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ABSTRACT
The coronavirus disease, caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2),
is a global health crisis that is being endured with an increased alarm of transmission each day.
Though the pandemic has activated innumerable research attention to decipher an antidote, funda-
mental understanding of the molecular mechanisms is necessary to halt the disease progression. The
study focused on comparison of the COVID-19 infected lung tissue gene expression datasets
-GSE155241 and GSE150316 with the GEO2R-limma package. The significant up- and downregulated
genes were annotated. Further evaluation of the enriched pathways, transcription factors, kinases, non-
coding RNAs and drug perturbations revealed the significant molecular mechanisms of the host
response. The results revealed a surge in mitochondrial respiration, cytokines, neurodegenerative
mechanisms and deprived oxygen, iron, copper, and glucose transport. Hijack of ubiquitination by
SARS-CoV-2, hox gene differentiation, histone modification, and miRNA biogenesis were the notable
molecular mechanisms inferred. Long non-coding RNAs such as C058791.1, TTTY15 and TPTEP1 were
predicted to be efficient in regulating the disease mechanisms. Drugs-F-1566-0341, Digoxin,
Proscillaridin and Linifanib that reverse the gene expression signatures were predicted from drug per-
turbations analysis. The binding efficiency and interaction of proscillaridin and digoxin as obtained
from the molecular docking studies confirmed their therapeutic potential. Two overlapping upregu-
lated genes MDH1, SGCE and one downregulated gene PFKFB3 were appraised as potential bio-
markers candidates. The upregulation of PGM5, ISLR and ANK2 as measured from their expressions in
normal lungs affirmed their possible prognostic biomarker competence. The study explored significant
insights for better diagnosis, and therapeutic options for COVID-19.
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1. Introduction

Coronavirus disease 2019 (COVID-19) is a prominent health
distress that governs the contemporary era and is worsening
every single human’s existence. The disease declared as a

pandemic threat by the World Health Organization (WHO)
has abruptly risen and has more than 27,738,179 confirmed
active cases and 899,916 deaths spanning 216 countries and
territories (Kuster et al., 2020). The vital information
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associated with the disease’s causative agent, symptoms and
rate of mortality are numerous with little focus on the virus’s
pathobiology and molecular mechanisms (Wu & McGoogan,
2020). Though the novel coronavirus (nCoV) shares 80%
homology with the severe acute respiratory syndrome (SARS)
coronavirus outbreak in 2002, there is no accurate preven-
tion or treatment options implemented so far. It encom-
passes functional receptors that can differentially express
pathogenesis in various parts of the respiratory, circulatory,
central nervous systems and other vital organs of the body.
A profoundly studied one such functional receptor is angio-
tensin-converting enzyme 2 (ACE2) targeted by the spike
protein from SARS-CoV-2 (Chen et al., 2020; Li et al.. 2003;
Walls et al., 2020). The structural and functional analysis of
ACE2, showed high integrity and expression levels in the
lung (epithelial cells), heart, ileum, kidney and bladder (Dong
et al., 2018; Letko et al., 2020; Zou et al., 2020). Though there
is profound research on various host receptors tantalizing
the virus, significant focus on the mechanisms and other
host responses are still lacking.

There is a vital need to analyse the disease in its cellular
biology perspective which can point out the additional tar-
get sites preferred by the virus. This will definitely lead to a
way that unravels the complications involved to produce an
antidote. Gene expression profiles via high throughput RNA
sequencing can trace back the rate of pathogenesis and
develop targeted drugs against a specific ailment (Zhao
et al., 2018). Gene chips along with statistical programs, offer
a significant sustenance that can analyse gene expressions
and ability to determine diagnostic and prognostic bio-
markers to combat imminent diseases (Hou et al., 2019).
Molecular mechanisms and pathology are interrelated and
generally imperceptible. Elucidation of the gene expression
profile discriminates between normal and disease conditions
with an exploration of the molecular data (Zhou et al., 2016).
RNA interference is one such molecular strategy adopted by
both the host and the virus. Competing endogenous RNAs
(ceRNA) are non-coding functional RNAs like microRNAs
(miRNA) and long non-coding RNAs (lncRNA) which interact
with the mRNA to either suppress or induce viral pathogen-
esis (Hsu et al., 2007; Wen et al., 2019). Recently, there are
enormous research reports on evaluation of inhibitors based
on machine learning, to name a few, drug repurposing with
chloroquine (Liu et al., 2020), Withania somnifera (Kumar
et al., 2020a), and quaternary ammonium compounds (Baker
et al., 2020) to tackle the spread and pathogenesis.
Conversely, the integration of molecular signatures, gene
patterns, and enrichment of pathways, network biology and
drug repositioning are reliable panacea. The current work is
a result of such integrative approach that exposes the
unique characteristics and underlying molecular mechanisms
of COVID-19 which may lead to the development of more
precise diagnostic biomarkers and effective thera-
peutic strategies.

The present study focused on statistically synchronized in
silico methods to identify the differential gene expression
studies of two datasets of Gene expression omnibus,
GSE150316 and GSE155241. The datasets contained high

throughput RNA sequencing data from the autopsy of vari-
ous organs of patients succumbed to COVID-19. In order to
eliminate poor reproducibility, intensive attention was given
only on the lung tissues from both healthy and diseased
samples which evaluated the differential expression of genes.
Varied Integrated approaches applied in this study computed
the enrichment of functions, pathways and non-coding RNAs
which gained insights into molecular mechanisms underlying
the pathogenesis. The assessment of protein–protein interac-
tions performed augmented the hub genes and their
respective association. Potential diagnostic and prognostic
biomarkers were confirmed from the overlapping genes of
the disastrous pandemic COVID-19 which can be developed
into further treatment and therapeutic options.

2. Methodology

2.1. Data retrieval and normalization

The gene expression datasets of COVID-19 were retrieved
from Gene Expression Omnibus (https://www.ncbi.nlm.nih.
gov/geo/) with the accessions GSE150316 (Desai et al., 2020)
and GSE155241 (Han et al., 2020). The datasets housed mul-
tiple samples and we chose only the lung tissues for our
study. The platforms for GSE150316 was based on GPL15520
Illumina Miseq (Homo sapiens) and had 88 samples of various
tissues. Among them 5 control and 16 lung tissue samples
affected with COVID-19 were chosen. GSE155241 was based
on the platform GPL24676 Illumina Novaseq6000 (H. sapiens)
with 18 samples of lung autopsy tissues and organoids.
Three samples each from healthy lung, COVID-19 affected
lung autopsy tissues, mock control hpsc (human pluripotent
stem cell) derived lung organoid and COVID-19 infected hpsc
lung organoid samples were analysed in our study. Both the
datasets were standardised, log transformed and scrutinised
for the differentially expressed genes (DEGs) using the
GEO2R module of Limma package of R. Statistics of
Benjamini-Hochberg false discovery rate (Dubitzky et al.,
2013) was applied with log2FC >0.5 (Perez et al., 2019) and
p-value <0.05 thresholds (Stephens et al., 2019) to screen
the significant genes. Heat maps of top 100 genes clustered
with K-means and volcano plots representing the up- and
downregulated DEGs were plotted using the bioinfokit mod-
ule of python (Bedre, 2020). Venn diagrams were useful to
determine the mutually regulated genes and the overlapping
DEGs of both the datasets were identified using the Venny
tool (http://bioinformatics.psb.ugent.be/webtools/Venn/).

2.2. Gene ontology and functional enrichment

Gene ontology (GO) enrichment, a remarkable strategy pre-
dicted the Biological Process, Molecular Function, and
Cellular Component of the DEGs (Zhu et al., 2020). The DEGs
of individual datasets were subjected to David functional
annotation tool (https://davidd.ncifcrf.gov/) to annotate the
GO functions and pathway terms from the KEGG (http://
www.genome.jp/kegg/) (Kanehisa et al., 2016) and Reactome
(https://reactome.org/) (Fabregat et al., 2018) databases.
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Relative gene annotation and pathway analysis was com-
puted with ClueGo version 2.5.7 (Bindea et al., 2009)imple-
mented in the cytoscape software version 3.5.8 based on
Benjamini Hochberg method with kappa score of 3 and
hypergeometric two-sided Statistical tests (Rivals et al., 2007).
Enrichment of transcription factors and kinases of the signifi-
cant DEGs were predicted from the Encode (https://genome.
ucsc.edu/ENCODE) (Davis et al., 2018; Rivals et al., 2007) and
KEA (http://www.maayanlab.net/KEA2/) (Lachmann &
Ma’ayan, 2009) databases from Enrichr platform (Kuleshov
et al., 2016).

2.3. Protein–protein interaction and hub gene analysis

Significant DEGs were evaluated for their encoding protein
interactions to identify the hub genes using the STRING data-
base (http://stringdb.org/) (Szklarczyk et al., 2017). The poten-
tial interactions were screened using the MCODE plugin
installed in the cytoscape software. Cluster analysis of the
protein–protein interaction network was performed with the
networks scoring degree cutoff of 2, K-score of 2, and node
score cutoff of 0.2 and identified the up- and downregulated
hub genes (Bader & Hogue, 2003). The hub genes were fur-
ther validated by predicting their expression patterns across
the tissues of the respiratory and circulatory systems using
the Expression Atlas (https://www.ebi.ac.uk/gxa/home)
(Papatheodorou et al., 2019) and the human protein atlas
platforms (http://www.proteinatlas.org). The transcript and
encoding protein expression rates of the hub genes were
predicted from the Genotype Expression dataset (GTEX)
(GTEx Consortium, 2013) available in the human protein atlas
database for their normal expression levels in lungs, bron-
chus and blood.

2.4. Network of mRNA-miRNA-lncRNA

MicroRNAs are small endogenous RNAs that are proven to
suppress the target mRNAs by complementarity binding and
hence they play a vulnerable role in viral pathogenesis (Li
et al., 2006). Many evidence suggests that host miRNA plays
a significant role in viral life cycle, replication and pathogen-
esis by a complicated regulatory mechanism (Hou et al.,
2019). Hence, targeting the host miRNAs can certainly aid in
reducing the disease progression. From the DEGs, targets of
miRNAs were identified by referring to the Mirnet (http://
www.mirnet.ca) (Chang et al., 2020). The DEGs with expres-
sion levels that are inversely proportional to the miRNAs
were retained (Lei et al., 2019). Long non coding RNAs are
reported to act on the miRNAs as sponges, to prevent
miRNA–mRNA-binding and rescue mRNA levels to translation
(Wang, 2018). The cross talk between lncRNAs and miRNAs
were predicted from the DIANA lncBase (http://diana.imis.
athena.innovation.gr) with scores of >0.99 (Yousefi et al.,
2020). The network of competing endogenous RNAs (ceRNA)
including the mRNA–miRNA–lncRNA network was con-
structed using cytoscape (Zhou et al., 2019).

2.5. Drug perturbation analysis on the transcriptome
data

The significant overlapping and individual DEGs of the data-
sets were used to analyse the small compounds and drugs
that can either mimic or reverse the gene expression pattern.
L1000FWD (http://www.lincsproject.org/LINCS/dmoa) (Wang
et al., 2018) platform computed the chemical perturbagens
capable of reversing the DEGs (Ye et al., 2018). The potential
drug candidates that reverse the DEG pattern on the lung
cancer cell line A549 were identified based on p-value
(Huang et al., 2018)

2.6. Molecular Docking studies of the predicted drugs

In order to validate the performance of the predicted drug
perturbagens, molecular docking was performed with the
four drug compounds against the extensively studied target
of COVID-19, Main protease (MPro) enzyme. Three dimen-
sional structure of the four drug compounds – Digoxin,
Proscillaridin, Linifanib and F1566-1034 were retrieved from
pubchem (http://www.pubchem.ncbi.nlm.nih.gov) and opti-
mised with OPLS 2005 force field using the ligprep module
of Schrodinger (version 2020-1) (Ogidigo et al., 2020). The 3D
crystal structure of COVID-19 main protease (6LU7) was
retrieved from PDB and prepared with protein preparation
wizard of Schrodinger using the OPLS2005 force field
(Shivanika et al., 2020). The active site of the protein was cal-
culated using a sitemap module and the receptor grid was
generated. Molecular docking of the optimised ligands with
the target protein was performed in eXtra Precision docking
(XP) mode of the Glide module. Docking of Drugs along with
the complexed ligand–peptide-like inhibitor N3, enabled bet-
ter comparison of the binding energy and interactions
(Mittal et al., 2020).

3. Results

3.1. Data set and normalization

The raw data of GSE150316 and GSE155241 were down-
loaded from the GEOdatabase where the samples of lung
were retained and the remaining tissues from both datasets
were discarded for better comparison and reproducibility.
The analysis was on 5 healthy controls, 16 samples of
COVID-affected lung autopsy tissues from GSE150316. Tissues
of healthy lung, COVID-19 affected lung autopsy tissues,
mock control hpsc lung organoid and COVID-19-infected
hpsc lung organoid samples (3 each) from GSE155241 were
analysed. The selected sample sets were standardised and
analysed with the GEO2R package to obtain DEGs with the
threshold of p value <0.05 and log2FC >0.5. There were 51
up- and 57 downregulated DEGs obtained from GSE155241.
A total of 620 upregulated and 594 downregulated DEGs
acquired from GSE150316. Further a total of six upregulated
and eight downregulated DEGs were identified that were
mutual to both the datasets (Figure 1(A,B)). Volcano plots
representing the up- and downregulated DEGs are shown in
the Figure 1(C,D). For effective visualization, top 100 DEGs
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ranked based on their p values were clustered in a heatmap
based on K-means clustering algorithm. Heatmaps of the top
100 DEGs of dataset GSE155241 and GSE150316 are shown
in Figure 1(E,F), respectively. The overlapping upregulated
genes were identified as AMZ2, MDH1, TMEM261, PHF14,
PTGFRN and SGCE. The overlapping down regulated genes
were UGCG, DUSP6, TIPARP, NUPL1, NOLC1, PFKFB3, ERRFI1
and SLC19A2.

3.2. Gene ontology analysis

The significant up- and downregulated DEGs were annotated
using the DAVID tool. The top 10 annotations were screened
based on their pvalue including the sub-ontologies biological
process (BP), cellular components (CC) and molecular func-
tions (MF) (Saddala et al., 2020) and shown in Figure 2. For
the upregulated BP, significant enrichment was found in
NADH ubiquinone activity, endopeptidase activity, ubiquinol
cytochrome-c reductase activity and cell matrix adhesion.
Conversely, for CC, the enrichment was observed in mito-
chondrial respiratory complex I, dystrophin associated glyco-
protein complex, platelet alpha granules lumen, dendrites
and intercalated disc. Enrichment in the molecular functions
like mitochondrial respiration, neutrophil degranulation, com-
plement activation and tau protein binding were significantly
enriched. The significant downregulated BP enrichment was

seen in response to cytokines, interleukins, lung develop-
ment, copper and iron transport. Lysosomes, golgi complex
and nucleolus were down regulated CC and MF like GTPase
activators, protein tyrosine phosphatase, MAP kinase activity
and transporters like azole and carboxylic acid trans mem-
brane transporters were significantly downregulated.

3.3. Functional enrichment and interrelational analysis

As shown in Figure 3, transcription factors like RNA poly-
merase 1, CREB, DNA polymerase E4, BOLA3 responsible for
mitochondrial chain complex assembly were few upregu-
lated transcription factors. Most of the overexpressed tran-
scription factors and kinases play a role in angiogenesis and
vasculature development. Kruppel like factors, BACH1,
MKRN1, SP3 and various zinc finger domain transcription
factors were downregulated. Plexin – a transcription factor
that was reported to elicit interleukin production upon viral
entry is remarkably downregulated. LRRK2, STK38L that
were responsible for neuronal plasticity and differentiation
of mature neurons were considerably under expressed.
Pathway enrichment was performed from both KEGG and
REACTOME databases. The top 10 pathways mutually identi-
fied in both databases and ranked by their p-value (Saddala
et al., 2020) are shown in Figure 3. Electron transport
chains, citric acid cycle, nicotinamide scavenging,

Figure 1. Differentially expressed genes of the datasets GSE155241 and GSE150316. (A) Venn diagrams representation of the commonly found upregulated DEGs
of both datasets. (B) Venn diagrams representation of the commonly found downregulated DEGs of both datasets. (C)Volcano plots of the upregulated DEGs with
log2FC >0.5 and p value (FDR) < 0.05. (D) Volcano plots of the downregulated DEGs with log2FC >0.5 and p value (FDR) < 0.05. Green and blue dots represent
up- and downregulated genes, respectively. Black dots represent the remaining genes with no significant difference. (E) Heatmap representation of the top 100
DEGs of GSE155241 is shown. (F) Heatmap representation of the top 100 DEGs of GSE150316 is shown. DEGs: differentially expressed genes.
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Alzheimer’s disease and Huntington’s disease pathways
were upregulated and identified from both the databases.
Copper homeostasis, FOXO signalling pathways, metal ion
transporters, and various signalling pathways involved in
cancers were all under expressed. Tyrosine kinases, active
receptor like kinases, salt inducible kinases, and myosin
light chain kinases were few of the kinases that were upre-
gulated whereas ubiquitin kinase, protein kinase 3 and
bone morphogenetic protein kinases were few of the down-
regulated kinases identified from the DGEs. Further to
ensure consistency with the above results of annotations

and functional enrichments, an interrelation analysis with
ClueGO module was performed. Notable upregulation of
mitochondrial respiration, electron transport chain, hijacking
of ubiquitination by SARS-CoV-2, miRNA biogenesis, viral
mRNA synthesis, histone acetyl transferases and activation
of hox genes were identified. Pathological conditions like
systemic lupus erythematosus, Parkinson’s, Alzheimers’,
non-alcoholic fatty acid liver diseases were over expressed
(Figure 4(A)). The relative analysis confirmed the downregu-
lation of cadmium, copper, iron, zinc and manganese trans-
port as seen in Figure 4(B).

Figure 2. Gene Ontology (GO) term enrichment analysis of upregulated DEGs. The top 10 annotations ranked based on p values are shown for three sub-ontolo-
gies, namely biological process, molecular function, and cellular component shown in the bars to the right. The top 10 downregulated annotations ranked based
on p values are shown for three sub-ontologies, namely biological process, molecular function, and cellular component shown in the bars to the left.
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3.4. Protein–protein interactions and hub gene
validation

Protein- Protein interactions (PPI) encoded by the significant
DEGs of both the datasets were identified from STRING data-
base and analysed in cytoscape to predict the hub genes. From
the overall up- and downregulated PPI obtained, MCODE mod-
ule of cytoscape predicted 10 and 7 predominant clusters
respectively. The top two upregulated clusters with 25 nodes
with a score of 29 (Figure 5(A)) and a significant down regu-
lated cluster with 9 nodes and a score of 17.34 (Figure 5(B))
were chosen to identify the hub genes. The selected clusters
had two of the overlapping upregulated genes -SGCE and

MDH1 and one overlapping down regulated gene PFKFB3,
respectively.

In order to validate the hub genes, expression levels of the
hub genes from COVID-19 affected lungs, were compared with
their expressions in healthy lungs from the expression atlas
platform and human protein atlas platforms. The normal
expressions were measured at 1339 TPM and were presented
in Table 1 and Figure 6. As shown in Table 1, very low expres-
sions of MDH1 and SGCE were identified with values of 29.2
and 44.7 TPM, respectively. Their encoding proteins were also
found to be low in bronchus and lungs. On the contrary the
two genes were significantly up regulated and occurred in

Figure 3. Signalling pathway enrichment analysis of overlapped DEGs. The pathway enrichment analysis with KEGG and REACTOME are shown for upregulated
DEGs on the bars to the right. The pathway enrichment analysis with KEGG and REACTOME are shown for downregulated DEGs on the bars to the left.
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both the datasets of COVID-affected lungs. Hence, the two
genes were proclaimed to be potential biomarker candidates
of COVID-19. Availability of them in blood MDH1 in T-cells and
SGCE in B-cells make them more significant and measurable
biomarkers. Expression of significantly downregulated hub
gene PFKFB3, was very high in healthy lungs with 96.4 TPM

and in neutrophils with 124.8 TPM. The contrast expression
rates of PFKFB3 in healthy vs COVID-19 infected lungs were
attributed to be a significant gene biomarker. Higher expres-
sion of SLC16A3 and medium expression of NUDT21 were
observed in other tissues like brain, heart and adipose tissues
and hence were not considered significant for COVID-19.

Figure 4. Interrelational pathway analysis and GO enrichment of the DEGs. (A) interrelational analysis of the upregulated DEGs. (B) interrelational analysis of the
downregulated DEGs. The pathways are shown in arrow representation and the GO in ellipses.

Figure 5. Protein–protein interaction network of the DEGs and identification of hub genes. (A) hub genes from the PPI network of the upregulated DEGs (B) hub genes
from the PPI network of the downregulated DEGs. Overlapping genes are shown in green. PPI: protein–protein interaction. DEGs: differentially expressed genes.
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Expression rates of CLU, CFD were not consistent with previous
results and again did not hold significance. Genes PGM5, ISLR
and ANK2 were not detected in bronchus or lungs in normal
conditions whereas they were significantly upregulated in the
lungs of COVID-19 affected samples. The expression patterns
of the upregulated genes PGM5, ISLR and ANK2 were consist-
ent (Table 1; Figure 6) and were observed due to the infection
of COVID-19 which signified their role as prognostic biomarkers
of COVID-19.

3.5. Enrichment of microRNAs and long non-coding
RNAs

MicroRNAs are small endogenous RNAs that can post tran-
scriptionally interact with the mRNAs to suppress them (Wu
et al., 2019). Long non coding RNAs act as competing
endogenous RNA (ceRNA), to inhibit the miRNA expression
and regulate the gene expression (Wang, 2018). For the
establishment of the miRNA-mRNA-lncRNA network, miRNAs
were predicted from the DEGs and filtered based on the p

value <0.05. There were a total of 1333 mRNAs and 183
miRNAs identified from Mirnet with 156 mutual targets from
the DEGs (Figure 7(A)). Top 15 miRNAs, their target genes
and lncRNAs are shown in Supplementary Table 2.

Three miRNAs – hsa-miR-124-3p, hsa-miR-192-5p and hsa-
let-7b-5p were significant with higher degrees of 270, 236
and 187 and a maximum of 69, 55 and 48 target genes,
respectively. A total of 129 co-expressed lncRNAs exempting
the pseudogenes and unspliced introns with scores between
0.99 and 1.00 were predicted from DIANA lncbase. Three
lncRNAs AC058791.1, TTTY15, and TPTEP1, had maximum
degrees of target genes. A network of differentially
expressed interacting miRNA–mRNA–lncRNA was constructed
using cytoscape and is represented in the Figure 7(B).

3.6. Drug perturbation results of the transcriptome data

We further evaluated the drug perturbation signatures of the
significant DEGs. Gene signatures are a set of genes that ren-
der a common expression pattern in independent conditions

Table 1. Expression levels of the hub genes in TPM obtained from human protein atlas database.

Gene
RNA expression in TPM

Protein expression in TPM

Availability in blood Expression in TPMLung Bronchus Lung

MDH1 29.8 Low Low T cells 75.8
SGCE 44.7 Low Low B cells 24.5
PFKBF3 96.4 Medium High Neutrophils 124.2
SLC16A3 69.4 High High Neutrophils 338.4
NUDT21 55.6 Medium Medium T cells 124.1
CFD 39.8 Not detected Low Basophils 1440.3
CLU 30.5 Not detected Not detected Peripheral blood mononuclear cells 567.2
PGM5 20.1 Not detected Not detected Neutrophils 7.2
ISLR 15.2 Not detected Low – –
ANK2 9.8 Not detected Low – –

Figure 6. The comparison of the expression levels of hub genes among the tissues identified from the expression atlas platform.
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(Cantini et al., 2018). Firework display module of LINCS server
was explored to predict the chemical perturbagens. 50 gene
signatures with drug perturbagens that can reverse the
observed gene expression patterns were envisaged. The per-
turbagens based on p-value were sorted and filtered out.
Drugs acting on A549 lung adenocarcinoma cell lines with
the capability to reverse the gene expressions patterns were
identified for COVID-19 infected lungs. The genes GADD45B,
SAT1, NUPL1 were common to all the four gene signature
patterns. Growth arrest and DNA damage inducible beta

(GADD45B) responsible for DNA damage response was
reported in lung and hepatocellular cancer (Hou et al., 2019).
Spermidine N1 acetyltransferase 1 (SAT1) involved in the
metabolism of polyamines and transport was reported to be
a potential target in Schizophrenia, anxiety and keratosis fol-
licularis spinulosa decalvans, a rare genetic disorder
(Bermudo-Soriano et al., 2009). Nucleoporin like protein 1
(NUPL1) was reported as an effective target of HIV, Influenza
and COVID-19 (Gordon et al., 2020). Supplementary Table 2
represents the mutual gene lists of the four gene signatures.

Figure 7. Network construction of mRNA-miRNA-lncRNA. (A) Venn diagram representing the targets of mRNA and miRNA. (B) Network of competing endogenous
RNA. mRNA are shown in green, miRNA in pink and lncRNA in yellow.

Table 2. Drug perturbation analysis of the overlapped DEGs.

Gene signature Drug name Reported for Mechanism of action Phase of clinical trial p value

CPC013_A549_6H:BRD-K69852452
(452 genes)

F-1566-0341 Antiviral Antihistamine Drugs to treat
neurological disorders

STAT inhibitor Unknown 1.03� 10�13

CPC017_A549_24H:BRD-K23478508
(456 genes)

Digoxin Congestive heart failure atrial fibrillation ATPase inhibitor Phased 1.39� 10�13

CPC015_A549_24H:BRD-A34806832
(446 genes)

Proscillaridin Ocular cancer modulators of hypoxia
inducible factors

Unknown Unknown 9.34� 10�7

CPC014_A549_24H:BRD-K99749624
(445 genes)

Linifanib Antiarthritis
Disorders of nervous system
Antiglaucoma agent
Ophthalmic agent

PDGFR tyrosine kinase
receptor inhibitor,
VEGFR inhibitor

Phase III 2.27� 10�6

JOURNAL OF BIOMOLECULAR STRUCTURE AND DYNAMICS 9

https://doi.org/10.1080/07391102.2020.1850360


Table 2 represents the drug perturbations of the DEGs. Four
drugs F-1566-0341, Digoxin, Proscillaridin and Linifanib were
capable of reversing the set of gene expressions. F-1566-
0341 was a reported STAT inhibitor with antiviral, antihista-
mine properties and prescribed to treat neurological disor-
ders (Redell & Tweardy, 2005). Digoxin, an ATPase inhibitor
(Ravi Kumar & Kurup, 2000) commonly used to treat heart
failure, effectively reversed the gene signatures of COVID-19.
Proscillaridin was reported as modulators of hypoxia via
apoptosis (Costa et al., 2019) and linifanib for gastric cancer,
and neurological disorder (Chen et al., 2016). They had
remarkable activity in reversing the gene expression patterns
of COVID-19. Conversely, Proscillaridin and linifanib were also
reported as ocular and anti-glaucoma agents to treat ocular
cancer. These four drugs as shown in Figure 8, had consider-
able perturbation effects on the gene signatures observed
from the COVID-19 affected lung samples and obviously act
as repurposed drugs to against COVID-19.

3.7. Molecular docking analysis of the drug
perturbagens

Molecular docking was performed for the aforementioned
drug perturbagens to validate their potential. The four drugs
were compared with the original ligand N3 complexed with
the chosen target Mpro and the docking energy along with
interacting residues are shown in Table 3. Ligand (Figure
9(A)) exhibited binding energy value of �82.29 Kcal/mol with
two hydrogen bond interactions of 2.80 A0 and 3.07 A0 with
Gly 143 and His 164 residues, respectively. The ligand also

exhibited hydrophobic interactions with Thr 25 and Thr 26 at
distances of 3.73 A0 and 3.86 A0, respectively. The drug
Proscillaridin exhibited binding energy of �80.06 Kcal/mol
with six interactions to the target. As seen in Figure 9(B),
proscillaridin, interacted with N atom of Val 125 at
2.93 A0and O atom of Val 125 at 3.03 A0. It also showed an
interaction with N atom and O atom of Lys 137 at a distance
of 2.83 A0 each. Interactions of Glu 290 with 3.59 A0 and Arg
131 at 4.04 A0 were also found but are exceeding the good
Hydrogen bond interactions. Proscillaridin was also found to
possess hydrophobic interactions with Lys 137 at 3.63 A0.
Digoxin followed next with an energy of �79.16 Kcal/mol
and hydrophobic interaction of 3.49 A0 with Tyr 126. As seen
in Figure 9(C), digoxin also possessed interactions with N
and O atoms of Lys 5 at a distance of 3.16 A0 each .
Interaction of digoxin with residues Glu 127 and Lys 137
were also found at distances of 3.27 A0 and 3.39 A0 respect-
ively. As seen in Figure 9(D), linifanib showed a slightly
higher energy of �74.89 Kcal/mol with interacting residues
Arg 105, Gln 110 and Asn 151 at distances of 4.08 A0, 3.63 A0

and 3.14 A0 respectively. The drug F-1566-0341 (Figure 9(E))
exhibited an energy of �76.89 Kcal/mol and interactions of
3.16 A0 and 3.70 A0 with 5 Lys and 3.15 A0 with 127 Gln.
From the results of docking, it was inferred that the drugs
proscillaridin and digoxin exhibited a comparable lower
binding energy value with the control ligand N3 and had
better interactions with the target. Though Linifanib and F-
1566-0341 had slightly higher binding energy values, the
interactions were better when compared to the control lig-
and N3. These drugs possessed better interactions with the
ideal target Mpro thereby can be accounted for repurposing.

Figure 8. Drug perturbations on A-549 cell lines that reverse the gene signatures observed in COVID-19. Perturbations of F-1566-0341 shown in pink ellipses.
Perturbation of Digoxin in blue; Perturbation of Proscillaridin in green and Perturbation of Linifanib in yellow.
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Table 3. Molecular docking results of drugs with the Mpro enzyme of COVID-19.

S. No. Ligand
Glide
score

Glide energy
(Kcal/mol)

H bond
residues

H bond
interaction (A0)

Hydrophobic
residues

Hydrophobic
interaction (A0)

1 Ligand N3 –7.784 –82.29 Gly 143(NH…O) 2.80 Thr 25 3.73
(OH…O) His 164 3.07 Thr 26 3.86

2 Digoxin –6.34 –79.16 Lys 5 (NH…O) 3.16 Tyr 126 3.49
(OH…N) Lys 5 3.16
Gln 127 (NH…O) 3.27
Lys 137 (NH…O) 3.39

3 Proscillaridin –7.12 –80.06 125 Val (NH…O) 2.93 Lys 137 3.63
125 Val (OH…O) 3.03
131 Arg (OH…N) 4.04
Lys 137 (NH…O) 2.83
Lys 137 (OH…O) 2.83
Glu 290 (OH…O) 3.59

4 Linifanib –6.78 –74.89 (OH…O) Arg 105 4.08 Arg 105 3.85
110 Gln (NH…O) 3.63
151 Asn (NH…O) 3.14

5 F-1566-0341 –7.79 –76.89 5Lys (NH…O) 3.16 126 Tyr 3.65
5 Lys (OH…N) 3.70
(OH…O) 127 Gln 3.15

Figure 9. Interactions of drug perturbagens with the COVID-19 Mpro. (A) Original inhibitor N3 in rainbow color, (B) Proscillaridin in brown, (C) Digoxin in brown,
(D) Linifanib in green and (E) F-1566-0341 in green. Interacting residues of target is shown in blue.
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4. Discussion

COVID-19 is a rapidly disseminated pandemic that has spread
to 216 countries globally within a very short span since its
origin in December 2019. Treatment has become more chal-
lenging due to rapid transmission and severe progression of
the disease (Kumar et al., 2020b). Even with the fast paced
continuous scientific research, on development of vaccines,
repurposed drugs and diagnosis techniques, there is a lack
of significant treatment options. The current study was con-
ducted with a specific focus on human responses to enumer-
ate multifactorial approaches that are involved in
pathogenesis and control of COVID-19 (Kumar et al., 2020c).
With an aim to identify candidate gene biomarkers, two tran-
scriptome data sets GSE155241 and GSE150316 were ana-
lysed and compared. Subsequently integrated Bioinformatics
tools were used to predict the molecular mechanisms, ceRNA
networks and chemical perturbagens to aid in the better
understanding of COVID-19 pathogenesis. Analysis of
GSE155241 attained 51 and 57 up- and downregulated
genes whereas, the dataset of GSE150316 revealed 620 and
524 up- and downregulated genes, respectively. Significant
upregulated overlapping genes of the two datasets were
identified as AMZ2 (Archaelysin Family Metallopeptidase 2),
MDH1 (Malate Dehydrogenase 1), TMEM261 (Transmembrane
protein 261), PHF14 (PHD finger protein 14), PTGFRN
(Prostaglandin F2 receptor inhibitor), and SGCE (Sarcoglycan
epsilon). Eight overlapping genes -UGCG (UDP-Glucose
Ceramide Glucosyltransferase), DUSP6 (Dual Specificity
Phosphatase 6), TIPARP (TCDD Inducible Poly(ADP-Ribose)
Polymerase), NUPL1 (Nucleoporin 58), NOLC1 (Nucleolar And
Coiled-Body Phosphoprotein 1), PFKFB3 (6-Phosphofructo-2-
Kinase/Fructose-2,6-Bisphosphatase 3), ERRFI1 (ERBB Receptor
Feedback Inhibitor 1), SLC19A2 (Solute Carrier Family 19
Member 2) were significantly downregulated.

The contributors of the dataset GSE150316, reported tem-
poral spatial heterogeneity analysis of host response to
SARS-CoV-2 pulmonary infection. As per their results, there
was a surge in immune responses especially interferon path-
ways, JAK STAT pathway, collagen synthesis and antiviral
genes. The study also confirmed the heterogeneity of SARS-
CoV-2 infection associated with viral load and interferon
pathways in multiple organs (Desai et al., 2020). The second
dataset GSE155241 was established from RNA sequences
from lung biopsy tissues and organoid models acquired from
human pluripotent stem cells. The study reported that
Proximal airway cells are critical for viral infectivity and distal
alveolar cells for emulating host response along with twenty
predominant genes involved in severity of the disease (Han
et al., 2020). Though both the studies suggest ample clinical
evidence of SARS-CoV-2 infection, current comparative tran-
scriptome analysis that deduce differential gene expression
would enumerate and augment both diagnostic and thera-
peutic efficacy. This study strongly supports the clinical find-
ings of the contributors Desai et al. and Han et al. and
extends additional evidence of molecular mechanisms such
as increase in mitochondrial respiration, endopeptidase activ-
ity, ubiquinone activity, complement activation, neutrophil
degranulation and tau protein binding. There was a

predominant impairment related to the transport mechanism
of copper, iron, zinc, cobalt, cadmium, and manganese. It is
evident that there is a serious downregulation of GTPase
activators, protein tyrosine phosphatase, response to cyto-
kines, interleukins, MAP kinase activity along with transport-
ers like azole and carboxylic acid trans membrane
transporters. Cellular components like dystrophin associated
glycoprotein complex, dendrites, platelet alpha granular
lumen were relatively found to be more when compared
with lysosomes, golgi and nucleolus. Immense amount of
functional non coding RNAs (LINC00493) and small RNAs
(SNORD variants) were expressed across the tissue samples
whose functions are yet to be understood. The overexpres-
sion of LINC00493 is a reported significant biomarker in ail-
ments like muscular dystrophy and urothelial cancer. It also
has been categorised to originate from the family of small
integral membrane protein 26 transcript (Cogill & Wang,
2014). Pathway annotations from KEGG, and REACTOME sug-
gested that most of the genes involved in mitochondrial
respiratory chain complex biogenesis, assembly, degradation,
respiratory electron transport systems and Insulin like growth
factors were predominantly upregulated. Phospholipid
metabolism, immune reactions to pathogenesis, like response
to cytokine stimulation, interleukins, neutrophils, and metal
ion (copper and iron) transport components were all drastic-
ally downregulated. Captivating enrichment of neurodege-
nerative pathways like Alzheimer’s, Parkinson’s, Huntington’s
and alcoholic fatty acid diseases were noted as an assert in
the study. Pathways responsible for signal transduction, iron
and copper metabolisms, transport of sugars, bile and
organic acids were principally downregulated. The gene
annotations were evident that the pathology of COVID-19 is
due to high respiration rate along with the lack of glucose,
ions and organic acid transportation (MacKenzie et al., 2008).
COVID-19 is a multi-ailment disability that threatens the fore-
most physiological systems like the CNS where the chances
of severe neurodegeneration is elevated over the course of
infection. In consistency with the above mentioned enrich-
ment evaluations, three distinct signalling pathways such as
over-expression of miRNA biogenesis, hijack of ubiquitination
by SARS-CoV-2, and angiogenesis-vasculature development
were annotated. Perceived from interrelation studies, HIV
arrest and its associated discovery pathways are considered
to be momentous realization.

Subsequently, we identified predominant upregulated
hub genes PGM5, MDH1, SGCE, ANK2, DTNA, CFD, CLU, and
ISLR and downregulated PFKFB3, SLC16A3, NUDT21, from
the protein-protein interaction analysis. Further expression
analysis of GTEx data confirmed the higher expression levels
of PFKFB3 in normal healthy lungs which was contrary to the
lower expression rate in COVID-19 lungs. Lower expression
of Phosphofructo kinase bisphosphatase 3 (PFKFB3) function
was attributed to autophagy and death of lung tissues (Sears
& Jacko, 2009). Similarly, normal healthy lungs and bronchus
had very low levels of MDH1 and SGCE, whereas they were
significantly upregulated overlapping genes of COVID-19
lungs. Hence these three genes are considered significant
biomarkers of COVID-19. Higher levels of Malate
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Dehydrogenase 1 (MDH1) was associated with schizophrenia
(Ritsner, 2011), prions disease (Zerr et al., 2019) and early
onset of encephalopathy (Broeks et al., 2019). Elevation of
SGCE Sarcoglycan-epsilon gene was attributed to muscular
dystrophy (Emery, 2001). As per the GteX data, higher
expression levels of PGM5, ISLR and ANK2 were generally
not detected in healthy lungs, in contrast to their higher
expression levels in COVID-19 affected lungs. In normal con-
ditions, phosphoglucomutase 5 (PGM5) responsible for cell
differentiation was observed high in muscles, and heart but
not in lungs (Sun et al., 2019). Immunoglobulin super family
leucine rich repeats (ISLR) were generally present in brain
and related tissues but not in lungs. They were elevated in
response to calcium levels (Nagasawa et al., 1999) . Ankyrin 2
(ANK2), responsible for stabilization of ion transporters and
attributed to cardiac arrhythmia was prevalent only in nor-
mal brain and heart tissues but not detected in lungs
(Mohler et al., 2007). These three genes had strikingly signifi-
cant attributes of being prognostic biomarkers of COVID-19
due to their unnatural expressions in COVID-19
infected lungs.

In addition to the application of bioinformatics
approaches the competing endogenous RNA (ceRNA) net-
work of COVID-19 pathogenesis was evaluated. Three poten-
tial miRNAs-hsa-miR-124-3p, hsa-miR-192-5p and hsa-let-7b-
5p, showed significant interactions with 56 strong mRNA
candidates. The miRNAs, hsa-miR-124-3p, and hsa-miR-192-
5p were reported in the negative regulation of Alzheimer’s
disease, interleukin 21 and cell matrix adhesion, respectively
(Enomoto et al., 2017). Hsa-let-7b-5p was supposed to nega-
tively regulate autophagy and cysteine type endopeptidase
activity and increase angiogenesis (Ham et al., 2015). A simi-
lar scenario is instigated in this study where miRNA is consid-
ered as a motive to intensify the severity of the
pathogenicity. Conversely, the work elucidated an interesting
fact that three lncRNAs that interacted in higher degrees
with the mRNA-miRNA network to release the mRNA for
translation. The top three lncRNAs with maximum target
genes were identified as AC058791.1 with unknown activity,
TTTY15 reported to regulate proteolysis, ubiquitin dependent
catabolism (Lai et al., 2019) and TPTEP1 inhibitor of STAT3
(Ding et al., 2019). Both miRNA and lncRNA functions were
consistent with the DEG enrichment and necessitated the
regulations of COVID-19 pathology. The studies were
extended to explore the action of chemical perturbagens on
the observed gene patterns of the COVID-19 datasets. A
reversal mechanism of the gene expression patterns was eli-
cited by four chemical perturbagens, F-1566-0341, Digoxin,
Proscillaridin and Linifanib. Originally, F-1566-0341 were
reported as antiviral drugs and digoxin to treat heart failure.
Proscillaridin and linifanib were reported as hypoxia modula-
tors and inhibitors of neurological disorders, respectively. The
distinguished gene expression reversal mechanism exhibited
by the four drugs establish a strong reposition effect on the
COVID-19 gene expressions.

In conclusion it is reported that there can be severe hyp-
oxia due to failure of iron transport, and imbalance of copper
homeostasis (Prohaska, 2008) which leads to severe

complications in respiration, liver, blood clotting, and neuro-
endocrine peptides (Cagliani et al., 2020). Obviously the
pathways identified were involved with the neurodegenera-
tive disorders and increased oxidative phosphorylation. With
increased respiratory transport chains and low oxygen
uptake, the damage caused to the cells are severe and irrep-
arable which could be the evident reason of death of COVID
affected patients. Increase in kinases like TIE1, KDRL and TEK
are either directly or indirectly linked to production of angio-
poietin 1 thereby rise in angiogenesis is evident (Ahmad
et al., 2001). Hijacking of ubiquitination by the SARS-CoV-2
was a striking upregulated phenomenon commonly adopted
by viruses to disseminate pathogenesis and digoxin has
been reported to prevent hijack by HIV and influenza
(Amarelle et al., 2017). Linifanib, a receptor tyrosine kinase
inhibitor, though terminated after phase II trials, had exhib-
ited effectiveness in inhibiting neurological disorders like
Parkinson’s and against chronic hepatitis viral infection
(Monroig-Bosque et al., 2018). Digoxin and proscillaridin, are
approved FDA drugs and are protective in heart ailments
with the capacity of inhibiting hypoxia, were also proved
against the HIV and HBV pathogenesis (Wong et al., 2013).
The drug perturbations were validated with a molecular
docking approach against the crystal structure of the main
protease enzyme of the target. Proscillaridin and digoxin
exhibited lower binding energy and better interactions with
the active site of the target. Though linifanib and F-1566-
0341, showed significant interactions compared to the ori-
ginal control ligand N3, their energy levels were high. Hence
from both the drug perturbations on the gene expressions
and molecular docking studies, it is concluded that digoxin
and proscillaridin can effectively be repurposed to treat
advanced COVID-19 infections. Further clinical research is
warranted to establish the prognostic biomarkers identified
in the current study. The study is significant and sheds light
on the pivotal molecular mechanisms and host responses to
the pandemic COVID-19.

Conclusion

The novel coronavirus has caused devastating effects on
human health across the world. Though several clinical trials
are in progress with a focus on finding drugs and vaccines
to treat SARS-CoV-2, very little focus has been perceived in
unravelling the molecular mechanisms and host responses.
In order to fetch appropriate solutions, it is significant to
develop intervening strategies based on the host responses
and viral pathology. To overcome the shortcomings, an inte-
grated computational analysis of the transcriptome data of
COVID-19 infected lung tissues was performed. Interrelational
approaches were employed to annotate differential gene
expressions, small RNA enrichment, overexpressed pathways
and kinases involved in the host responses of COVID-19
pathogenesis. The study identified multi-faceted complica-
tions integrated with COVID-19 that evoked devastating dis-
tress. Thereby this work has laid a pedal stone to identify
potential candidate gene biomarkers, competing endogen-
ous RNA network and strategise the mechanism of drug
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repurposing to combat COVID-19. Hence it is substantial that
this offers comprehensive solutions to tackle the pandemic
by revolutionising innovative diagnostic and therapeutic
interventions.
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