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Abstract

Stream and river restoration practices have become common in many parts of the world. To answer
the question whether such restoration measures improve freshwater biotic assemblages or
functions over time, and if not, can general reasons be identified for such outcomes, we conducted
a literature survey and review of studies in which different types of stream restorations were
conducted and outcomes assessed. In the first paper, we reviewed studies of culvert restorations,
acid mine drainage or industrial pollution restoration; and urban stream restoration projects. Here,
we review studies of restoration via dam removal, changes in dam operation or fish passage
structures; instream habitat modification; riparian restoration or woody material addition; channel
restoration and multiple restoration measures and develop some general conclusions from these
reviews. Biomonitoring in different studies detected improvements for some restoration measures;
other studies found minimal or no statistically significant increases in biotic assemblage richness,
abundances or functions. In some cases, untreated stressors may have influenced the outcomes of
the restoration, but in many cases, there were mismatches in the temporal or spatial scale of the
restoration measure undertaken and associated monitoring. For example, either biomonitoring to
measure restoration effects was conducted over a too short a time period after restoration for
effects to be observed, or the sources and stressors needing remediation occurred at a larger
catchment scale than the restoration. Also, many restoration measures lack observations from
unimpaired reference sites for use in predicting how much of a beneficial effect might be expected.
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1| INTRODUCTION

In this study, we conducted a literature survey of studies in which stream restoration
measures were conducted for different sources of impairment and in which an assessment
was conducted to determine whether the effects on the local aquatic biotic assemblage or
functions were positive or not. We wanted to assess whether the improvement in biotic
assemblages or function associated with different types of restorations were related to how
well the spatial scales of the impairment and restoration match and to the quality and timing
of biotic monitoring after restoration.

In the first part of this study (Griffith & McManus, 2020)(Griffith & McManus, 2020), we
reviewed studies of three restoration types: (1) culvert restoration; (2) acid mine drainage or
industrial pollutant restoration and (3) urban stream restoration. The acid mine and industrial
pollutants and urban stream studies were generally undertaken over small areas but had
complex phased restoration measures that occurred over several years. Often, these involved
treating water contamination. Culverts usually represent a limited barrier to animal
movements, and the effect of their presence and removal is difficult to assess. In contrast, the
stressors associated with urban streams are generally distributed throughout their
catchments, and the relatively localized restoration measures are unlikely address the
multiple stressors in these watershed. In this part, we review studies on five additional
restoration types.

2| METHODS

As described in more detail in Part 1 (Griffith & McManus, 2020), we conducted a search of
the peer-reviewed literature published in English to identify studies of stream restoration
measures conducted in catchments where the sources of stressors were urbanization;
agriculture, including livestock grazing; forestry management; industrial or mine effluents;
channel alterations; or dams. To narrow the results to those studies most likely to be relevant,
the results of the search were downloaded and analyzed with the approach described by
Varghese, Cawley, and Hong (2018) that uses semi-supervised machine learning algorithms
for topic extraction and supervised clustering to classify the studies as considered and not
considered. A study was chosen for annotation and further review if it included descriptions
of (1) the stressors being remediated and their sources; (2) the type of restoration conducted;
(3) monitoring to assess any physiochemical changes and changes to one or more biotic
assemblages (i.e., fish, macroinvertebrates, macrophytes or periphyton) or their functions
(i.e., production, respiration or nutrient retention) resulting from the restoration; and (4) a
monitoring design that allowed an assessment of whether or not the restoration improved the
biotic assemblage or its functions. Implicit in these criteria is that an intended objective of a
reviewed restoration was the improvement of a biotic assemblage or its functions and not
just the improvement of some physical or chemical characteristic of the stream.
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Having grouped the studies into eight restoration types, we review five of those types in this
paper: (1) dam removal, changes in dam operation, or fish passage structures; (2) instream
habitat modification; (3) riparian restoration or woody material addition; (4) channel
restoration and (5) multiple restoration measures.

RESULTS

The following section presents the reviews of the studies by each restoration type for these
five restoration types. Details on the individual restoration studies are compiled in
Supplementary Tables 1 (i.e., stream size and location, restoration date, premonitoring dates,
postmonitoring dates) and 2—6 (i.e., restoration measure details and biotic results). For these
restoration types, which had more studies, we focus on the synthesis of the results of the
individual papers. The tables in the text summarize the restoration and results for selected
papers, but the supplementary tables provide details for all the papers reviewed for a
restoration type.

Dam removal, altered dam operation, or fish passage structures

Individually, dams are a source of alterations to streams and rivers, both upstream and
downstream of the dam. Upstream, a dam generally creates a lentic habitat whose size varies
with dam height and stream gradient that may accumulate fine sediment (Sethi, Selle, Doyle,
Stanley, & Kitchel, 2004). The operation of dams can affect natural flow regimes
downstream by reducing discharges or by altering the frequency and magnitude of elevated
discharges (Doledec et al., 2015; Propst & Gido, 2004). Dams also alter the physical and
chemical characteristics of downstream waters and stream channels. Hypolimnetic release
dams typically decrease water temperatures during the summer and increase water
temperatures during the winter relative to the normal stream temperature regime (Olden &
Naiman, 2010), while surface release dams may warm summer water temperatures (Kornis
et al., 2015). Hypolimnetic waters may also be low in dissolved oxygen (DO) (Bednarek &
Hart, 2005). A lack of suspended sediment in discharged water from dams can result in
erosion of sediments downstream resulting in channel downcutting and armoring
(McManamay, Orth, & Dolloff, 2013), while flushing of plankton from the reservoir may
change trophic resources for downstream fauna (Oswood, 1979). Dams are also physical
barriers to the movement of organisms (Hatten et al., 2016; McManamay, Orth, Dolloff, &
Mathews, 2013).

Individual dams are a relatively discrete stressor source to rivers and streams, both upstream
and downstream of the dam site. Therefore, dam removal appears to generally match the
spatial and temporal scales of the stressors associated with individual dams. Of the reviewed
studies, 14, 4 and 3 showed overall positive, no and mixed improvements in biotic effects,
respectively, of dam removal or changes in dam operation (see examples in Table 1 and full
details of the reviewed studies in Supplementary Tables 1 and 2). One study used space for
time substitution to show longer term recovery following dam removals (Hansen & Hayes,
2012).

Some stressors, like direct channel disturbance at the dam site by its removal or erosion of
fine sediments from the former pool and readjustment of the channel, may persist or at least
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require some time for recolonization of the reach by the biotic assemblages (Orr, Kraoiss,
Rogers, & Stanley, 2008; Renofalt, Lejon, Jonsson, & Nilsson, 2013). While Hansen and
Hayes (2012) estimated biotic recovery times greater than 15 years, other studies suggest
only a few years (Pollard & Reed, 2004; Tuckerman & Zawiski, 2007), although the authors
of the review believe this is likely an insufficient time to fully monitor ecological recovery.
Insufficient data, such as the quantity of fine sediments being retained by the dam and the
use of various measurement endpoints limits discerning why recovery time varies in many of
these studies.

Dam removals eliminate barriers to movement of both anadromous and other native fish
assemblages (Gardner, Coghlan, Zydlewski, & Saunders, 2013; Hogg, Coghlan, Zydlewski,
& Gardner, 2015; Kiernan, Moyle, & Crain, 2012; Marks, Haden, O’Neill, & Pace, 2010;
Muehlbauer et al., 2009; Propst & Gido, 2004). In two cases, dam removal not only removed
a barrier but also either altered the downstream water temperature regime changing the fish
assemblage from cool-water to cold-water (Kornis et al., 2015) or enlarged existing
spawning habitat downstream for Coho salmon (Hatten et al., 2016).

Some of these studies found possible deleterious effects from dam removal, particularly with
reference to elimination of the impoundment. Adverse effects include the potential for
stranding and declines of less mobile animals (e.g., some unionid mussels) (Sethi et al.,
2004). There is a question surrounding whether accumulated fine sediments should be
removed prior to dam removal (Bushaw-Newton et al., 2002). Beatty et al. (2017) has argued
against some dam removals suggesting these lentic habitats could become refuges from
climate change, particularly in arid regions.

Many of these studies use a modified before-after-control-impact (BACI) design, which
includes positive (i.e., samples from a site unaffected by the dam or its removal that
represents target or reference conditions in the stream) and negative (i.e., samples from a site
representing the conditions within the dam-affected reach before dam removal) controls.
However, even with pseudoreplication- of individual biotic samples, the power of the
analyses is low because there is often just one site, which can occur with other restoration
types. Moreover, the results for various dam sites are likely idiosyncratic, being dependent
on the width and depth of the stream, height of the dam, size of the pond or reservoir,
location of the water release, stream gradient, amount of fine sediment accumulated in the
reservoir, the presence of other dams, the effects of other stressors, the biotic assemblage
and other factors (Brooks, Russell, Bevitt, & Dasey, 2011; Bushaw-Newton et al., 2002;
Chiu, Yeh, Sun, & Kuo, 2013; McManamay, Orth, Dolloff, et al., 2013; Poulos et al., 2014;
Thomson, Hart, Charles, Nightengale, & Winter, 2005).

While dam removal has become an increasingly viable ecological restoration option,
particularly for dams that have outlived their historical function, many dams have important
economic functions, such as producing electricity or storing water for human use (Propst &
Gido, 2004). Keeping a dam in place and altering its operation may be preferable in some
cases to ameliorate specific stressors, such as low DO (Bednarek & Hart, 2005) or alteration
of natural flows, based on the studies we reviewed (Brooks et al., 2011; Doledec et al., 2015;
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Kiernan et al., 2012; Lamouroux & Olivier, 2015; McManamay, Orth, Dolloff, et al., 2013;
Mérigoux et al., 2015; Propst & Gido, 2004).

However, alterations of dam operation do not remove it as a barrier to animal movement.
This effect might be ameliorated by constructing fish passage structures. A study of two
tributaries of the Danube River (Zitek, Schmutz, & Jungwirth, 2008) found evidence of the
beneficial use of some passage structures in a fish assemblage that included migratory
riverine species. However, such structures have been used primarily for salmonids (Kiffney
et al., 2009), have had limited success with Atlantic salmon and nonsalmonids like A/osa
sapidissima (American shad) in Atlantic drainages (Brown et al., 2013) and have been used
infrequently with dams on smaller inland streams (Bunt, Katopodis, & McKinley, 1999;
Schmetterling, Pierce, & Liermann, 2002). Also, fish ladders generally assist only in
upstream movement of fish, and injury and mortality can occur during downstream
movement past dams, when fish may pass through the turbines (Brown et al., 2013; Eyler,
Welsh, Smith, & Rockey, 2016). Therefore, there have been calls for and current projects to
remove larger dams (rather than just create fish ladders), such as on the Elwha River, WA,
USA (Brown et al., 2013; Elofson, 2008). However, no assessment of the biological effects
of dam removals on the Elwha River have yet been published (East et al., 2015; Ritchie et
al., 2018).

3.2 | Instream habitat modification

Modification of instream habitats are generally small-scale manipulations of habitat
characteristics considered important for stream biota. Some of these manipulations are based
on structures originally designed to supply critical habitat for valued species, particularly
gamefish (Rosi-Marshall, Moerke, & Lamberti, 2006). Of the studies reviewed, 2, 6 and 9
showed positive, minimal or no significant and mixed improvements in measured biotic
effects, respectively (see examples in Table 2 and Supplementary Tables 1 and 3 for details
of the reviewed studies).

In several studies, the spatial extent of the restoration appeared to be insufficient to affect the
biotic assemblage. The attempted restoration of a constructed stream channel in the
Canadian Arctic only altered stream depths and substrates slightly, did not change instream
resources and did not consistently alter the macroinvertebrate assemblage (Scrimgeour,
Jones, & Tonn, 2013). Rock weirs in the upper Cache River did not consistently alter
macroinvertebrate assemblages on woody snags or clay streambed (Walther & Whiles,
2008), but indicator taxa differed among the habitats, such as chironomids on the clay
streambed and Ephemeroptera, Plecoptera and Trichoptera (EPT) on the rock weirs
(Heinrich, Whiles, & Roy, 2014). The patches of added gravel downstream from two dams
were relatively small and also potentially unstable (McManamay, Orth, & Dolloff, 2013;
Merz & Chan, 2005). However, submerged and emergent macrophytes, a less commonly
monitored assemblage, responded to such reach-scale restorations, as a study of 40 stream
reaches ranging from 100 to 8000 m in length increased macrophyte cover and richness
(Lorenz, Korte, Sundermann, Januschke, & Haase, 2012).

Manipulations of instream habitat can increase local abundance of fish or
macroinvertebrates, if other nearby instream habitats can act as a source of new migrants
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(Negishi & Richardson, 2003; Schwartz & Herricks, 2007). This is particularly clear for
relatively mobile species like salmonids, for which such manipulations are commonly used,
although the effects may be variable among species (Whiteway, Biron, Zimmermann,
Venter, & Grant, 2010). Such enhancements may be attractive to these fish by supplying
cover or other critical habitat (Rosi-Marshall et al., 2006), but may not affect other biotic
assemblages.

Other fish and macroinvertebrates may slowly, if at all, colonize such habitats, particularly if
the habitats are disconnected or are separated by enough distance to hinder dispersal (Heino
etal., 2017; Parkyn & Smith, 2011; Raborn & Schramm, 2003; Tonkin, Stoll, Sundermann,
& Haase, 2014). Consequently, habitat connectedness and species dispersal (i.e.,
metacommunity dynamics) need to be considered in setting expectations (Heino, 2013).

In some cases, important characteristics of the habitat may be damaged in the manipulations
or may continue to adjust to the manipulations. In Finnish streams, use of heavy equipment
to move rocks back into the channel removed aquatic mosses, an important
macroinvertebrate habitat, that had not recovered after 3 years (Haapala, Muotka, &
Laasonen, 2003; Louhi et al., 2011). When riprap was removed from a reach of the Danube
River, fine sediments continued to erode from the restored bend and the river widened for
some time following the restoration affecting the fish assemblage (Keckeis, 2014).

Other stressors, not affected by an instream habitat restoration, may limit the effects of a
restoration. In the studies reviewed, such stressors include poor water quality (Pretty et al.,
2003; Sarriquet, Bordenave, & Marmonier, 2007; Schwartz & Herricks, 2007) or riparian
disturbance (Lepori, Palm, & Malmgqvist, 2005). These results underscore the fallacy that
just restoring stream habitats will result in recolonization by the biotic community
(Bernhardt & Palmer, 2011; Bond & Lake, 2003). Often the cause is not from direct
anthropogenic alterations to the stream habitats. Then, these instream habitat restorations
may be attempting to treat smaller-scale geomorphological effects rather than the larger-
scale causes (Filoso & Palmer, 2011; Harrison et al., 2004), such as alterations of stream
flows or catchment land use (Gordon & Meentemeyer, 2006; Poff, Bledsoe, & Cuhaciyan,
2006).

Riparian restoration and instream addition of woody material

Riparian zones are normally vegetated strips of land adjacent to streams. They are
periodically inundated by flood flows, have shallower water tables than in more upland areas
and usually support plant communities distinct from the adjacent uplands. The riparian zone
acts as a source of materials, such as organic matter, moving from the land to the stream; a
sink for materials, such as fine sediments, moving from the stream to the land; and as a filter
for materials, such as nutrients, moving from more upland areas toward the stream. Streams
are disturbed by land use changes in their catchments. Impacts may include removal or
alteration of vegetation by forestry practices, row crop agriculture, conversion to pasture, or
by commercial or residential development. Common restoration practices for riparian zones
include replanting of native vegetation, fencing to exclude livestock and bank regrading.
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An important material input from riparian zones to streams is woody organic matter. Studies
of streams in temperate forested regions, particularly where some older growth forests
remain (e.g., Pacific Northwest), have documented the role of woody material as structural
and habitat elements of stream channels (Abbe & Montgomery, 1996; Benke & Wallace,
2010; Bilby & Ward, 1989; Wohl & Goode, 2008). This has led to the concept that woody
material may be important to the restoration of streams, even though extant riparian forests
along many streams are unable to produce large amounts of wood, particularly large pieces
that are resistant to transport by storm discharges (Acuna, Diez, Flores, Meleason, &
Elosegi, 2013). Moreover, the timeline for recovery of older growth forests can be very long,
in the range of 100 years at least, and allowing such a recovery would be incompatible with
the production of lumber and other wood products for human use and with other valued land
uses. Therefore, rather than waiting for more long-term recovery of riparian zones or in the
absence of restoration of the riparian zone, adding woody material or surrogates for woody
material to streams may be an option. Of the reviewed studies, 14, 6 and 6 showed positive,
minimal or no significant and mixed improvements in measured biotic effects, respectively
(see Table 3 for examples and Supplementary Tables 1 and 4 for details of reviewed studies).

As a longitudinal feature of stream ecosystems, riparian zones can affect stream biotic
structure and function at a relatively large scale. This is described by the river continuum
concept and flood-pulse concept (Junk, Bayley, & Sparks, 1989; Vannote, Minshall,
Cummins, Sedell, & Cushing, 1980), stream biotic structure and function and its relationship
to the riparian zone varies longitudinally in river systems. Many riparian restoration
measures have been undertaken at relatively limited scales, with restoration at the catchment
scale being limited to relatively small, headwater catchments (Orzetti, Jones, & Murphy,
2010). More extensive riparian restoration measures may be limited by economic and other
factors, and often, the dominant land uses, such as row crop agriculture or livestock grazing,
can limit riparian zones to largely herbaceous vegetation. Moreover, riparian shading
increases with the height and maturation of the riparian trees and requires a time scale of
years (Quinn, Croker, Smith, & Bellingham, 2009; Ranganath, Hession, & Wynn, 2009;
Teels, Rewa, & Myers, 2006).

Greater shading by riparian vegetation usually causes a shift from autochthonous production
by algae or macrophytes to allochthonous production based organic detritus (Giling, Grace,
Mac Nally, & Thompson, 2013). The decrease in food quality may reduce macroinvertebrate
densities or biomass (Parkyn, Davies-Colley, Halliday, Costley, & Croker, 2003), but other
measures may not follow this decrease (McTammany, Benfield, & Webster, 2007). Some
management approaches, such as coppicing, may counter this change by leaving the canopy
over the stream open (Clews & Ormerod, 2010; Clews, Vaughan, & Ormerod, 2010).
However, less riparian shading can increase stream water temperatures, which may affect
particularly cold water fauna, such as salmonids and many Ephemeroptera, Plecoptera or
Trichoptera (EPT), (Broadmeadow, Jones, Langford, Shaw, & Nisbet, 2011; Sweeney &
Newbold, 2014). Also, as observed by Minshall (1978) and others, some stream ecosystems,
such as the alpine meadow stream studied by Herbst, Bogan, Roll, & Safford (2012), are
naturally characterized by greater autochthonous production and fewer inputs of woody
material. Other types of management can short-circuit interception functions of the riparian
zone. Tile drainage bypasses the interception function by creating an alternate subsurface
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pathway for water flow (Smiley, King, & Fausey, 2011). Also, low organic accumulation on
the soil surface may affect the interception of nutrients or fine sediments.

Other forms of riparian management, such as establishment of herbaceous buffer strips,
fencing to exclude livestock and grazing management on pastures depend on maintenance of
vegetative cover and can affect stressors, such as turbidity and fecal coliforms, but not
necessarily nutrients and DO (Carline & Walsh, 2007; Smiley et al., 2011; Sovell,
Vondracek, Frost, & Mumford, 2000; Weigelhofer, Fuchsberger, Teufl, Welti, & Hein,
2012). Fish and macroinvertebrate assemblages are less likely to change consistently with
these types of restoration. However in high altitude (2400-2950 m), meadow streams of the
Sierra Nevada, where herbaceous vegetation is more important in the riparian zone, removal
of livestock grazing alone increased riparian vegetative cover and resulted in improvements
in instream habitat quality and macroinvertebrates (Herbst et al., 2012).

Maintenance of native vegetation in riparian zones has been shown to have effects on
streams in diverse ecosystems. These include removal of invasive 7amarix in the desert
southwestern United States, removal of introduced Acaciaand Eucalyptus from native shrub
riparian habitats in South Africa and removal of invasive Lonicera maackii (Amur
honeysuckle) along headwater streams in the midwestern United States (Keller, Laub,
Birdsey, & Dean, 2014; McNeish, Moore, Benbow, & McEwan, 2015; Samways, Sharratt, &
Simaika, 2011).

Recruitment of wood material capable of playing a significant role in stream geomorphology
depends on it being of sufficient size and mass to resist being moved by floods or even by
periods of elevated discharge less than bank full (Acuna et al., 2013). This generally requires
older trees that produce woody material of greater mass and length and requires time far
beyond that of the more recent restoration efforts we review here.

Large woody material (LWM) can affect very local habitats and the fish or
macroinvertebrates using those habitats. LWM that creates cover for fish, stable substrates
for macroinvertebrates, or pools can increase the local abundances of organisms, even in the
absence of larger scale restorations (Bond & Lake, 2005; Coe, Kiffney, Pess, Kloehn, &
McHenry, 2009; Howell et al., 2012; Hrodey & Sutton, 2008; Lester, Wright, & Jones-
Lennon, 2007; Nicol, Lieschke, Lyon, & Koehn, 2004). In Australia, placement of woody
structures in stream affected by sand slugs created cover for fish, but did not have the more
extensive expected geomorphological effects (i.e., creation of pools), because no high-flows
occurred as a result of an ongoing drought (Howson, Robson, Matthews, & Mitchell, 2012;
Howson, Robson, & Mitchell, 2009, 2010). Also, functional changes may not occur at this
localized scale (Entrekin, Tank, Rosi-Marshall, Hoellein, & Lamberti, 2008, 2009).

However, added LWM or surrogates that are not replaced by natural recruitment from the
riparian zone will be unstable on a longer temporal scale because wood decomposes and the
structures will break or be moved, particularly during periods of high flows (Acuna et al.,
2013; Testa, Shields, & Cooper, 2011). Therefore, in the absence of reestablishment of a
riparian zone with woody vegetation and natural recruitment of woody material, continued
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function would depend on active maintenance and replacement of the woody structures
(Moore & Rutherfurd, 2017).

One problem with determining the effect of riparian restoration is identifying a target for the
restored biotic condition. While most studies have a negative control that defines the biotic
conditions in absence of the restoration, only some of the riparian restoration measures, and
almost none of the wood addition studies, have a positive control that defines the biotic
conditions in the absence of the cause of impairment. There are real difficulties finding
undisturbed sites, particularly unlogged sites, in many catchments.

Channel restoration

In many regions of the world, human activities have either directly or indirectly altered
stream channels. These alterations have included conversion of meandering or multiple
channels into single, often straight channels or even, rerouting the stream channels,
dewatering side channels and destabilizing the streambed and banks. Various
hydrogeomorphic approaches have been used to restore these alterations. Of the studies
reviewed, 11, 11 and 4 showed positive, minor or no significant and mixed improvements in
measured biotic effects, respectively. (see Table 4 for examples and see Supplementary
Tables 1 and 5 for details of reviewed studies).

Alterations of stream channels often occur at relatively large scales, either because
meandering, braided, or anastomosing channels were channelized and reduced to single,
straightened channels (Colangelo, 2007; Jahnig, Brunzel, Gacek, Lorenz, & Hering, 2009z;
Nakano & Nakamura, 2006, 2008; Obolewski & Glinska-Lewczuk, 2011; M. L. Pedersen,
Friberg, Skriver, Baattrup-Pedersen, & Larsen, 2007) or in some cases, single channels were
moved to an edge of their floodplain in attempts to reduce flooding or possibly increase
arable land (Bukaveckas, 2007; Gregory, 2006). Other alterations of stream channels can
occur because of geomorphologic changes, such as alteration to sediment supply due to
changes in riparian or catchment land use or vegetation (Simon & Rinaldi, 2006). Similarly,
channel restoration measures resulting in significant biotic improvements of those reviewed
appear to be those undertaken at larger scales (Jordan & Arrington, 2014; Koebel, Bousquin,
& Colee, 2014; Luderitz, Speierl, Langheinrich, Voelkl, & Gersberg, 2011; Obolewski,
Glinska-Lewczuk, Ozgo, & Astel, 2016; M. L. Pedersen et al., 2007), whereas those with the
least effect were those where a small restored reach was embedded within unrestored
reaches (Akasaka, Nakano, & Nakamura, 2009; Jahnig et al., 2009a; Jahnig & Lorenz, 2008;
Nakano, Nagayama, Kawaguchi, & Nakamura, 2008; Schiff, Benoit, & Macbroom, 2011).
However, restoration of shorter reaches may be sufficient to facilitate some biotic effects,
like reduced NH,4 uptake length (Gabriele, Welti, & Hein, 2013) or increase macrophyte
species richness and cover (T. C. M. Pedersen, Baattrup-Pedersen, & Madsen, 2006). Also,
other unremediated stressors can moderate the effects of these restoration measures (Klein,
Clayton, Alldredge, & Goodwin, 2007; Muotka & Syrjanen, 2007; Northington et al., 2011;
Pierce, Podner, & Jones, 2015).

Although longer multichannel reaches have not been restored, restorations of side or
secondary channels, have exhibited positive effects. Some native fish increased in isolated
side channels of the Provo River (Utah, USA), while restorations have improved
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macroinvertebrates and fish in side or secondary channels of the Rhine (Netherlands), Rhone
(France), Danube (Germany) and Missouri (Missouri, USA) Rivers (Belk, Billman,
Ellsworth, & Mcmillan, 2016; Besacier-Monbertrand, Paillex, & Castella, 2014; Billman et
al., 2013; Castella et al., 2015; De Vaate et al., 2007; Pander, Mueller, & Geist, 2015; Starks,
Long, & Dzialowski, 2016).

Nutrient retention may be increased at smaller scales, but the extent of nonpoint nutrient
inputs is generally sufficient that an extensive area of restored channel may be needed to
affect overall nutrient concentrations. For example, the studies of two-stage ditches exhibited
potential for nitrogen removal, particularly during inundation of the created floodplain, but
concluded that this type of restoration needs to be applied to longer stream reaches to
substantially reduce nitrogen export (Davis, Tank, Mahl, Winikoff, & Roley, 2015; Griffiths,
Tank, Roley, & Stephen, 2012; Mahl, Tank, Roley, & Davis, 2015; Roley, Tank, Griffiths,
Hall, & Davis, 2014; Roley, Tank, Stephen, et al., 2012; Roley, Tank, & Williams, 2012).

The scale of projects using Natural Channel Design (Rosgen, 1996) may be insufficient to
affect biota when a short stream reach is restored. Baldigo, Ernst, Warren, & Miller (2010)
observed only slight improvements in fish assemblages of reaches ranging from 0.34 to 1.1
km, less improvement in the shorter reaches (0.34-0.5 km) and no significant effects on
macroinvertebrates (Ernst, Warren, & Baldigo, 2012). Natural Channel Design does not
change other stressors, such as increased stream temperature, decreased riparian cover
(Klein et al., 2007), elevated specific conductance and total dissolved solids (Northington et
al., 2011), or the presence of introduced parasites (Pierce et al., 2015).

Observations of reference conditions can supply a benchmark for how much the biotic
assemblage might be expected to change in response to a restoration. Although unrestored or
control conditions may be easily sampled, reference conditions may be more difficult to
observe. To observe potential reference conditions, the Kissimmee River restoration in part
included sampling of sand-bottom rivers in coastal Georgia (Koebel et al., 2014), while
some of the restorations of streams altered for log drives in Scandinavia used smaller
headwater stream reaches that were never used for log drives (Muotka & Laasonen, 2002). If
a restoration makes only small changes to physical conditions in a stream, biotic
assemblages are unlikely to respond (Shields, Knight, & Cooper, 2000).

Multiple restoration measures

Projects that use several restoration techniques generally attempt to address more than one
stressor in the streams or more than one source (Bergfur, Demars, Stutter, Langan, &
Friberg, 2012; Yu, Huang, Wang, Brierley, & Zhang, 2012). Of the studies reviewed, five
and three showed positive or minor improvements in measured biotic effects, respectively
(see Table 5 for examples and see Supplementary Tables 1 and 6 for details of the reviewed
studies).

In relatively short reaches (mean = 1.1 to 1.5 km), multiple restoration measures that
included re-establishing meandering or multiple channels, adding large woody material and
removing weirs when present often had only minor increases in fish or macrophyte richness,
but generally had no effects on macroinvertebrates (Haase, Hering, Jaehnig, Lorenz, &
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Sundermann, 2013; Lorenz, Stoll, Sundermann, & Haase, 2013). Two direct tests of the
effect of increased linear extent of restoration (i.e., 0.05-26 km) and time since the
restoration (0.5 — 6 years), Schmutz et al. (2014; 2016) found positive effects on fish
assemblage richness and density metrics.

The reviewed studies suggest that combining restoration techniques may or may not further
improve the outcomes for biotic assemblages or function (Bergfur et al., 2012; Yu et al.,
2012). As for other restoration measures, increasing the longitudinal extent of the restoration
or the time of monitoring since a restoration did produce greater effects (Bergfur et al., 2012;
Schmutz et al., 2016; Schmutz et al., 2014). Individual alterations, such as increased stream
width and addition of instream habitat, appear to have the greatest effects on specific
subgroups, particularly centrarchids or primary producers (Kupilas et al., 2016; Shields,
Knight, & Cooper, 2007).

DISCUSSION

Two of the restoration types reviewed here: channel restoration and dam removal had studies
with either improved biotic measures or no statistically significant improvements associated
with the temporal and spatial extent of the restoration in their respective catchments. Some
of the channel restoration and dam studies were done over large lengths of stream or
catchment areas. The channel and dam restoration studies did not entail treating water
contamination but addressed mainly hydrological alterations to the streams and rivers.

Although dams can have various effects on streams or rivers depending on their construction
and how they route water flows, they tend to be localized sources of these alterations, and
therefore, dam removal, if the individual dam is not one of a series of dams, can be a
localized solution to these effects, which is reflected in the positive results of the dam
removal studies. As more limited, usually stressor specific, restoration measures, changes in
dam operation or installation of fish passage structures have more variable effects on the
biotic assemblages.

Many of the channel restoration studies dealt with undoing large-scale (i.e., longitudinal)
direct human alterations of streams, such as channelization, while some dealt with decreased
channel stability using natural channel design approaches. When the restoration is reversing
direct human alterations, such as recreating multiple or meandering channels, an increasing
longitudinal extent of the restoration appears to contribute to restoration effectiveness.
However, when channel stability degrades, the restoration may need to more directly address
the hydromorphological -causes of such degradation, such as changes in sediment loads or
water flows, rather than the smaller scale changes in channel morphology (Wohl, Lane, &
Wilcox, 2015). This would reinstate mechanisms that would sustain the restoration. The
studies of instream habitat modifications illustrate this and suggest that such relatively small
longitudinal-scale restoration measures may not significantly improve biotic assemblages or
their function unless the restoration supplies more specific habitat requirements, such as
cover for fish or stable substrates for benthic macroinvertebrates. Because riparian zones are
closely aligned with stream channels, their longitudinal integrity affects biotic assemblages
and functions by affecting inputs of fine sediment, water temperature, availability of light,
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the quality of allochthonous organic inputs and even factors like nutrients that are more
related to integrity at the even larger whole-catchment scale (Sponseller & Benfield, 2001;
Sponseller, Benfield, & Valett, 2001). In forested biomes, woody material can be an
important component of streams (Benke & Wallace, 2010; Dolloff & Warren, 2003; Woh| &
Goode, 2008), although in many regions, this relationship has been extensively altered by
forest harvesting and conversions to non-forest land uses (Krankina & Harmon, 1994).
Forest regrowth requires a long temporal scale, while wood addition is a comparatively
short-term solution. In the interim, the developing forest can increase shading and provide
other riparian functions.

In many of the stream or river restoration studies examined, biotic assemblages did not
satisfactorily improve when the restoration did not address other stressors, caused additional
damage to stream habitats, or did not allow time for biotic recovery before monitoring.
Identification of the important stressors affecting the biotic assemblage or function at the
stream site is important. Causal assessments may be used to more clearly identify the likely
direct and indirect causes of degradation at stream sites and determine the scale of the
sources (S. B. Norton, Cormier, & Suter, 2015; Suter, Norton, & Cormier, 2010).

Although some studies suggest a relatively long recovery times of 12.5 to 30 years after a
restoration (Favaro, Moore, Reynolds, & Beakes, 2014; Hansen & Hayes, 2012; Schmutz et
al., 2016), others suggest much shorter periods (Lideritz, Jupner, Muller, & Feld, 2004; M.
L. Pedersen et al., 2007; Tuckerman & Zawiski, 2007). The period of recovery may vary
among assemblages if their metacommunity dynamics differ (Parkyn & Smith, 2011; Swan
& Brown, 2017) or if the connectivity of sites to other reaches differs (Lideritz et al., 2004;
McManamay, Orth, Dolloff, et al., 2013). The level of biotic organization (i.e., population,
community, ecosystem) measured may also affect the period of recovery. Studies that
monitor biotic effects almost immediately following the restoration are probably allowing an
insufficient time for recovery (Keckeis, 2014). Moreover, such short-term changes may not
be necessarily indicative of the longer-term outcomes of the restoration measures.

Other considerations when planning the biomonitoring of a restoration would include
identifying reference sites from which one can define the extent to which the biotic
assemblage or function at stream site may recover. Several studies reviewed here
acknowledge that the restored site was not very impaired (Rosi-Marshall et al., 2006; Schiff
et al., 2011; Shields et al., 2000), while other studies lacked any information about likely
maximum possible improvements. The difficulty of identifying reference sites varies with
the stressors and restoration measure. For example, finding a reference site may be difficult
for changes in land use that affect riparian zones, but easier for small dam removals, where it
has been often possible to sample an upstream reach that was not directly influenced by the
dam, although in these cases, the dam still affects the connectivity of the upstream reach
with contiguous stream reaches (Kornis et al., 2015).

Planning for stream restorations should include a comparison of the scale of the planned
restoration to the scale of the stressors and their causes and sources at the site of the stream
restoration. In the reviewed studies, we found three and four generalized differences in the
spatial and temporal scales, respectively, affecting stream restorations and monitoring to
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assess biotic outcomes (Table 6). The geospatial context of stream restoration can readily be
evaluated beyond the site-scale given the availability of spatially explicit variables in
datasets such as StreamCat (Hill, Weber, Leibowitz, Olsen, & Thornbrugh, 2016). At least
for the coterminous USA, variables from a variety of national datasets, National Land Cover
Data, STATSGO, US census and so forth, are calculated for each of 2.65 million catchments
and the areal extent surrounding each reach in National Hydrography Dataset (NHD) Plus
Version 2 (Hill et al., 2016). Additionally, the variables are also expressed cumulatively for
the catchments upstream of each reach, and some variables are also calculated within a 100-
m buffer of National Hydrography Dataset streams. A comparison of the catchment to its
corresponding watershed metrics may identify whether the proposed restoration in the
catchment is likely to be effective given the conditions upstream. In current applications, two
indices, an Index of Watershed Integrity and an Index of Catchment Integrity, are used to
quantify and compare integrity at whole-watershed scale with that of the more local drainage
of individual stream segments to assess the scales of stressors in the individual segments
(Johnson, Leibowitz, & Hill, 2019; Kuhn et al., 2018; Thornbrugh et al., 2018).

Another available tool, Recovery Potential Screening, can assist with strategic planning and
priority-setting in restorations (D. J. Norton et al., 2009). This tool can access data at the
watershed level for most states and territories of the United States to calculate ecological,
stressor and social indicators and compare watersheds in terms of larger-scale characteristics
that are relevant to the potential for improvements from restorations (USEPA, 2018).

CONCLUSIONS

Comparing studies within and among different types of stream restorations, we found that
there is evidence that better matching of the scale of the stressors and of the restoration is
likely to improve the outcomes of stream restorations in terms of the biotic assemblages or
functions. While different reasons for the lack improvements in biotic assemblages or
functions can be identified for specific examples, such as the existence of conditions or other
stressors not affected by the restoration or the lack of unimpacted reference sites that would
provide a metric for the potential improvements, an important overarching consideration is
that of temporal and spatial scale. Consideration of temporal scale includes consideration of
the time needed for the recovery of the biotic assemblages in the restored stream and of their
biotic functions following restoration. This also includes recognizing that maturation of
ecosystems, such as restored riparian zones, or the readjustment of natural stream
geomorphology takes time. Consideration of spatial scale particularly includes consideration
of the scale of the stressors (i.e., reach-level versus watershed-level alterations) and whether
the restoration is at a similar scale or whether there are barriers to the recolonization of the
restored stream by biotic assemblages.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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TABLE 6.

Page 29

Generalized differences in the spatial and temporal scales affecting stream restorations and monitoring to

assess biotic outcomes and the restoration-type where examples were observed.

Scale Type Restoration-type
Spatial Stream alterations at larger linear scales (i.e., more than reach) dealt with at only Instream-habitat restoration
scale smaller (i.e., often reach) scales. Riparian

restoration
Channel restoration
Stressor sources occurring at larger (i.e., often watershed) scales dealt with at small (i.e.,  Acid-mine drainage restoration
often point or reach) scales. Urban
restoration
Instream-habitat restoration
Channel
restoration
Instream metacommunity or metapopulation processes (i.e., particularly dispersal) Changes in dam
leading to recovery of community structure and function affected by distance or operation
connectivity. Instream-habitat restoration
Channel
restoration
Temporal Instream metacommunity or metapopulation processes (i.e., dispersal, recruitment) Dam removal
scale affecting the time required for recovery of community structure and function. Instream habitat

Reestablishment of stable geomorphological conditions following restoration of a
stressor source that had altered geomorphological conditions.

Reestablishment and growth of terrestrial communities (i.e., usually dominated by
plants in riparian zones) to the extent that they fully influence the movement of water,
materials (i.e., organic matter, nutrients and inorganic sediments) and energy into
streams.

Long-term persistence of restorations in the face of organic decay and instream
geomorphic processes, such as storm flows.

restoration

Dam removal
Channel restoration

Riparian restoration or woody
material addition

Instream-habitat restoration
Woody

material addition

Channel restoration
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