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Abstract

Characterizing a reliable, pain-related neural signature is critical for translational applications.
Many prior fMRI studies have examined acute nociceptive pain-related brain activation in healthy
participants. However, synthesizing these data to identify convergent patterns of activation can be
challenging due to the heterogeneity of experimental designs and samples. To address this
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challenge, we conducted a comprehensive meta-analysis of fMRI studies of stimulus-induced pain
in healthy participants. Following pre-registration, two independent reviewers evaluated 4,927
abstracts returned from a search of 8 databases, with 222 fMRI experiments meeting inclusion
criteria. We analyzed these experiments using Activation Likelihood Estimation with rigorous type
I error control (voxel height p< 0.001, cluster p < 0.05 FWE-corrected) and found a convergent,
largely bilateral pattern of pain-related activation in the secondary somatosensory cortex, insula,
midcingulate cortex, and thalamus. Notably, these regions were consistently recruited regardless of
stimulation technique, location of induction, and participant sex. These findings suggest a highly-
conserved core set of pain-related brain areas, encouraging applications as a biomarker for novel
therapeutics targeting acute nociceptive pain.

Pain; Neuroimaging; Meta-analysis; fMRI

Introduction

Chronic and acute pain are global medical issues affecting at least 20% of adults globally
and they are often accompanied by both comorbid psychological disorders and significant
disability in daily activities (Goldberg and McGeg, 2011). Given the prevalence of pain
conditions, there is a need to develop tools capable of translating the subjective report of
pain into an objective measure (i.e., a pain biomarker) that can be used in the development
of novel treatments. Recently, neuroimaging approaches have been used to examine pain-
related brain activity as a physiological biomarker of pain for treatment development
(Cowen et al., 2015; Labus et al., 2015; Wager et al., 2013; Woo et al., 2017). Though the
challenge of pain biomarker development is increased when chronic pain conditions are
analyzed, a growing body of work examining the neural correlates of experimentally-
induced, nociceptive pain in healthy volunteers has led to important insights into the
mechanisms and characteristics of how the sensation of pain arises, including its cognitive,
affective, and sensory dimensions that may not be reflected in self-report scales (Apkarian et
al., 2005; Hofbauer et al., 2001; Robinson et al., 2013; Talbot et al., 1991; Tracey and
Mantyh, 2007; Treede et al., 1999; Woo and Wager, 2016). While this work has been critical
in elucidating the circuits recruited by acute nociceptive pain under a variety of experimental
contexts, synthesizing these data to identify convergent patterns of pain-related brain
activation can be challenging due to heterogeneity of experimental designs and samples.

To integrate findings across neuroimaging experiments, meta-analysis provides a powerful
approach to quantitatively identify consistent brain regions activated during pain (Wager et
al., 2009). Prior meta-analyses have identified several brain regions that are engaged under
pain conditions, including the secondary somatosensory cortex (SlI), insula, cingulate
cortex, and thalamus. Other regions have been identified somewhat less reliably, including
primary somatosensory cortex (Sl), striatum, cerebellum, supplementary motor area (SMA),
primary motor area (M1), periaqueductal gray (PAG), prefrontal cortex (PFC), certain areas
in parietal cortices, and the parahippocampal gyrus (Apkarian et al., 2005; Duerden and
Albanese, 2013; Farrell et al., 2005; Jensen et al., 2016; Lanz et al., 2011; Peyron et al.,
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2000; Tanasescu et al., 2016). Subsequent meta-analyses have sought to parse this pain
network further by investigating neural responses specific to different pain induction
modalities, such as thermal pain (Farrell et al., 2005; Friebel et al., 2011; Jensen et al.,
2016), and to different stimulation location (Duerden and Albanese, 2013; Jensen et al.,
2016; Lanz et al., 2011). These meta-analyses have provided a substantial advance in our
understanding of the brain’s pain network. However, the significant increase in functional
magnetic resonance imaging (fMRI) experiments in pain since the most recent meta-
analyses (Jensen et al., 2016; Tanasescu et al., 2016) as well as an influx of articles
standardizing rigorous procedures for meta-analyses (Eickhoff et al., 2016; Miiller et al.,
2018) suggest that an update is warranted. Furthermore, based on recent evidence of
inadequate Type | error control using previously-typical statistical methods, we considered it
worthwhile to revisit the topic of identifying brain regions consistently recruited by diverse
pain-inducing stimuli while adhering to contemporary standards in the field (Eklund et al.,
2016; Maller et al., 2018).

Accordingly, we conducted a comprehensive meta-analysis of fMRI studies of
experimentally-induced pain in healthy volunteers; the analysis included findings from 222
experiments. We first sought to replicate and extend the findings from previous meta-
analyses, incorporating more recent studies in this rapidly moving field. Second, we applied
standards for Type | error correction to our analyses according to current standards in the
field. Third, we assessed differences in pain responsiveness associated with differences in
pain stimulation modality (thermal, electrical, mechanical, or chemical), location of
stimulation (visceral or somatic, left or right side of body, proximal or distal extremity), and
sample composition (participant sex). As described below, our results revealed highly
convergent evidence for the existence of a core set of brain regions associated with acute
nociceptive pain in healthy participants. This core set was present across different samples
and experimental designs, encouraging its use as biomarker of acute pain that could be
useful for experimental therapeutics.

Methods

This is a systematic review and meta-analysis, and the methodology used adheres to
PRISMA and field-standard guidelines for meta-analyses (Moher et al., 2009; Mller et al.,
2018). The procedures and analyses in this meta-analysis were preregistered on PROSPERO
(https://www.crd.york.ac.uk/prospero/display_record.php?RecordiD=106435).

We first performed a literature search for fMRI experiments of experimentally induced pain
in healthy participants using eight databases and then searched for references in reviews
identified in the database. Titles and abstracts returned by this search were first evaluated for
full-text screening. Full text articles were evaluated to see if they met defined inclusion
criteria (see Fig. 1 for PRISMA chart detailing screening process). This screening process
resulted in a total of 222 fMRI experiments from 200 articles that were included in this
study. See specific details below. Coordinate data from these experiments were then
extracted and analyzed using activation likelihood estimation (ALE).
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Literature search

We performed a literature search for fMRI experiments of experimentally induced pain in
healthy volunteers using both database searches and references cited in review articles,
meta-analyses, and component studies. The final literature search took place on August 1,
2018 and was restricted to articles published from 1990 to August 1, 2018. We used 1990 as
the start date of our search due to the widespread emergence of using fMRI for
neuroimaging tasks such as pain starting after 1990.

2.1.1. Database search—The following standard literature databases were searched:
PUBMED/MEDLINE, EMBASE, Web of Science, Cochrane Library, and PsycINFO. We
used the following search terms: (“MRI” or “magnetic resonance imaging” or “fMRI” or
“BOLD” or “brain mapping™) AND (“pain” or “noxious” or “nociception”). We further
filtered our search criteria to try to meet our inclusion criteria (section 2.2) by including only
publications that were in English, that appeared in peer-reviewed journals (e.g., not
conference papers), and that included experiments conducted in humans. We supplemented
our database search with the following existing fMRI data repositories: NeuroSynth
(Yarkoni et al., 2011), brainspell (Toro, 2015), and BrainMap (Laird et al., 2005). In these
repositories, we searched for records using the keyword “pain.” Notably, we did not include
grey literature in our search, as this could introduce studies that did not undergo peer review,
potentially compromising the rigor of our methodology.

2.1.2. Reference search from reviews—To identify potential candidate studies from
reference lists, we also screened the resulting abstracts for editorials, review articles, and
meta-analyses related to pain. In editorials (i.e., non-systematic reviews), we identified titles
in reference sections that seemed likely to include a pain experiment. In systematic reviews,
we considered all articles that the authors identified for inclusion. If a systematic review
included a meta-analysis of experimentally induced pain in healthy volunteers (e.g., Friebel
etal., 2011; Duerden and Albanese, 2013; Jensen et al., 2016; Tanasescu et al., 2016), we
automatically included all studies within the meta-analysis to be screened for full text.

The database search yielded a total of 7,529 articles. We additionally compiled references
from existing review articles which yielded a total of 1,216 articles (total of 8,754 records).
After removing duplicates, we screened a total of 4,927 abstracts.

2.2. Screening

2.2.1. Inclusion criteria—Experiments were only included in the meta-analysis if they
contained a within-subject “pain > baseline” contrast (e.g., “pain > rest”, “pain > innocuous
stimuli” or parametric modulation of pain) that was not confounded by other experimental
manipulations that could impact the acute nociceptive pain induction (e.g., treatment
manipulations prior to the pain induction, such as drug infusions or placebo). If at least one
experiment in an article satisfied this initial requirement, it was evaluated according to the

following inclusion criteria:

1. The experiment was from a peer-reviewed journal article written in English.
Prior literature has shown language restrictions to English have marginal effect
on results and are dependent on the field of study (Morrison et al., 2012). We
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therefore did not feel this language restriction would introduce substantial bias to
our results.

2. The experiment considered healthy, human participants aged 18 or over. To
satisfy this criterion, the study must explicitly report that all participants were
healthy or free of medical or psychiatric disorders.

3. The experiment included at least 10 participants.

4, The experiment induced physical pain that was confirmed to be painful by
participants. Confirmation of experienced pain could be in the form of an explicit
report of the induction being painful, participant ratings of experienced pain
during the scan session, or the use of a pain stimulus that was titrated to a
threshold pre-determined to be painful by participants in the experiment.

5. Brain responses to induced pain were monitored using fMRI.

6. The field of view and reported results included the whole brain (i.e., region of
interest analyses were excluded). This criterion was imposed so as to prevent
bias towards a priori regions putatively thought to be involved in pain.

7. The experiment reported results in a standard stereotaxic reference space
coordinate system (MNI or Talairach space).

8. Results met current statistical standards for conventional cluster identification.
Specifically, we only included experiments that reported activation at a voxel-
level threshold of p < 0.001 (uncorrected) or a corrected cluster probability of p
< 0.05. We also excluded experiments that did not report their methods and
results in sufficient detail to conclude whether they met our statistical threshold
criteria.

Additionally, if experiments in articles did not report relevant results but met the inclusion
criteria, we e-mailed the corresponding authors and included the experiment if data was
provided. A PICOS figure of our search and eligibility criteria is included in Supplementary
Table 2.

2.2.2. Abstract and full text assessment—Two independent reviewers (AX, EBB)
confirmed the inclusion or exclusion of each abstract for full text screening. Abstracts were
first assessed as to whether they included a physical pain contrast in healthy volunteers and
whether they measured task-based blood-oxygen-level-dependent (BOLD) responses. In this
stage of screening, we only excluded abstracts that explicitly mentioned (1) having a sample
size of less than 10 subjects; (2) using only a neuroimaging modality that was not fMRI,
such as EEG; or (3) only including animal experiments. Note that in this stage of screening,
we did not exclude any papers that involved a clinical population, used resting-state fMRI,
or involved a treatment or intervention. These criteria allowed us to assess parts of
seemingly irrelevant papers that may have included relevant experiments for analyses, such
as including a healthy subsample (e.g., the control sample) or a task-based measure
involving acute nociceptive pain (e.g., pain inductions either pre-treatment or post-resting-
state). Full text articles from included abstracts were then assessed for whether they met our
inclusion criteria (see section 2.2.1. Inclusion Criteria). Finally, at least two independent
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reviewers confirmed the decision for inclusion of articles marked for inclusion in the final
analysis (AX, BL, EB). In cases of reviewer decision disagreement, a senior third reviewer
(TS) evaluated the article.

2.3. Data extraction

Coordinates and information about each experiment were extracted manually by at least one
author (AX or VS) and checked independently by another member of the study team (AX or
VS). The following information about each paper was extracted: sample size; whether the
coordinate space was MNI or Talairach; modality of pain stimulus (e.g., thermal, electrical,
mechanical, or chemical); side the stimulus was induced; whether the stimulus was on the
arm (not including hand), leg (not including foot), hand, or foot; whether the pain stimulus
was visceral (e.g., esophageal distension); and whether the reported activation included a
non-painful control stimulus (e.g. painful > innocuous contrast).

In cases where studies contained multiple relevant pain contrast results from a single
experiment, we chose to use results that were most likely to demonstrate a clear nociceptive
pain-specific signal. For example, when experiments contained separate analyses based on
the intensity of the pain induction (e.g., one contrast for moderate pain and another for high
pain), we chose the contrast for the highest intensity of pain reported (e.g., high pain). For
experiments with separate analyses based on a subjective rating of pain and based on an
objective intensity, we included results based on the objective intensity rather than the
subjective rating.

If multiple experimental contrasts included in a single article could be used for different sets
of meta-analyses (see section 2.4.2.), we first pooled coordinates from each experiment into
one set of coordinates for that particular article and treated this set of coordinates as one
experiment in our primary meta-analysis (Turkeltaub et al., 2012). This approach ensured
that we only used one set of coordinates per article, so that one specific article could not be
weighted more heavily than others due to the presence of multiple relevant experiments
(Muller et al., 2018; Turkeltaub et al., 2012). For example, for our primary meta-analysis of
experimentally-induced pain, if an article contained multiple experiments using different
types of pain stimulation (e.g., thermal and mechanical), we pooled the results from both
types of pain stimulation together and treated the results as if they were derived from one
experiment. For any additional analyses (see section 2.4.2.), we evaluated these contrasts
separately(e.g., the thermal set of coordinates would be tagged as thermal pain and treated as
one experiment while the mechanical set of coordinates would be tagged as mechanical pain
and treated as another experiment).

2.4. Coordinate based meta-analysis

2.4.1. Activation likelihood estimation (ALE)—We conducted meta-analyses using
the coordinate-based meta-analytic method activation likelihood estimation (ALE)
(Turkeltaub et al., 2002) using the revised algorithm that allows for random effects inference
(Eickhoff et al., 2009, 2012; Rottschy et al., 2012). The main effect for a particular condition
of interest is defined by the convergence of activation from all relevant experiments included
in analyses.
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Briefly, for each experiment included, ALE treats coordinates for the foci of reported
clusters as the center of an uncertainty function modeled by a 3D Gaussian probability
distribution. The full width at half-maximum (FWHM) of this 3D Gaussian kernel was
determined by empirical data on between-subject and between-template (i.e., MNI or
Talairach space coordinates) variance. Specifically, the algorithm takes into account
between-subject variance by using a tighter Gaussian distribution for experiments with
greater sample sizes to represent that these experiments should provide more reliable results
of a true activation effect (Eickhoff et al., 2009), and it takes into account between-template
differences by transforming coordinates reported in Talairach coordinates into MNI
coordinates (Lancaster et al., 2007). This model then provides probabilities for all activation
foci in each experiment, which were combined for each voxel, resulting in an individual
modeled activation (MA) map for each experiment. By taking the union across all the MA-
maps, we generated voxelwise ALE scores that describe the convergence of results at each
particular location (Eickhoff et al., 2009). Note that MA-values reflect data for a single
experiment while ALE-values integrate data across multiple experiments.

For ALE maps, the p-value was defined as the proportion of values obtained under a null
distribution reflecting a random spatial association between experiments. The resulting non-
parametric p values were subsequently thresholded using voxel height threshold of p <
0.001, reflecting current recommendations for best practices (Eklund et al., 2016). At this
voxel height, the significance of cluster extent was estimated using 10,000 Monte-Carlo
simulations; this distribution was calculated specifically for each meta-analysis conducted
(Eickhoff et al., 2012; Rottschy et al., 2012). Clusters were considered significant if they
achieved a family-wise corrected significance of p < 0.05. Prior to display, p-values were
then transformed into zscores. All results were labeled using either SPM Anatomy Toolbox
v2.2 (Eickhoff et al., 2005) or Harvard-Oxford Structural Atlas (Kennedy et al., 1998)
distributed by FSL. Thalamic parcellations included with SPM Anatomy Toolbox were
based on the Thalamic Connectivity Atlas (Behrens et al., 2003).

24.1.1. Statistical contrasts.: To analyze differences in convergent activation (i.e.,
differing convergence of results) between two different groups of experiments, we computed
the voxel-wise differences between the cluster-level FWE-corrected maps derived from the
individual main effect analyses (as described above). To determine the significant difference
in ALE scores, we first generated a null distribution of ALE-score differences by randomly
permuting the labels of all experiments, dividing them into two groups of the same sizes as
the original analysis, and calculating the ALE-scores for these two randomly permuted
groups for all voxels in the brain. We repeated this process 10,000 times and tested the
observed differences in ALE-scores against the derived null distribution. We thresholded
probability values at p < 0.001 and inclusively masked them by the main effects for the
particular condition of interest. Finally, we applied an extent-threshold of k<> 25 voxels. It is
important to note, however, that an unequal proportion of experiments in the two groups of
interest could bias the observed results. To address this concern, we conducted chi-squared
tests for differences in proportion of experiments between the two groups of interest in each
of our planned contrasts, and we limited our analyses to comparisons that did not
significantly differ in number of experiments (at p< 0.01).
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2.4.1.2. Conjunction analyses.: To analyze voxels where a significant effect was present
in two different groups of experiments, we computed their conjunction using the
conservative minimum statistic (Nichols et al., 2005). This approach is equivalent to
identifying the intersection between each of the cluster-level FWE-corrected maps of the
main effects for the two groups of experiments (Caspers et al., 2010). We then applied an
extent-threshold of &> 25 voxels to exclude smaller regions of presumably incidental
overlap between the two maps of the main effects.

2.4.2. Effects of interest—We primarily focused on finding areas consistently reported
to be activated in response to noxious stimuli inducing acute pain. We first assessed areas
converging in activation in response to pain using all of our extracted coordinate data (with
only one set of coordinates per article). However, because some of our included experiments
used a contrast of “pain > rest” while others used a contrast of “pain > innocuous stimuli”,
we conducted secondary analyses examining the main effect of the experiments using the
contrast “pain > rest” and then the experiments using “pain > innocuous stimuli.” A contrast
between experiments using “pain > rest” contrast and “pain > innocuous stimuli” contrast,
however, was not computed due to significant differences in the proportion of experiments
using the “pain > rest” contrast and the “pain > innocuous stimuli” contrast.

Next, given the heterogeneity of the different pain induction techniques used in the included
experiments, we conducted additional contrast and conjunction analyses that examined the
effect of different modalities and locations of pain inductions as well as the sex of the
sample. The following analyses were conducted:

. To analyze the effect of pain modalities considered, we examined experiments
inducing thermal pain (e.g., heat, cold), mechanical pain (e.g., pin prick,
pressure, distension), electrical pain (e.g., electrical stimulation), and chemical
pain (e.g., capsaicin). To explicitly compare different modalities, we conducted
between-experiment contrasts comparing thermal and non-thermal experiments
as well as electrical and mechanical experiments. Further analyses comparing
other modalities could not be reliably conducted based on significant differences
in the proportion of experiments available.

. To examine effects of the location of induced pain, we conducted three separate
contrasts. First, we evaluated laterality by contrasting experiments where pain
was induced on the left side versus the right side of the body. Second, we
examined differences in the effect of inducing pain on the extremities at proximal
(i.e., the arm or leg) versus distal (i.e., the hand or foot) locations, which have
different densities of nociceptors. Third, we examined differences in brain
activation for visceral (e.g., rectal distension) versus non-visceral (i.e., somatic)
pain. Notably, we only included non-visceral mechanical pain, because all
visceral pain inductions were mechanical.

. Finally, by comparing experiments that included orn/y male or only female
participants, we sought to evaluate sex differences in the pain response.
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2.4.3. Post-hoc diagnostics—To address bias and heterogeneity of experiments
included in our primary meta-analysis of pain, we calculated the contribution of each
experiment by computing the ratio of ALE-scores of all voxels in a specific cluster with and
without each experiment. Similarly, we calculated the contribution of different conditions of
interest from groups of experiments (e.g., thermal, mechanical, right-sided pain, left-sided
pain, etc.). These analyses provided an estimate of how the ALE-score changed when the
experiment or group of experiments in question was removed (see Cieslik et al., 2016 for
example). However, given the large number of experiments included in this study, undue
influence of a single experiment was relatively unlikely (Eickhoff et al., 2012).

3. Results

3.1.

Our search, screening, and evaluation yielded a total of 222 experiments from 200 articles
that met inclusion criteria as confirmed by two independent reviewers (Fig. 1). Of these 222
experiments, we meta-analyzed 200 experiments for the main effect of induction of a
reported sensation of pain. Among these, 62 experiments used a “pain > innocuous” contrast
and 134 experiments used a “pain > rest” contrast. The remaining 3 experiments examined a
parametric modulation of pain.

For modality-specific analyses, we meta-analyzed 107 thermal pain experiments (inducing
heat pain or cold pain) and 98 non-thermal pain experiments. The non-thermal pain
experiments included 39 experiments inducing electrical pain (e.g., electric shocks), 46
inducing mechanical pain (e.g., pressure pain, distension), and 13 inducing chemical pain
(e.g., capsaicin). For location-specific analyses, we meta-analyzed 92 left-sided pain
experiments, 66 right-sided pain experiments, 68 experiments inducing pain in distal
extremities, 85 experiments inducing pain in proximal extremities, 17 experiments inducing
visceral pain, and 29 experiments inducing non-visceral (mechanical) pain. Finally, for
sample composition-related analyses, we meta-analyzed 22 all-female experiments and 30
all-male experiments (Fig. 2; Table 1).

Main effect of stimuli inducing a sensation of pain

Meta-analysis of pain experiments from all studies (n7 = 200), which included experiments
using the contrasts “pain > rest” and “pain > innocuous” as well as parametric modulation of
pain, revealed significant pain-related convergence of activation in four large clusters, with
peak activation magnitudes located in the right supramarginal gyrus (inferior parietal lobule,
IPL), right midcingulate cortex (MCC), right precentral gyrus, and left cerebellum (Fig. 3;
Table 2). Further examination of these large clusters revealed activation in the bilateral
thalamus, bilateral SMA, bilateral pre-SMA, bilateral putamen, bilateral caudate, bilateral
brainstem, bilateral amygdala, right middle frontal gyrus, left supramarginal gyrus/IPL
(insula) and left MCC. Post-hoc analysis confirmed these results were not significantly
impacted by any individual experiment (see Supplementary Table 1).

We next evaluated experiments reporting a “pain > rest” contrast (7 = 134) and “pain >
innocuous” contrast (/7= 62), as “pain > innocuous” contrasts controlled for the impact of
sensorimotor stimulation (e.g., touch). In experiments reporting a “pain > rest” contrast, we
found significant activation in seven clusters, with peak activation magnitudes located in
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bilateral IPL (right supramarginal gyrus and left intraparietal sulcus), right MCC, right
precentral gyrus, left insula, left thalamus, and left cerebellum (Fig. 4A; Table 3). Activation
in these clusters also comprised of bilateral SMA, bilateral pre-SMA, bilateral putamen,
bilateral caudate, right brainstem, right insula, right middle frontal gyrus, right amygdala,
left MCC, and left precentral gyrus. In experiments using a “pain > innocuous” contrast, we
found significant activation in four clusters, with peak activation magnitudes located in
bilateral insula, right MCC, and right thalamus (Fig. 4B; Table 3). These clusters were also
comprised of the bilateral putamen, bilateral SMA, left MCC, left thalamus, right amygdala,
right precentral gyrus and right pre-SMA. Due to statistically significant differences in
number of experiments reporting these contrasts (Xz(l) =27.33, p<0.001), we did not
perform an explicit contrast between experiments reporting a “pain > rest” contrast and a
“pain > innocuous” contrast.

3.2. Effect of stimulus modality

3.2.1. Thermal and non-thermal pain—To examine modality-specific effects of pain
induction, we first compared experiments that induced thermal pain (7= 107) with
experiments that induced non-thermal pain (/7 =98). Experiments inducing thermal pain
showed convergence of activation in five clusters, with peak activation magnitudes located in
right Rolandic operculum/IPL (posterior insula), right MCC, right middle frontal gyrus,
right precentral gyrus, and left cerebellum (Fig. 5A; Table 4). Further examination of these
large clusters revealed activation in bilateral putamen, bilateral caudate, bilateral brainstem,
bilateral SMA, bilateral pre-SMA, left Rolandic operculum/IPL, left MCC, and right
amygdala. Experiments inducing non-thermal pain also showed activation in five clusters,
with peak activation magnitudes located in right Rolandic operculum, right MCC, right
thalamus, right middle frontal gyrus, and left postcentral gyrus (SII) (Fig. 5B; Table 4).
Further examination of these large clusters revealed activation in bilateral SMA, bilateral
putamen, bilateral pre-SMA, left MCC, and left thalamus. An explicit contrast between
thermal and non-thermal pain experiments revealed significantly stronger convergence of
activation in bilateral MCC for thermal experiments, and stronger convergence in the right
insula and left Rolandic operculum in non-thermal experiments (Table 4). Conjunction
analyses revealed widespread overlap between thermal and non-thermal pain experiments in
six large clusters, with peak activation magnitudes located in bilateral supramarginal gyrus
(SI1), bilateral thalamus, right MCC, and right middle frontal gyrus (Table 4). These large
clusters also included the bilateral putamen, bilateral SMA, left MCC, and right amygdala.

3.2.2. Electrical, mechanical, and chemical pain—We next examined the effect of
electrical (7 =39), mechanical (n =46), and chemical (7= 13) pain induction (Figs. 6 and
7). Experiments inducing electrical stimulation to evoke pain showed convergence of
activation in five large clusters, with peak activation magnitudes located in bilateral
thalamus, right MCC, right Rolandic operculum, and left postcentral gyrus (SIl) (Fig. 6A;
Table 5). Experiments inducing mechanical pain showed convergence of activation in seven
large clusters, with peak activation magnitudes located in bilateral insula, bilateral
supramarginal gyrus (consisting of SlI and IPL), bilateral thalamus, and right MCC (Fig.
6B; Table 5). Further examination of these large clusters associated with mechanical pain
revealed activation including the bilateral putamen and left MCC. An explicit contrast
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between electrical and mechanical pain experiments revealed greater activation in the right
Rolandic operculum, right thalamus, and right superior temporal gyrus in electrical pain
experiments. In no cases was greater activation seen for mechanical pain experiments (Table
5). Conjunction analyses revealed widespread overlap of convergence of activation between
electrical and mechanical pain experiments in seven large clusters, with peak activation
magnitudes located in bilateral insula, bilateral S1lI (left postcentral gyrus and right
supramarginal gyrus), bilateral thalamus, and right MCC (Table 5).

Finally, chemical pain experiments showed convergence of activation in ten clusters, with
peak activation magnitudes located in ventral aspects of the brainstem, bilateral insula (with
two clusters in the left insula), bilateral thalamus, left Rolandic operculum, left MCC, left
SMA, and right postcentral gyrus/IPL (Fig. 7; Table 6). Further examination of these large
clusters revealed activation within the right MCC and midbrain. There were not a sufficient
number of chemical pain induction comparisons to contrast chemical pain-related activation
with electrical stimulation-provoked pain (X2(1) = 13, p < 0.001), mechanical pain (X4(1) =
18.45, p< 0.001), or thermal pain (X4(1) = 73.63, p< 0.001).

3.3. Effect of stimulus location

3.3.1. Laterality—To examine location-specific effects of nociceptive pain induction, we
compared experiments that induced left-sided pain (n7= 92) with experiments that induced
right-sided pain (7= 66). Experiments inducing left-sided pain showed convergence of
activation in six clusters, with peak activation magnitudes located in right Rolandic
operculum, right MCC, right middle frontal gyrus, and right postcentral gyrus, left
supramarginal gyrus, and left cerebellum (Fig. 8A; Table 7). Further examination of these
large clusters revealed activation in bilateral insula, bilateral thalamus, bilateral pre-SMA,
left MCC, right amygdala, right pallidum and the brainstem. Experiments inducing right-
sided pain showed convergence of activation in nine clusters, with peak activation
magnitudes located in bilateral thalamus, left Rolandic operculum, right supramarginal
gyrus, right MCC, right middle frontal gyrus, right IPL, right precentral gyrus and right
insula (Fig. 8B, Table 7). Further examination of these large clusters revealed activation in
bilateral putamen, bilateral SMA, bilateral pre-SMA, left MCC, left insula, and right
precentral gyrus.

An explicit contrast between left- and right-sided stimulation experiments did not reveal any
clusters with stronger convergence of activation in left-sided pain induction experiments but
did reveal stronger convergence of activation in left Rolandic operculum (SII) in right-sided
pain induction experiments (Table 7). Given that we did not see involvement of Sl in right-
sided pain induction based on these analyses (despite reports of Sl involvement in pain
(Bushnell et al., 1999), we also separately examined unthresholded maps and found
involvement of right Sl, suggesting that while Sl did not appear prominently in our explicit
contrast, there may still be some laterality in Sl that is harder to detect. SI was particularly
prominent when the stimulation site was more tightly aligned across studies (e.g., left-sided
arm stimulation).

Finally, conjunction analyses revealed widespread overlap of convergence of activation
between left-sided and right-sided experiments in eight clusters, with peak activation
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magnitudes located in bilateral insula, bilateral supramarginal gyrus (consisting of IPL),
bilateral thalamus, right MCC, and right middle frontal gyrus (Table 7). Further evaluation
of these clusters revealed activation in the left MCC, right putamen, and right SMA.

3.3.2. Distal and proximal extremities—We next compared experiments inducing
distal nociceptive pain in the hand or foot (/7= 68) with experiments inducing proximal pain
in the arm or leg (n7 = 85). Experiments inducing distal pain in the hand or foot also showed
convergence of activation in six clusters, with peak activation magnitudes located in bilateral
IPL (consisting of right Rolandic operculum and left supramarginal gyrus), bilateral
thalamus, right MCC, and right middle frontal gyrus (Fig. 9A; Table 8). Further examination
of these large clusters revealed activation in bilateral insula, bilateral amygdala, bilateral pre-
SMA, and right SMA. Experiments inducing proximal pain showed convergence of
activation in six clusters, with peak activation magnitudes located in right Rolandic
operculum, right MCC, right middle frontal gyrus, right precentral gyrus, right post central
gyrus, and left insula (Fig. 9B; Table 8). These large clusters included the bilateral pre-SMA,
bilateral subnuclei of the striatum, right insula, right SMA, and left MCC. An explicit
contrast between proximal and distal stimulation experiments did not reveal differential
patterns of activation, while conjunction analyses revealed widespread overlap convergence
of activation in eight clusters (Table 8). These eight clusters included bilateral thalamus,
bilateral IPL (represented by left supramarginal gyrus and right operculum), right MCC
(with spread to left MCC), right middle frontal gyrus, right pallidum, and left insula.

3.3.3. Effect of acute visceral and non-visceral mechanical nociceptive pain
—\We compared experiments inducing visceral pain (e.g., distension in the rectum,
esophagus, or stomach; 7= 17) with experiments inducing non-visceral mechanical pain (n
= 29). Experiments inducing visceral pain showed convergence of activation in five clusters,
with peak activation magnitudes located in right supramarginal gyrus, right Rolandic
operculum, left putamen, left thalamus, and right MCC (Fig. 10A; Table 9). Non-visceral
mechanical pain experiments showed convergence of activation in ten clusters, with peak
activation magnitudes located in bilateral supramarginal gyrus (SII), bilateral insula (with
two clusters in the right insula), bilateral thalamus, right Rolandic operculum, right caudate
nucleus, and right MCC (Fig. 10B; Table 9). An explicit contrast between visceral and non-
visceral mechanical pain experiments did not reveal differential activation, while
conjunction analyses revealed overlap of convergence in two clusters—the right
supramarginal gyrus and the left thalamus (Table 9).

3.4. Effect of sex

We examined sex differences in nociceptive pain responses by comparing experiments with
an all-female sample (7= 22) to those with an all-male sample (7= 30). Experiments with
an all-female sample showed convergence of activation in five clusters, with peak activation
magnitudes located in bilateral IPL (represented by left superior temporal gyrus and right
supramarginal gyrus) and bilateral insula (with two clusters in the left insula; see Fig. 11A
and Table 10). Experiments with an all-male sample showed convergence of activation in
eight clusters, with peak activation magnitudes located in bilateral insula, bilateral thalamus,
right MCC (spreading into the left hemisphere), right temporal pole (spreading into the
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precentral gyrus), right middle frontal gyrus and right Rolandic operculum (Fig. 11B; Table
10). An explicit contrast between males and females did not reveal differential activation
(Table 10), while conjunction analyses revealed overlap in three clusters—bilateral insula
and left supramarginal gyrus/IPL (Table 10).

4. Discussion

We conducted what is to our knowledge the largest fMRI meta-analysis of experimentally
induced pain in healthy volunteers to date, applying rigorous type | error control and
stringent inclusion criteria. We first synthesized results across 200 experiments, revealing a
network of regions consistently activated by acute nociceptive pain in healthy participants.
We further interrogated the modulation of stimulation modality, stimulation location, and sex
and found a largely consistent pattern of activation in a core set of brain regions, irrespective
of the specific experimental paradigm. These regions include the thalamus, MCC, SllI,
insula, as well as portions of the supramarginal gyrus/IPL and Rolandic operculum. In a
smaller number of analyses, we observed involvement of the lateral PFC, precentral gyrus,
SMA, pre-SMA, cerebellum, the brainstem, basal ganglia (putamen, caudate, and
palladium), amygdala, and postcentral gyrus (SI; Fig. 12).

Our primary meta-analysis revealed a “pain network” of convergent activation across 200
experiments that was largely consistent with the findings of other similar recent meta-
analyses (Friebel et al., 2011; Duerden and Albanese, 2013; Jensen et al., 2016; Tanasescu et
al., 2016). As in prior meta-analyses, we found evidence of pain-related activation of
bilateral thalamus, cingulate cortex, insula, SIl, motor areas, and right middle frontal gyrus
(Friebel et al., 2011; Duerden and Albanese, 2013; Jensen et al., 2016; Tanasescu et al.,
2016). However, a subset of brain areas identified here are less consistently reported in
earlier work, including the basal ganglia (putamen) (Duerden and Albanese, 2013; Jensen et
al., 2016; Tanasescu et al., 2016), the amygdala (Jensen et al., 2016; Tanasescu et al., 2016),
and the brainstem (Tanasescu et al., 2016). Notably, previous meta-analyses have reported
activation in Sl and the right cerebellum (Duerden and Albanese, 2013; Jensen et al., 2016;
Tanasescu et al., 2016), which were not found here. To the degree that there is variation
between our results and prior meta-analyses, these may in part reflect differences in the
sample and methodological approach. Specifically, we considered the largest sample to date
of studies which passed rigorous inclusion criteria (e.g., at least 10 participants, cluster p <
0.001 or FWE-corrected). Additionally, in line with current recommendations (e.g., Eklund
et al., 2016 and Eickhoff et al., 2016), we applied a more stringent statistical correction to
our results than prior meta-analyses.

We found qualitative evidence for more activation of SlI, insula, MCC, thalamus, SMA, pre-
SMA, MCC, and right amygdala in experiments using an innocuous control compared to
those that used a resting baseline. In contrast, experiments using a resting baseline had
significant convergence of activation in right lateral PFC, right precentral gyrus, left
cerebellum, and bilateral subnuclei of the basal ganglia (putamen, caudate) that were not
identified in our analysis of experiments using an innocuous control. These findings suggest
that these areas may not be response to pain per se, but rather a general response to sensory
stimulation. While these qualitative findings are interesting, we did not conduct a direct,
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quantitative comparison of studies using a sensorimotor control and a resting baseline due to
differences in the number of experiments using these approaches. Specifically, there was a
significantly greater number of experiments using a resting baseline than experiments using
an innocuous control. As such, it is difficult to conclude whether observed differences are in
part driven by differences in the number of experiments included. Nevertheless, the
qualitative differences between these two contrasts may still be meaningful and ultimately
expected, as contrasts against a resting baseline will also reflect sensorimotor processing. To
better separate the pain response from non-specific sensory responses, studies are needed
that explicitly compare these two baseline conditions.

To further interrogate variability in the pain response that may be sensitive to differences in
other experimental design considerations, we conducted a set of sub-analyses that investigate
the effects of stimulation modality, stimulation location, and sex of sample. These analyses
revealed a core set of brain areas that were consistently and robustly activated by pain
regardless of experimental design, as well as regions that are more variably activated by pain
across experiments. We discuss these areas in detail below.

4.1. Core regions consistently activated by pain

The thalamus, SIl, MCC, and insula were the most robustly activated brain areas across all
experimental paradigms. This core set of brain regions has been implicated in sensory-
discriminative and affective-motivational aspects of pain (Tracey and Mantyh, 2007; Treede
et al., 1999). The thalamus processes and transmits nociceptive information between the
spinal cord and cortex (Yen and Lu, 2013; Ab Aziz and Ahmad, 2006) while the SIl may
reflect higher-order sensory representation, especially information from sensory stimuli
requiring more attention (Chen et al., 2008; Ferretti et al., 2003). Here, we found consistent
activation of Sl even in experiments that include a specific sensorimotor control condition,
supporting a role for Sl that goes beyond basic sensory processing, and concords with
previous pain imaging studies demonstrating bilateral SlI activation (Mazzola et al., 2006).

The MCC is strongly implicated in the affective-motivational components of pain, especially
pain response selection (Medford and Critchley, 2010; Shackman et al., 2011; Vogt, 2005,
2016; Vogt et al., 2003), and has been reported in previous meta-analyses of pain (Farrell et
al., 2005; Friebel et al., 2011; Peyron et al., 2000; Tillisch et al., 2011). While other meta-
analyses and reviews have highlighted involvement of the anterior cingulate (ACC) in pain
(Apkarian et al., 2005; Duerden and Albanese, 2013; Jensen et al., 2016; Lanz et al., 2011;
Peyron et al., 2000), it should be noted that our MCC results overlap with what has
sometimes been labeled as ACC. Moreover, the convergence of mid-cingulate activation
associated with pain (rather than anterior regions of the cingulate) support delineations of
the cingulate cortex, with the middle cingulate being more involved in pain compared to
anterior regions (Shackman et al., 2011; Vogt, 2016).

The insula is thought to play a more indirect role in pain perception by integrating
exteroceptive and interoceptive information into awareness and subjective feelings towards
salient information (Craig et al., 2000; Isnard et al., 2011; Craig, 2009; Kurth et al., 2010),
especially via its functional connections to the cingulate cortex (Taylor et al., 2009). The
posterior portion of the insula in particular has been implicated in processing bodily
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information (e.g., painful sensations, somatosensory stimulation, interoception) while the
anterior insula may be more involved in salience detection (Craig, 2009; Kurth et al., 2010;
Menon and Uddin, 2010). As such, our meta-analytic findings of widespread insula
activation associated with pain are consistent with involvement of both anterior and posterior
insula involved in acute nociceptive pain (Kurth et al., 2010).

Regions less consistently activated by pain

In addition to the core set of pain-sensitive brain areas described above, a broader set of
pain-associated regions were somewhat less consistently recruited, emerging only in specific
cases. These regions include the lateral PFC, M1, SMA (and portions of the pre-SMA),
cerebellum, brainstem, Sl, basal ganglia (putamen, caudate, and pallidum), and the
amygdala. These areas have been previously reported to have less consistent and possibly
more nuanced involvement in responses to pain (Apkarian et al., 2005; Duerden and
Albanese, 2013; Farrell et al., 2005; Friebel et al., 2011; Lanz et al., 2011; Peyron et al.,
2000; Tillisch et al., 2011). Lateral PFC (represented by the middle frontal gyrus) is
typically associated with executive control and attention (Bingel and Tracey, 2008; Lorenz et
al., 2003; Wiech et al., 2008), while M1, SMA, and cerebellum have typically been
associated with execution of motor responses to avoid pain (Apkarian et al., 2005; Peyron et
al., 2000; Moulton et al., 2010). The brainstem receives nociceptive input from the spinal
cord and trigeminal nucleus and is also involved in the descending modulation of pain
(Basbaum and Fields, 1978; Stamford, 1995), while basal ganglia involvement in pain may
reflect modulation of multisensory integration related to pain (Borsook et al., 2010; Chudler
and Dong, 1995). We observed convergent amygdala activation in four main effects
analyses; the amygdala receives dense projections from nociresponsive neurons in the lateral
parabrachial nucleus (Jasmin et al., 1997), has been associated with affective modulation of
pain and salience detection, and has been reported in both experimental pain and chronic
pain experiments (Simons et al., 2014; Borsook et al., 2013; Fernando et al., 2013).

Finally, we did not find consistent involvement of Sl in the experimentally-induced pain
despite its prior inclusion in a putative “pain matrix” (lannetti and Mouraux, 2010; Legrain
et al., 2011). However, we were able to detect SI involvement in pain in our meta-analyses
of left-sided pain and of pain induced in proximal extremities. This less consistent
involvement of Sl is not surprising; previous reviews have similarly reported less consistent
activation of Sl in response to painful stimulation compared to other areas (Bushnell et al.,
1999; Friebel et al., 2011; Lanz et al., 2011; Peyron et al., 2000). Though Sl is known to be
critical for the sensory-discriminative aspect of pain (Bushnell et al., 1999; Duerden and
Albanese, 2013; Friebel et al., 2011; Peyron et al., 2000), the inconsistency of SI’s specific
involvement in pain processing may stem from variable anatomy of Sl in individual
participants and, more importantly, the precise, localized somatotopic organization of Sl
(Bushnell et al., 1999). Our results cohere with this interpretation, as SI appeared only in
analyses where there was less variability in the stimulation site (e.qg., left-sided pain).
Considering the highly somatotopic organization of SI, meta-analyses may need to focus on
experiments of pain that target precisely the same physical locations of pain induction in
order to reliably detect Sl activation.
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4.3. Differences between experimental pain paradigms

While the predominant pattern of results suggests consistent activation in a core set of
regions accompanied by less consistent activation in other areas, we also observed important
differences among paradigms. Specifically, we found stronger convergence of activation in
right MCC in thermal pain experiments compared to non-thermal pain experiments — a
finding consistent with earlier work by Friebel et al. (2011). Given the role of MCC in
affective-motivational components of pain (Tracey et al., 2007), our results suggest that
thermal experiments may be more affectively-valanced than non-thermal experiments.
Notably, our findings indicate a more restricted extent of differences between thermal and
non-thermal stimulation than that reported in an earlier meta-analysis by Friebel and
colleagues (2011). These differences may be explained in part by the more stringent
inclusion criteria and statistical threshold used in our meta-analysis.

We also found differences in the pain response to electrical stimulation compared to
mechanical stimulation. Electrical experiments showed stronger convergence of activation in
right Rolandic operculum, right thalamus, and right superior temporal gyrus. In contrast,
mechanical experiments did not produce greater convergence of activation. These
differences, however, are better characterized by a differing extent of convergence of
activation rather than different brain areas being recruited. Indeed, we find more widespread
significant conjunction of activation between these stimulus modalities than significant
differences. Nevertheless, our findings may suggest more robust activation of pain-sensitive
brain areas in response to electrical stimulation rather than mechanical stimulation.

The meta-analyses focused on stimulation location primarily revealed a laterality effect.
Right-sided pain experiments showed stronger convergence of activation in left SII.
However, left-sided pain experiments did not show stronger convergence of activation in
right SIl. There are currently mixed findings over the extent of contralateral bias in
somatotopic encoding in Sl (Bingel et al., 2004; Johansen-Berg et al., 2000; Maldijian et
al., 1999; Ruben et al., 2001). The stronger convergence of activation in Sl may lend
support for some contralateral bias in somatotopic encoding of laterality, though further
studies are needed to address this more directly. Interestingly, we did not observe differences
in our other location-related sub-analyses that focused on proximal versus distal pain and
visceral versus non-visceral pain. These findings may suggest that central processing of pain
is largely robust to differences in location of pain stimulation.

4.4. Limitations and future directions

Several limitations should be noted. As mentioned above, our findings delineate a
convergent set of brain regions recruited across different experimental paradigms of pain,
but an explicit meta-analysis of experiments using within-subject contrasts would better
elucidate true differences in brain activation between paradigms. Given the limited number
experiments that did explicitly test these differences within-subject, there is great potential
for future experiments and meta-analyses to examine differences between experimental
paradigms more conclusively. Similarly, because our meta-analysis relied on the published
results of past articles, publication bias towards selectively publishing significant findings
(and, consequently, difficulty in accounting for unpublished results) may have limited our
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findings (Muller et al., 2018). Additionally, it is possible that the wide range of image
acquisition parameters in the experiments included may have limited the likelihood of
observing some types of effects, particularly if detection sensitivity is related to acquisition
parameters (e.g., brainstem, as mentioned in Sclocco et al., 2018). While we cannot exclude
the possibility of other regions being more robustly involved in or associated with pain, open
sharing of imaging data may allow for better detection of these regions using image-based
meta-analytic methods (Salimi-Khorshidi et al., 2009) rather than solely using coordinate-
based methods.

5. Conclusion

Convergent results demonstrate that Sll, insula, MCC, and thalamus are consistently
recruited by acute nociceptive stimuli in healthy subjects across many different experimental
paradigms. In contrast, lateral PFC, M1, SMA, cerebellum, brainstem, Sl, and the amygdala
appear from the current meta-analysis to be more variably involved. Notably, we did not find
strong evidence for preferential involvement of any of these brain areas in one specific
experimental stimulus paradigm over another. Taken together, these findings suggest that
acute pain induction in healthy volunteers consistently recruits a core brain network. If this
network overlaps with that which is involved in clinical pain, this “pain biomarker” may
offer translational opportunities for fMRI in drug development and in clinical trials.
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Fig. 1.
PRISMA flowchart for study inclusion.
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Fig. 2.
Number of experiments included in each analysis of interest.

Neurosci Biobehav Rev. Author manuscript; available in PMC 2020 December 22.



1duosnuen Joyiny 1duosnuen Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Xu et al.

Page 24

Fig. 3.
Main effect of experimental induction of acute pain (nh = 200). Coordinates and statistics for

significant clusters are shown in Table 2.
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Fig. 4.
Meta-analytic effect of experiments using “pain > rest” and “pain > innocuous” contrast. (A)

Main effect of experiments using “pain > rest” contrast (7= 134). (B) Main effect of
experiments with “pain > innocuous” contrast (/7= 62). Coordinates and statistics for
significant clusters are shown in Table 3.
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Fig. 5.
The meta-analytic effects of thermal and non-thermal nociceptive pain induction. (A) Main

effect of thermal pain experiments (1= 107). (B) Main effect of non-thermal pain
experiments (77 = 98). Coordinates and statistics for significant clusters associated with the
main effect of thermal and non-thermal pain (as well as the between-experiment contrast and
conjunction of thermal and non-thermal pain experiments) are shown in Table 4.
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Fig. 6.
Effects of induction of electrically-evoked and mechanical nociceptive pain. (A) Main effect

of electrically-evoked pain experiments (7= 39). (B) Main effect of mechanical pain
experiments (7= 46). Coordinates and statistics for significant clusters associated with the
main effect of electrical and mechanical pain (as well as the between-experiment contrast
and conjunction of electrical and mechanical pain experiments) are shown in Table 5.
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Fig. 7.
Main effect of meta-analysis of nociceptive chemical pain experiments (/7= 13). Coordinates

and statistics for significant clusters associated with the main effect of chemical pain are
shown in Table 6.
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Fig. 8.
The meta-analytic effects of left-sided and right-sided pain induction. (A) Main effect of

left-sided pain experiments (17=92). (B) Main effect of right-sided pain experiments (7=
66). Coordinates and statistics for significant clusters associated with the main effect of left-
sided and right-sided pain (as well as the between-experiment contrast and conjunction of
left-sided and right-sided pain experiments) are shown in Table 7.
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Fig. 9.
The meta-analytic effects of distal and proximal nociceptive pain. (A) Main effect of

experiments inducing acute nociceptive pain in the distal extremities (7= 68). (B) Main
effect of experiments inducing pain in the proximal extremities (7= 85). Coordinates and
statistics for significant clusters associated with the main effect of distal and proximal pain
(as well as the between-experiment contrast and conjunction of distal and proximal pain
experiments) are shown in Table 8.
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Fig. 10.
The meta-analytic effects of visceral and non-visceral mechanical pain. (A) Main effect of

visceral pain experiments (7= 17). (B) Main effect of non-visceral mechanical pain
experiments (n7=29). Coordinates and statistics for significant clusters associated with the
main effect of visceral and non-visceral pain (as well as the between-experiment contrast
and conjunction of visceral and non-visceral pain experiments) are shown in Table 9.
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Fig. 11.
Effect of pain in males and females. (A) Main effect of experiments with an all-female

sample (7= 22). (B) Main effect of experiments with an all-male sample (7= 30).
Coordinates and statistics for significant clusters are shown in Table 10.
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Fig. 12.
A core set of bran regions recruited by acute pain. This figure depicts the spatial consistency

of above-threshold activation convergence cross all reported main effects meta-analyses. The
value assigned to each voxel reflects the number of main effects analyses in which it was
reported as significant. Values range from 1 (reported significant in only one main effects
meta-analyses) to 15 (reported as significant in all main effects meta-analyses). The most
consistently activated areas include bilateral thalamus, bilateral insula, bilateral SlI, and
bilateral MCC.
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Table 2

Peaks of convergence of activation for meta-analyses related to acute nociceptive pain.

Voxels X Y z Macroanatomical Label  Cytoarchitectonic Label  Z-score
14522 58 =24 22 R Supramarginal Gyrus Area PFop (IPL) 8.52
3181 6 12 38 R MCC 8.48
325 -32 -56 -34 L Cerebellum Lobule VI (Hem) 5.39
238 48 4 42 R Precentral Gyrus 5.03

Note. Cluster coordinates are reported in MNI stereotaxic space. Macroanatomical labels used the SPM Anatomy Toolbox and Harvard-Oxford
Structural Atlas (MCC = midcingulate cortex). Cytoarchitectonic labels were made using the SPM Anatomy Toolbox (IPL = inferior parietal lobe).
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Xu et al.

Peaks of convergence of activation for meta-analyses related to acute nociceptive chemical pain.

Table 6

Voxels X Y z Macroanatomical Label ~ Cytoarchitectonic Label ~ Z-score
663 38 16 -6 R Insula Lobe 5.29
534 -58 -4 8 L Rolandic Area OP4 [PV] 4.78
Operculum

449 62 -14 20 R Postcentral Gyrus Avrea PFop (IPL) 4.43
329 -10 12 38 L MCC 5.22
232 -34 10 2 L Insula Lobe 5.26
183 -2 -2 62 L SMA 4.85
163 14 -14 6 R Thalamus Thal: Prefrontal 5.35
154 -12 -20 -4 L Thalamus Thal: Motor 5.19
117 -6 -40 -50 Brainstem 5.19
105 -36 -8 4 L Insula Lobe 4.1

Note. Cluster coordinates are reported in MNI stereotaxic space. Macroanatomical labels were made using the SPM Anatomy Toolbox and

Page 40

Harvard-Oxford Structural Atlas (SMA = supplementary motor area). Cytoarchitectonic labels were made using the SPM Anatomy Toolbox (IPL =
inferior parietal lobe; Thal = thalamus).
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