47,760,000 p values, which are consistent with our results from 100,000 unrelated 

samples in Figure S1.

3.1.2 Computation time and p value comparison—We compared the p values from 

MAGEE with those from rareGE and MiSTi for both quantitative and binary traits in 2,000, 

5,000, and 10,000 unrelated samples. Each panel in Figure 2 (scenario 1 for quantitative 

trait: both genetic main effects and GEI effects) displays 1,000 p values from quantitative 

trait analyses with unrelated samples when both genetic main effects and GEI effects were 

simulated. MAGEE IV, IF, and JV tests have close p values with rareGE GEI test, MiSTi 

test, and rareGE JOINT test, respectively, and the accuracy increases with the sample size. 

Similar results are found in Figure S3 (scenario 2 for quantitative trait: genetic main effects 

only), in which only the genetic main effects but no GEI effects were simulated, as well as 

Figures S4 and S5 (scenario 1 and scenario 2 for binary traits).

Although MAGEE GEI tests were derived under the assumption that the genetic main effects 

are small, Table S6 shows that slightly deflated type I error rates are observed for MAGEE 

GEI tests in the presence of strong genetic main effects, based on results from 40 million p 
values under the null hypothesis of no GEI effects. Figure S6 shows that MAGEE IV and IF 

tests are slightly less powerful than rareGE GEI test and MiSTi test, respectively, based on 

results from 1,000 p values in the presence of both strong genetic main effects and GEI 

effects, at the significance level of 2.5 × 10−6. The power loss for MAGEE GEI tests is more 

evident in small samples with genetic main effects that are unrealistically large for most 

complex traits (Table S3). This is consistent with the slight type I error deflation observed in 

Table S6. For the joint test, the MAGEE JV test and rareGE JOINT test have very close 

power for continuous traits, while the MAGEE JV test is slightly less powerful than rareGE 

JOINT test in the presence of both strong genetic main effects and GEI effects.

Figure 3 compares the CPU time per p value on a single thread for MAGEE, rareGE, and 

MiSTi in quantitative trait analyses using unrelated individuals. As both rareGE and MiSTi 

require fitting a separate statistical model for each genetic variant set, their CPU time 

increases dramatically with the sample size, while MAGEE tests remain computationally 

efficient in large samples. Similar results are also observed in Figure S7 from binary trait 

analyses. In addition, MAGEE joint tests are performed simultaneously with the main effect 

and GEI tests. For example, when performing the JV test, MV and IV test results will be 

produced automatically; when performing either the JF or JD test, MF and IF test results 

will also be computed automatically.

3.1.3 Power—Figure 4 shows the empirical power of the seven tests within the MAGEE 

framework in analyzing quantitative traits (scenario 1 to 6), at the significance level of 2.5 × 

10−6 with 20,000, 50,000, and 100,000 related samples, respectively. The top panels show 

results from the scenarios 1–3, which have variants with 80% null, 10% positive, and 10% 

negative effects. When both genetic main effects and GEI effects are present (Figure 4A), 

the three joint tests are most powerful and they have very close power that increases along 

with the sample size. In the other two scenarios with only either genetic main effects (Figure 

4B) or GEI effects (Figure 4C), the joint tests are less powerful than main effects tests or 

GEI tests, respectively. In general, the variance component tests (MV, IV and JV) and the 
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hybrid tests (MF, IF, JF and JD) have close power, with the hybrid tests being slightly more 

powerful in these simulation settings. The bottom panels show results from the scenarios 4–

6, which have variants with 80% null, 16% positive, and 4% negative effects. The results are 

similar with scenarios 1–3 except that the hybrid tests have recognizable higher power 

compared to the variance component tests, for all main effect, GEI and joint tests. 

Furthermore, the JF test is slightly less powerful than the JD test, except in Figure 4A and 

4D, when both genetic main effects and GEI effects were simulated. Similar results with six 

simulation scenarios for binary traits are shown in Figure S8. In general settings, we would 

recommend IF for the GEI test, and JD for the joint test, if we do not have any prior 

knowledge about the genetic architecture of main effects or GEI effects.

3.2 UK Biobank whole exome sequencing data

The analysis of all 18,970 protein coding regions were finished in 10.4 hours using a single 

thread on a computing server for a single phenotype. Figure 5 shows that the IF tests are 

well calibrated for both the quantitative trait BMI and the dichotomized trait obesity, while 

the mild inflations in the JD tests are likely attributable to the main effect tests, as expected 

for polygenic traits. However, from Figure 6 one can see that across the 18,970 protein-

coding regions, only one significant p value in the melanocortin 4 receptor (MC4R) gene 

region on chromosome 18 was found in the JD test of gene-sex interaction for BMI at the 

significance level of 0.05/18,970 = 2.64 × 10−6 after Bonferroni correction for multiple 

testing (Bland & Altman, 1995). The IF test p value in this region was not significant (p = 

0.26), so the significant signal in the JD test (p = 2.29 × 10−7) was mostly driven by genetic 

main effects (MF test p = 4.56 × 10−8). MC4R is one of the most common monogenic cause 

of severe obesity in humans (Krashes, Lowell, & Garfield, 2016; Vaisse, Clement, Guy-

Grand, & Froguel, 1998). Previously, genome-wide association studies have identified 

common variants in or near MC4R with sex-specific effects on human brain structure and 

eating behavior (Horstmann et al., 2013), but it is unknown whether there are sex-specific 

genetic effects on BMI in this region. We also performed a rareGE JOINT test on MC4R 
using the UK Biobank WES data from 39,358 unrelated samples, which yielded a p value of 

1.18 × 10−8. This is consistent with our MAGEE JD test result.

4. DISCUSSION

We have developed computationally efficient variant set-based mixed model GEI tests and 

joint tests in the MAGEE framework, which can be applied to both quantitative and binary 

traits in large biobank-scale sequencing studies with hundreds of thousands of possibly 

related individuals. We have shown in simulation studies that existing GEI tests for variant 

sets developed for unrelated samples would have inflated type I error rates when applied to 

related samples, while MAGEE successfully controls type I errors in both unrelated and 

related samples. MAGEE requires fitting a global null model only once for all the tests 

across the whole genome, and it uses two matrix projection approaches to approximate the 

test statistics. MAGEE accounts for sample relatedness using GLMMs, and it greatly 

reduces the computational complexity for testing each variant set from O(N3) to no more 

than O(N2) with highly accurate approximations, making it the method of choice. For 

samples with a block-diagonal relatedness structure (such as family studies), the 
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computational complexity for testing each variant set is further reduced to O(nN), where n is 

the maximum number of individuals in each block (e.g., the family size), which is often 

much smaller than the total sample size N. For unrelated samples, MAGEE tests have a 

computational complexity of O(N), and we have also shown that MAGEE tests give very 

close p values to rareGE and MiSTi tests, although being slightly less powerful that these 

tests in small samples in the presence of strong genetic main effects. The power loss is not 

surprising for MAGEE GEI tests because the residual variance tends to be overestimated 

from the global null model without any genetic main effects, and the impact of 

overestimation depends on the proportion of phenotypic variance explained by the variant 

set being tested. However, we would expect reasonable genetic effects for a single variant set 

to be much smaller than what we have used in our simulation studies, and therefore only 

being detectable in large samples. The small genetic main effects assumption for MAGEE 

seems to be valid for most complex traits in reality.

MAGEE is well suited for GEI analysis using whole genome data from biobank-scale 

sequencing studies. The CPU time of MAGEE is much smaller than existing methods, since 

it does not require fitting a separate statistical model to account for genetic main effects, for 

each variant set in the whole genome analysis. Moreover, the MAGEE joint tests are unique 

because p values are computed analytically, instead of using the Monte Carlo approaches as 

implemented in rareGE (Chen et al., 2014). Based on our simulation studies, the hybrid test 

IF is more powerful than the variance component test IV for GEI effects, especially when 

the interaction effects do not have a mean of 0, and the hybrid test JD is usually the most 

powerful joint test. When both genetic main effects and GEI effect are present on 

approximately the same scale, the hybrid test JF is slightly more powerful than the JD test, 

but the power difference is negligible. In reality, with little knowledge on the genetic 

architecture of a quantitative or binary trait, the IF test is recommended for identifying GEI 

effects, and the JD test is recommended for identifying genetic associations that allow for 

heterogeneous effects in different environmental exposures.

We applied MAGEE to the WES data from the UK Biobank. The results showed that 

MAGEE p values were well calibrated in these real data applications, and we identified an 

association between BMI and MC4R gene from the joint test. However, we did not find any 

significant p values from the interaction test. It is possible that interaction effects may be too 

small to identify in 41,144 samples. As the WES project is ongoing in the UK Biobank, we 

hope to revisit gene-environment interaction analyses when WES data from more UK 

Biobank samples are released in the coming years.

Recently, StructLMM was developed to test GEI effects for a single genetic variant with 

high-dimensional environmental factors (Moore et al., 2019). While MAGEE can test GEI 

effects for multiple genetic variants with multiple environmental factors, its performance in a 

high-dimensional setting (e.g., a large number of genetic variants along with hundreds of 

environmental factors) has not been fully investigated. Moreover, MAGEE GEI and joint 

tests using summary statistics in a meta-analysis setting can further boost statistical power 

by combining association evidence from multi-million samples from large-scale sequencing 

studies in upcoming years. Our MAGEE framework provides a foundation for future 

research in these directions.
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APPENDIX A:: APPROXIMATIONS FOR THE SCORE VECTOR S˜K

Let α, β, and r be the estimates for α, β, and r from Equation 2, Y  is the working vector for 

the GLMM and Y  = y for quantitative trait, and 

Y i = Xiα + Giβ + ri + μGi 1 − μGi
−1 yi − μGi  for binary traits.

y − μG
ϕ

= V −1 Y − Xα − Gβ − r ,

= Σ−1 Y − Xα − Gβ

= Σ−1 Y − X G XTΣ−1X XTΣ−1G

GTΣ−1X GTΣ−1G

−1
XTΣ−1

GTΣ−1 Y

= Σ−1 − Σ−1X XTΣ−1X
−1

XTΣ−1 Y − Σ−1 − Σ−1X XTΣ−1X
−1

XTΣ−1

G GT Σ−1 − Σ−1X XTΣ−1X
−1

XTΣ−1 G
−1

GT Σ−1 − Σ−1X XTΣ−1X
−1

XTΣ−1 Y

Assuming the true value of β is small, including the Giβ term in Equation (2) does not 

dramatically change the variance component estimates for τ and ϕ from Equation (3), we 

can approximate that Σ−1 − Σ−1X XTΣ−1X
−1

XTΣ−1 ≈ P  and 
y − μ0

ϕ
≈ P Y , so

SK =
KT y − μG

ϕ
≈ KTP Y − KTP G GTP G −1GTP Y ≈ SK − KTP G GTP G −1SG
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We can rewrite SK in the matrix form as −KTP G GTP G −1 I
SG
SK

, where 

SG
SK

N 0
0 , GTP G GTP K

KTP G KTP K
, the variance of SK is then

Λ = −KTP G GTP G −1 I GTP G GTP K

KTP G KTP K
− GTP G −1GTP K

I

= KTP K − KTP G GTP G −1GTP K

APPENDIX B:: APPROXIMATIONS FOR THE SCORE VECTOR S˜KV

To get SKV , we need to fit Equation (A1)

g μi = Xiα + Giβ + KiW K1mqγ0 + ri (A1)

Let α, β, r, and γ0 be the estimates for α, β, r and γ0 from Equation (A1), Y  is the working 

vector for Equation (A1) and Y  = y for quantitative trait, and 

Y i = Xiα + Gi β + KiW K1mqγ0 + ri + μKi 1 − μKi
−1 yi − μKi  for binary traits, where μKi is 

the mean for individual i after fitting Equation (A1). The mean vector after fitting Equation 

(A1) is μK.

y − μK
ϕ

= V −1 Y − Xα − Gβ − KW K1mqγ0 − r

= Σ−1 Y − Xα − G β − KW K1mqγ0

Let Z = G KW K1mq ,

y − μK
ϕ

= Σ−1 Y − X Z XTΣ−1X XTΣ−1Z

ZTΣ−1X ZTΣ−1Z

−1
XTΣ−1

ZTΣ−1 Y

= Σ−1 − Σ−1X XTΣ−1X
−1

XTΣ−1 Y − Σ−1 − Σ−1X XTΣ−1X
−1

XTΣ−1
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Z ZT Σ−1 − Σ−1X XTΣ−1X
−1

XTΣ−1 Z
−1

ZT Σ−1 − Σ−1X XTΣ−1X
−1

XTΣ−1 Y

Let P = Σ
−1

− Σ
−1

X XTΣ
−1

X
−1

XTΣ
−1

,

y − μK
ϕ

= PY − P G K
GTPG GTPKW K1mq

1mqT W KKTPG 1mqT W KKTPKW K1mq

−1
GTP

1mqT W KKTP
Y

= P − PG GTPG −1GTP Y − P − PG GTPG −1GTP KW K1mq

1mqT W KKT P − PG GTPG −1GTP KW K1mq
−1

1mqT W KKT P − PG GTPG −1GTP Y

Assuming the true values of β and γ0 are small, including the terms Giβ and KiWK1mqγ0 in 

Equation (A1) does not dramatically change the variance component estimates for τ and ϕ 

from Equation (3), so we can approximate that P = Σ
−1

− Σ
−1

X XTΣ
−1

X
−1

XTΣ
−1

≈ P

and 
y − μ0

ϕ
≈ P Y , so

SKV =
KT y − μK

ϕ
≈ KTP Y − KTP G GTP G −1GTP Y − KTP KW K1mq

1mqT W K KTP K − KTP G GTP G −1GTP K W K1mq
−1

1mqT W KKTP Y

+KTP G GTP G −1GTP KW K1mq 1mqT W K KTP K − KTP G GTP G −1GTP K W K1mq
−1

1mqT W KKTP Y + KTP KW K1mq 1mqT W K KTP K − KTP G GTP G −1GTP K W K1mq
−1

1mqT W KKTP G GTP G −1GTP Y − KTP G GTP G −1GTP KW K1mq
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1mqT W K KTP K − KTP G GTP G −1GTP K W K1mq
−1

1mqT W KKTP G GTP G −1GTP Y

Notice that Λ = KTP K − KTP G GTP G −1GTP K, SK ≈ SK − KTP G GTP G −1SG and 

SKB = 1mq
T W KSK,

SKV ≈ KTP Y − KTP G GTP G −1GTP Y − ΛW K1mq 1mqT W KΛW K1mq
−11mqT W K

KTP Y − KTP G GTP G −1GTP Y

≈ SK − ΛW K1mq 1mqT W KΛW K1mq
−1SKB

SKB and SKV  are asymptotically independent because they are asymptotically normal with 

covariance

Cov SKV , SKB = Cov Imq − ΛW K1mq 1mqT W KΛW K1mq
−11mqT W K SK, 1mqT W KSK

= Imq − ΛW K1mq 1mqT W KΛWK1mq
−11mqT W K ΛW K1mq = 0 .
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Figure 1. 
Quantile-Quantile plots of MAGEE, rareGE and MiSTi tests on quantitative traits in 10,000 

related samples. (A) MAGEE IV, rareGE and MiSTi GEI tests. (B) MAGEE JV and rareGE 

joint tests.
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Figure 2. 
Comparison of p values from MAGEE versus rareGE and MiSTi tests on quantitative traits 

when both genetic and GEI effects were present (scenario 1) in 2,000, 5,000, and 10,000 

unrelated samples. (A) MAGEE IV versus rareGE GEI tests. (B) MAGEE IF versus MiSTi 

GEI tests. (C) MAGEE JV versus rareGE joint tests.
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Figure 3. 
CPU time per p value of MAGEE, rareGE and MiSTi tests on quantitative traits in unrelated 

samples. (A) MAGEE, rareGE and MiSTi GEI tests. (B) MAGEE and rareGE joint tests.
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Figure 4. 
Empirical power of MAGEE tests on quantitative traits in 20,000, 50,000, and 100,000 

related samples. (A) Scenario 1: 80% null variants, 10% causal variants with positive effects 

and 10% causal variants with negative effects for both genetic main effects and GEI effects. 

(B) Scenario 2: 80% null variants, 10% causal variants with positive effects and 10% causal 

variants with negative effects for genetic main effects only. (C) Scenario 3: 80% null 

variants, 10% causal variants with positive effects and 10% causal variants with negative 

effects for GEI effects only. (D) Scenario 4: 80% null variants, 16% causal variants with 

positive effects and 4% causal variants with negative effects for both genetic main effects 

and GEI effects. (E) Scenario 5: 80% null variants, 16% causal variants with positive effects 

and 4% causal variants with negative effects for genetic main effects only. (F) Scenario 6: 

80% null variants, 16% causal variants with positive effects and 4% causal variants with 

negative effects for GEI effects only.
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Figure 5. 
Quantile-Quantile plots of UK Biobank WES data analysis using MAGEE tests for gene-sex 

interaction effects on BMI and obesity. (A) BMI analysis. (B) Obesity analysis.
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Figure 6. 
Manhattan plots of UK Biobank WES data analysis using MAGEE tests for gene-sex 

interaction effects on BMI and obesity. (A) MAGEE IF test on BMI. (B) MAGEE JD test on 

BMI. (C) MAGEE IF test on obesity. (D) MAGEE JD test on obesity.
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Table 1.

A brief summary of GEI tests and joint tests within the MAGEE framework.

Test Type Analogy
a

GEI tests Interaction variance component (IV) test Variance component test rareGE GEI test

Interaction hybrid test using Fisher’s (IF) method Hybrid of burden and variance component tests MiSTi

Joint tests Joint variance component (JV) test Variance component test rareGE JOINT test

Joint hybrid test using Fisher’s (JF) method Hybrid of burden and variance component tests
N/A

b

Joint hybrid test using double Fisher’s (JD) procedures Hybrid of burden and variance component tests
N/A

b

a
Analogy in unrelated samples.

b
N/A: Not applicable.
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Table 2.

Empirical type I error rates of MAGEE tests for 100,000 unrelated individuals at significance levels of 0.05, 

1.0 × 10−4, and 2.5 × 10−6.

Quantitative trait
Significance Level

Binary trait
Significance Level

Test 0.05 1.0 × 10−4 2.5 × 10−6 0.05 1.0 × 10−4 2.5 × 10−6

MV 0.050 1.00 × 10−4 2.74 × 10−6 0.050 1.02 × 10−4 2.35 × 10−6

MF 0.050 1.01 × 10−4 2.49 × 10−6 0.050 1.00 × 10−4 2.84 × 10−6

IV 0.050 1.04 × 10−4 2.47 × 10−6 0.050 1.01 × 10−4 2.31 × 10−6

IF 0.050 1.01 × 10−4 2.70 × 10−6 0.050 9.93 × 10−5 2.14 × 10−6

JV 0.050 1.02 × 10−4 2.51 × 10−6 0.050 1.01 × 10−4 2.44 × 10−6

JF 0.050 1.00 × 10−4 2.55 × 10−6 0.050 1.02 × 10−4 2.59 × 10−6

JD 0.050 1.00 × 10−4 2.53 × 10−6 0.050 1.01 × 10−4 2.40 × 10−6
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Table 3.

Empirical type I error rates of MAGEE tests for 100,000 related individuals at significance levels of 0.05, 1.0 

× 10−4, and 2.5 × 10−6.

Quantitative trait
Significance Level

Binary trait
Significance Level

Test 0.05 1.0 × 10−4 2.5 × 10−6 0.05 1.0 × 10−4 2.5 × 10−6

MV 0.050 9.97 × 10−5 2.32 × 10−6 0.050 9.92 × 10−5 2.28 × 10−6

MF 0.050 1.01 × 10−4 2.72 × 10−6 0.050 9.93 × 10−5 1.86 × 10−6

IV 0.050 9.82 × 10−5 1.99 × 10−6 0.048 8.90 × 10−5 2.07 × 10−6

IF 0.050 9.87 × 10−5 1.97 × 10−6 0.048 8.81 × 10−5 2.14 × 10−6

JV 0.050 9.99 × 10−5 2.81 × 10−6 0.049 9.55 × 10−5 2.14 × 10−6

JF 0.050 9.98 × 10−5 2.74 × 10−6 0.048 9.30 × 10−5 2.11 × 10−6

JD 0.050 1.01 × 10−4 2.83 × 10−6 0.048 9.14 × 10−5 2.16 × 10−6
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