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Abstract

Topological data analysis and its main method, persistent homology, provide a toolkit for 

computing topological information of high-dimensional and noisy data sets. Kernels for one-

parameter persistent homology have been established to connect persistent homology with 

machine learning techniques with applicability on shape analysis, recognition and classification. 

We contribute a kernel construction for multi-parameter persistence by integrating a one-parameter 

kernel weighted along straight lines. We prove that our kernel is stable and efficiently computable, 

which establishes a theoretical connection between topological data analysis and machine learning 

for multivariate data analysis.
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1. Introduction

Topological data analysis (TDA) is an active area in data science with a growing interest and 

notable successes in a number of applications in science and engineering [1, 2, 3,4, 5, 6, 7, 

8]. TDA extracts in-depth geometric information in amorphous solids [5], determines robust 

topological properties of evolution from genomic data sets [2] and identifies distinct diabetes 

subgroups [6] and a new subtype of breast cancer [9] in high-dimensional clinical data sets, 

to name a few. In the context of shape analysis, TDA techniques have been used in the 

recognition, classification [10, 11], summarization [12], and clustering [13] of 2D/3D shapes 

and surfaces. Oftentimes, such techniques capture and highlight structures in data that 

conventional techniques fail to treat [11, 13] or reveal properly [5].

TDA employs the mathematical notion of simplicial complexes [14] to encode higher order 

interactions in the system, and at its core uses the computational framework of persistent 
homology [15, 16, 17, 18, 19] to extract multi-scale topological features of the data. In 

particular, TDA extracts a rich set of topological features from high-dimensional and noisy 

data sets that complement geometric and statistical features, which offers a different 
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perspective for machine learning. The question is, how can we establish and enrich the 
theoretical connections between TDA and machine learning?

Informally, homology was developed to classify topological spaces by examining their 

topological features such as connected components, tunnels, voids and holes of higher 

dimensions; persistent homology studies homology of a data set at multiple scales. Such 

information is summarized by the persistence diagram, a finite multi-set of points in the 

plane. A persistence diagram yields a complete description of the topological properties of a 

data set, making it an attractive tool to define features of data that take topology into 

consideration. Furthermore, a celebrated theorem of persistent homology is the stability of 

persistence diagrams [20] – small changes in the data lead to small changes of the 

corresponding diagrams, making it suitable for robust data analysis.

However, interfacing persistence diagrams directly with machine learning poses technical 

difficulties, because persistence diagrams contain point sets in the plane that do not have the 

structure of an inner product, which allows length and angle to be measured. In other words, 

such diagrams lack a Hilbert space structure for kernel-based learning methods such as 

kernel SVMs or PCAs [21]. Recent work proposes several variants of feature maps [22, 21, 

23] that transform persistence diagrams into L2-functions over ℝ2. This idea immediately 

enables the application of topological features for kernel-based machine learning methods as 

establishing a kernel function implicitly defines a Hilbert space structure [21].

A serious limit of standard persistent homology and its initial interfacing with machine 

learning [22, 21, 23, 24, 25] is the restriction to only a single scale parameter, thereby 

confining its applicability to the univariate setting. However, in many real-world 

applications, such as data acquisition and geometric modeling, we often encounter richer 

information described by multivariate data sets [26, 27, 28]. Consider, for example, climate 

simulations where multiple physical parameters such as temperature and pressure are 

computed simultaneously; and we are interested in understanding the interplay between 

these parameters. Consider another example in multivariate shape analysis, various families 

of functions carry information about the geometry of 3D shape objects, such as mesh 

density, eccentricity [29] or Heat Kernel Signature [30]; and we are interested in creating 

multivariate signatures of shapes from such functions. Unlike the univariate setting, very few 

topological tools exist for the study of multivariate data [31, 32, 29], let alone the integration 

of multivariate topological features with machine learning.

The active area of multi-parameter persistent homology [26] studies the extension of 

persistence to two or more (independent) scale parameters. A complete discrete invariant 

such as the persistence diagram does not exist for more than one parameter [26]. To gain 

partial information, it is common to study slices, that is, one-dimensional affine subspaces 

where all parameters are connected by a linear equation. In this paper, we establish, for the 

first time, a theoretical connection between topological features and machine learning 

algorithms via the kernel approach for multi-parameter persistent homology. Such a 

theoretical underpinning is necessary for applications in multivariate data analysis.
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Our contribution.

We propose the first kernel construction for multi-parameter persistent homology. Our kernel 

is generic, stable and can be approximated in polynomial time. For simplicity, we formulate 

all our results for the case of two parameters, although they extend to more than two 

parameters.

Our input is a data set that is filtered according to two scale parameters and has a finite 

description size; we call this a bi-filtration and postpone its formal definition to Section 2. 

Our main contribution is the definition of a feature map that assigns to a bi-filtration X a 

function ΦX : Δ(2) ℝ, where Δ(2) is a subset of ℝ4. Moreover, ΦX
2  is integrable over Δ(2), 

effectively including the space of bi-filtrations into the Hilbert space L2(Δ(2)). Therefore, 

based on the standard scalar product in L2(Δ(2)) a 2-parameter kernel is defined such that for 

two given bi-filtrations X and Y we have

X, Y Φ ≔ ∫
Δ(2)ΦXΦYdμ . (1)

We construct our feature map by interpreting a point of Δ(2) as a pair of (distinct) points in 

ℝ2 that define a unique slice. Along this slice, the data simplifies to a mono-filtration (i.e., a 

filtration that depends on a single scale parameter), and we can choose among a large class 

of feature maps and kernel constructions of standard, one-parameter persistence. To make 

the feature map well-defined, we restrict our attention to a finite rectangle R.

Our inclusion into a Hilbert space induces a distance between bi-filtrations as

dΦ(X, Y) ≔ ∫ (ΦX − ΦY)2dμ . (2)

We prove a stability bound, relating this distance measure to the matching distance and the 

interleaving distance (see the paragraph on related work below). We also show that this 

stability bound is tight up to constant factors (see Section 4).

Finally, we prove that our kernel construction admits an efficient approximation scheme. 

Fixing an absolute error bound ϵ, we give a polynomial time algorithm in 1/ϵ and the size of 

the bi-filtrations X and Y to compute a value r such that r ≤ X, Y Φ ≤ r + ϵ. On a high 

level, the algorithm subdivides the domain into boxes of smaller and smaller width and 

evaluates the integral of (1) by lower and upper sums within each subdomain, terminating 

the process when the desired accuracy has been achieved. The technical difficulty lies in the 

accurate and certifiable approximation of the variation of the feature map when moving the 

argument within a subdomain.

Related work.

Our approach heavily relies on the construction of stable and efficiently computable feature 

maps for mono-filtrations. This line of research was started by Reininghaus et al. [21], 

whose approach we discuss in some detail in Section 2. Alternative kernel constructions 

appeared in [24, 33]. Kernel constructions fit into the general framework of including the 
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space of persistence diagrams in a larger space with more favorable properties. Other 

examples of this idea are persistent landscapes [22] and persistent images [34], which can be 

interpreted as kernel constructions as well. Kernels and related variants defined on mono-

filtrations have been used to discriminate and classify shapes and surfaces [21, 25]. An 

alternative approach comes from the definition of suitable (polynomial) functions on 

persistence diagrams to arrive at a fixed-dimensional vector in ℝd on which machine 

learning tasks can be performed; see [35, 36, 37, 38].

As previously mentioned, a persistence diagram for multiparameter persistence does not 

exist [26]. However, bi-filtrations still admit meaningful distance measures, which lead to 

the notion of closeness of two bi-filtrations. The most prominent such distance is the 

interleaving distance [39], which, however, has recently been proved to be NP-complete to 

compute and approximate [40]. Computationally attractive alternatives are (multi-parameter) 

bottleneck distance [41] and the matching distance [42, 43], which compares the persistence 

diagrams along all slices (appropriately weighted) and picks the worst discrepancy as the 

distance of the bi-filtrations. This distance can be approximated up to a precision ϵ using an 

appropriate subsample of the lines [42], and also computed exactly in polynomial time [43]. 

Our approach extends these works in the sense that not just a distance, but an inner product 

on bi-filtrations, is defined with our inclusion into a Hilbert space. In a similar spirit, the 

software library RIVET [44] provides a visualization tool to explore bi-filtrations by 

scanning through the slices.

2. Preliminaries

We introduce the basic topological terminology needed in this work. We restrict ourselves to 

the case of simplicial complexes as input structures for a clearer geometric intuition of the 

concepts, but our results generalize to more abstract input types (such as minimal 

representations of persistence modules) without problems.

Mono-filtrations.

Given a vertex set V, an (abstract) simplex is a non-empty subset of V, and an (abstract) 
simplicial complex is a collection of such subsets that is closed under the operation of taking 

non-empty subsets. A subcomplex of a simplicial complex X is a simplicial complex Y with 

Y ⊆ X. Fixing a finite simplicial complex X, a mono-filtration X of X is a map that assigns 

to each real number α, a subcomplex X(α) of X, with the property that whenever α ≤ β, 

X(α) ⊆ X(β). The size of X is the number of simplices of X. Since X is finite, X(α) changes 

at only finitely many places when α grows continuously from −∞ to +∞; we call these 

values critical. More formally, α is critical if there exists no open neighborhood of α such 

that the mono-filtration assigns the identical subcomplex to each value in the neighborhood. 

For a simplex σ of X, we call the critical value of σ the infimum over all α for which 

σ ∈ X(α). For simplicity, we assume that this infimum is a minimum, so every simplex has a 

unique critical value wherever it is included in the mono-filtration.
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Bi-filtrations.

For points in ℝ2, we write (a, b) ≤ (c, d) if a ≤ c and b ≤ d. Similarly, we say (a, b) < (c, d) if 

a < c and b < d. For a finite simplicial complex X, a bi-filtration X of X is a map that assigns 

to each point p ∈ ℝ2 a subcomplex X(p) of X, such that whenever p ≤ q, X(p) ⊆ X(q). Again, 

a point p = (p1, p2) is called critical for X if, for any ϵ > 0, both X(p1 − ϵ, p2) and 

X(p1, p2 − ϵ) are not identical to X(p). Note that unlike in the mono-filtration case, the set of 

critical points might not be finite. We call a bi-filtration tame if it has only finitely many 

such critical points. For a simplex σ, a point p ∈ ℝ2 is critical for σ if, for any ϵ > 0, σ is 

neither in X(p1 − ϵ, p2) nor in X(p1, p2 − ϵ), whereas σ is in both X(p1 + ϵ, p2) and 

X(p1, p2 + ϵ). Again, for simplicity, we assume that σ ∈ X(p) in this case. A consequence of 

tameness is that each simplex has a finite number of critical points. Therefore, we can 

represent a tame bi-filtration of a finite simplicial complex X by specifying the set of critical 

points for each simplex in X. The sum of the number of critical points over all simplices of 

X is called the size of the bi-filtration. We henceforth assume that bi-filtrations are always 

represented in this form; in particular, we assume tameness throughout this paper.

A standard example to generate bi-filtrations is by an arbitrary function F : X ℝ2 with the 

property that if τ ⊂ σ are two simplices of X, F(τ) ≤ F(σ). We define the sublevel set XF(p)
as

χF (p) ≔ {σ ∈ X | F (σ) ≤ p},

and let XF  denote its corresponding sublevel set bi-filtration. It is easy to verify that XF

yields a (tame) bi-filtration and F(σ) is the unique critical value of σ in the bi-filtration.

Slices of a bi-filtration.

A bi-filtration X contains an infinite collection of mono-filtrations. Let ℒ be the set of all 

nonvertical lines in ℝ2 with positive slope. Fixing any line ℓ ∈ ℒ, we observe that when 

traversing this line in positive direction, the subcomplexes of the bi-filtration are nested in 

each other. Note that ℓ intersects the anti-diagonal x = −y in a unique base point b. 

Parameterizing ℓ as b + λ · a, where a is the (positive) unit direction vector of ℓ, we obtain the 

mono-filtration

Xℓ(α) ≔ X(b + α ⋅ a) .

We will refer to this mono-filtration Xℓ as a slice of X along ℓ (and sometimes also call ℓ 
itself the slice, abusing notation). The critical values of a slice can be inferred by the critical 

points of the bi-filtration in a computationally straightforward way. Instead of a formal 

description, we refer to Figure 1 for a graphical description. Also, if the bi-filtration is of 

size n, each of its slices is of size at most n.
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Persistent homology.

A mono-filtration X gives rise to a persistence diagram. Formally, we obtain this diagram by 

applying the homology functor to X, yielding a sequence of vector spaces and linear maps 

between them, and splitting this sequence into indecomposable parts using representation 

theory. Instead of rolling out the entire theory (which is explained, for instance, in [45]), we 

give an intuitive description here.

Persistent homology measures how the topological features of a data set evolve when 

considered across a varying scale parameter α. The most common example involves a point 

cloud in ℝd, where considering a fixed scale α means replacing the points by balls of radius 

α. As α increases, the data set undergoes various topological configurations, starting as a 

disconnected point cloud for α = 0 and ending up as a topological ball when α approaches 

∞; see Figure 2(a) for an example in ℝ2.

The topological information of this process can be summarized as a finite multi-set of points 

in the plane, called the persistence diagram. Each point of the diagram corresponds to a 

topological feature (i.e., connected components, tunnels, voids, etc.), and its coordinates 

specify at which scales the feature appears and disappears in the data. As illustrated in 

Figure 2(a), all five (connected) components are born (i.e., appear) at α = 0. The green 

component dies (i.e., disappears) when it merges with the red component at α = 2.5; 

similarly, the orange, blue and pink components die at scales 3, 3.2 and 3.7, respectively. 

The red component never dies as α goes to ∞. The 0-dimensional persistence diagram is 

defined to have one point per component with birth and death value as its coordinates 

(Figure 2(c)). The persistence of a feature is then merely its distance from the diagonal. 

While we focus on the components, the concept generalizes to higher dimensions, such as 

tunnels (1-dimensional homology) and voids (2-dimensional homology). For instance, in 

Figure 2(a), a tunnel appears at α = 4.2 and disappears at α = 5.6, which gives rise to a 

purple point (4.2, 5.6) in the 1-dimensional persistence diagram (Figure 2(c)).

From a computational point of view, the nested sequence of spaces formed by unions of 

balls (Figure 2(a)) can be replaced by a nested sequence of simplicial complexes by taking 

their nerves, thereby forming a mono-filtration of simplicial complexes that captures the 

same topological information but has a much smaller footprint (Figure 2(b)).

In the context of shape analysis, we apply persistent homology to capture the topological 

information of 2D and 3D shape objects by employing various types of mono-filtrations. A 

simple example is illustrated in Figure 3: we extract point clouds sampled from the boundary 

of 2D shape objects and compute the persistence diagrams using Vietoris-Rips complex 

filtrations.

Stability of persistent homology.

Bottleneck distance represents a similarity measure between persistence diagrams. Let D, D′ 
be two persistence diagrams. Without loss of generality, we can assume that both contain 

infinitely many copies of the points on the diagonal. The bottleneck distance between D and 

D′ is defined as
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dB(D, D′) ≔ inf
γ

sup
x ∈ D

x − γ(x) ∞, (3)

where γ ranges over all bijections from D to D′. We will also use the notation dB(X, Y) for 

two mono-filtrations instead of dB(D(X), D(Y))

A crucial result for persistent homology is the stability theorem proven in [46] and re-stated 

in our notation as follows. Given two functions f, g : X ℝ whose sublevel sets form two 

mono-filtrations of a finite simplicial complex X, the induced persistence diagrams satisfy

dB(Df, Dg) ≤ f − g ∞ ≔ sup
σ ∈ X

|f(σ) − g(σ)| . (4)

Feature maps for mono-filtrations.

Several feature maps aimed at the construction of a kernel for mono-filtrations have been 

proposed in the literature [22, 23, 21]. We discuss one example: the persistence scale-space 

kernel [21] assigns to a mono-filtration X an L2-function ϕX defined on 

Δ(1) ≔ (x1, x2) ∈ ℝ2 ∣ x1 < x2 . The main idea behind the definition of ϕX is to define a sum 

of Gaussian peaks, all of the same height and width, with each peak centered at one finite 

off-diagonal point of the persistence diagram D(X) of X. To make the construction robust 

against perturbations, the function has to be equal to 0 across the diagonal (the boundary of 

Δ(1)). This is achieved by adding negative Gaussian peaks at the reflections of the off-

diagonal points along the diagonal. Writing z‒ for the reflection of a point z, we obtain the 

formula,

ϕX(x) ≔ 1
4πt ∑

z ∈ D(X)
e

x − z 2
2

4t − e
x − z 2

2

4t , (5)

where t is the width of the Gaussian, which is a free parameter of the construction. See 

Figure 4 (b) and (c) for an illustration of a transformation of a persistence diagram to the 

function ϕX. The induced kernel enjoys several stability properties and can be evaluated 

efficiently without explicit construction of the feature map; see [21] for details.

More generally, in this paper, we look at the class of all feature maps that assign to a mono-

filtration X a function in L2(Δ(1)). For such a feature map ϕX, we define the following 

properties:

• Absolutely boundedness. There exists a constant v1 > 0 such that, for any mono-

filtration X of size n and any x ∈ Δ(1), 0 ≤ ϕX(x) ≤ v1 ⋅ n.

• Lipschitzianity. There exists a constant v2 > 0 such that, for any mono-filtration 

X of size n and any x, x′ ∈ Δ(1), ∣ ϕX(x) − ϕX(x′) ∣ ≤ v2 ⋅ n ⋅ ∥ x − x′ ∥ 2.

• Internal stability. There exists a constant v3 > 0 such that, for any pair of mono-

filtrations X, Y of size n and any x ∈ Δ(1), ∣ ϕX(x) − ϕY(x) ∣ ≤ v3 ⋅ n ⋅ dB(X, Y)
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• Efficiency. For any x ∈ Δ(1), ϕX(x) can be computed in polynomial time in the 

size of X, that is, in O(nk) for some k ≥ 0.

It can be verified easily that the scale-space feature map from above satisfies all these 

properties. The same is true, for instance, if the Gaussian peaks are replaced by linear peaks 

(that is, replacing the Gaussian kernel in (5) by a triangle kernel).

3. A feature map for multi-parameter persistent homology

Let ϕ be a feature map (such as the scale-space kernel) that assigns to a mono-filtration a 

function in L2(Δ(1)). Starting from ϕ, we construct a feature map Φ on the set of all bi-

filtrations Ω that has values in a Hilbert space.

The feature map Φ assigns to a bi-filtration X a function ΦX : Δ(2) ℝ. We set

Δ(2) ≔ (p, q) | p ∈ ℝ2, q ∈ ℝ2, p < q

as the set of all pairs of points where the first point is smaller than the second one. Δ(2) can 

be interpreted naturally as a subset of ℝ4, but we will usually consider elements of Δ(2) as 

pairs of points in ℝ2.

Fixing (p, q) ∈ Δ(2), let ℓ denote the unique slice through these two points. Along this slice, 

the bi-filtration gives rise to a mono-filtration Xℓ, and consequently a function 

ϕXℓ : Δ(1) ℝ using the considered feature map for mono-filtrations. Moreover, using the 

parameterization of the slice ℓ as b + λ · a from Section 2, there exist real values λp, λq such 

that b + λpa = p and b + λqa = q. Since p < q and λp < λq, hence (λp, λq) ∈ Δ(1). We define 

ΦX(p, q) to be the weighted function value of ϕXℓ at (λp, λq) (see also Figure 4), that is,

ΦX(p, q) ≔ w(p, q) ⋅ ϕXℓ(λp, λq), (6)

where w(p, q) is a weight function w : Δ(2) ℝ defined below.

The weight function w has two components. First, let R be a bounded axis-aligned rectangle 

in ℝ2; its bottom-left corner coincides with the origin of the coordinate axes. We define w 
such that its weight is 0 if p or q is outside of R. Second, for pairs of points within R × R, we 

assign a weight depending on the slope of the induced slices. Formally, let ℓ be 

parameterized as b + λ·a as above, and recall that a is a unit vector with non-negative 

coordinates. Write a = (a1, a2) and set ℓ ≔ min{a1, a2}. Then, we define

w(p, q) ≔ χR(p) ⋅ χR(q) ⋅ ℓ,

where χR is the characteristic function of R, mapping a point x to 1 if x ∈ R and 0 

otherwise.
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The factor ℓ ensures that slices that are close to being horizontal or vertical attain less 

importance in the feature map. The same weight is assigned to slices in the matching 

distance [42]. ℓ is not important for obtaining an L2-function, but its meaning will become 

clear in the stability results of Section 4. We also remark that the largest weight is attained 

for the diagonal slice with a value of 1 2. Consequently, w is a non-negative function 

upper bounded by 1 2.

To summarize, our map Φ depends on the choice of an axis-aligned rectangle R and a choice 

of feature map for mono-filtrations, which itself might have associated parameters. For 

instance, using the scale-space feature map requires the choice of the width t (see (5)). It is 

only left to argue that the image of the feature map Φ is indeed an L2-function.

Theorem 1. If ϕ is absolutely bounded, then ΦX is in L2(Δ(2)).

Proof. Let X be a bi-filtration of size n. As mentioned earlier, each slice Xℓ is of a size at 

most n. By absolute boundedness and the fact that the weight function is upper bounded by 
1
2 , it follows that ∣ ΦX(p, q) ∣ ≤

v1n
2  for all (p, q). Since the support of ΦX is compact (R × 

R), the integral of ΦX
2  over Δ(2) is finite, being absolutely bounded and compactly supported. 

□

Note that Theorem 1 remains true even without restricting the weight function to R, 

provided we consider a weight function that is square-integrable over Δ(2). We skip the 

(easy) proof.

4. Stability

An important and desirable property for a kernel is its stability. In general, stability means 

that small perturbations in the input data imply small perturbations in the output data. In our 

setting, small changes between multi-filtrations (with respect to matching distance) should 

not induce large changes in their corresponding feature maps (with respect to L2 distance).

Adopted to our notation, the matching distance is defined as

dmatcℎ(X, Y) = sup
ℓ ∈ ℒ

ℓ ⋅ dB(Xℓ, Yℓ) ,

where ℒ is the set of non-vertical lines with positive slope [47].

Theorem 2. Let X and Y be two bi-filtrations. If ϕ is absolutely bounded and internally 
stable, we have

ΦX − ΦY L2 ≤ C ⋅ n ⋅ area(R) ⋅ dmatcℎ(X, Y),

for some constant C.
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Proof. Absolute boundedness ensures that the left-hand side is well-defined by Theorem 1. 

Now we use the definition of ‖·‖L2 and the internal stability of ϕ to obtain

ΦX − ΦY L2
2

= ∫
Δ(2)

w(p, q) ⋅ ϕXℓ(λp, λq) − w(p, q) ⋅ ϕYℓ(λp, λq) 2dμ

≤ ∫
Δ(2)

(w(p, q) ⋅ v3 ⋅ n ⋅ dB(Xℓ, Yℓ))2dμ

= (v3 ⋅ n)2 ∫
Δ(2)

(w(p, q) ⋅ dB(Xℓ, Yℓ))2dμ

Since w(p, q) is zero outside R × R, the integral does not change when restricted to Δ(2) ∩ (R 
× R). Within this set, w(p, q) simplifies to ℓ, with ℓ the line through p and q. Hence, we can 

further bound

= (v3 ⋅ n)2 ∫
Δ(2) ∩ (R × R)

(ℓ ⋅ dB(Xℓ, Yℓ))2dμ

≤ (v3 ⋅ n)2 ∫
Δ(2) ∩ (R × R)

sup
ℓ ∈ ℒ

ℓ ⋅ dB(Xℓ, Yℓ) 2

= dmatcℎ(X, Y)

dμ

= (v3 ⋅ n ⋅ dmatcℎ(X, Y))2 ∫
Δ(2) ∩ (R × R)

1dμ .

The claimed inequality follows by noting that the final integral is equal to 1
4area(R)2. □

As a corollary, we get the the same stability statement with respect to interleaving distance 

instead of matching distance [48, Thm.1]. Furthermore, we obtain a stability bound for 

sublevel set bi-filtrations of functions X ℝ2 [47, Thm.4]:

Corollary 3. Let F , G : X ℝ2 be two functions that give rise to sublevel set bi-filtrations X
and Y, respectively. If ϕ is absolutely bounded and internally stable, we have

ΦX − ΦY L2 ≤ C ⋅ n ⋅ area(R) ⋅ F − G ∞,

for some constant C.

We remark that the appearance of n in the stability bound is not desirable as the bound 

worsens when the complex size increases (unlike, for instance, the bottleneck stability bound 

in (4), which is independent of n). The factor of n comes from the internal stability property 

of ϕ, so we have to strengthen this condition on ϕ. However, we show that such an 

improvement is impossible for a large class of “reasonable” feature maps.
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For two bi-filtrations X, Y we define X ⊕ Y by setting (X ⊕ Y)(p) ≔ X(p) ⊔ Y(p) for all 

p ∈ ℝ2. A feature map Φ is additive if ΦX ⊕ Y = Φ(X) + Φ(Y) for all bi-filtrations X, Y. Φ 

is called non-trivial if there is a bi-filtration X such that ‖Φ‖L2 ≠ 0. Additivity and non-

triviality for feature maps ϕ on mono-filtrations is defined in the analogous way. Note that, 

for instance, the scale space feature map is additive. Moreover, because 

(X ⊕ Y)ℓ = Xℓ ⊕ Yℓ for every slice ℓ, a feature map Φ is additive if the underlying ϕ is 

additive.

For mono-filtrations, no additive, non-trivial feature map ϕ can satisfy

ϕX − ϕY ≤ C ⋅ nδ ⋅ dB(χ, y)

with X, Y mono-filtrations and δ ∈ [0, 1); the proof of this statement is implicit in [21, Thm 

3]. With similar ideas, we show that the same result holds in the multi-parameter case.

Theorem 4. If Φ is additive and there exists C > 0 and δ ∈ [0, 1) such that

ΦX − ΦY L2 ≤ C ⋅ nδ ⋅ dmatcℎ(X, Y)

for all bi-filtrations X and Y, then Φ is trivial.

Proof. Assume to the contrary that there exists a bi-filtration X such that ∥ ΦX ∥ L2 > 0. 

Then, writing O for the empty bifiltration, by additivity we get 

∥ Φ ⊔i = 1
n X − ΦO ∥ L2 = n ∥ ΦX − ΦO ∥ L2 > 0. On the other hand, 

dmatcℎ( ⊔i = 1
n X, O) = dmatcℎ(X, O). Hence, with C and δ as in the statement of the theorem,

Φ⨆ i = 1
n X − ΦO L2

C ⋅ nδ ⋅ dmatcℎ(⨆ i = 1
n X, O)

=
n ΦX − ΦO L2

C ⋅ nδ ⋅ dmatcℎ(X, O)

= n1 − δ ΦX − ΦO L2
C ⋅ dmatcℎ(X, O)

n ∞ ∞,

a contradiction. □

5. Approximability

We provide an approximation algorithm to compute the kernel of two bi-filtrations X and Y
up to any absolute error ϵ > 0. Recall that our feature map Φ depends on the choice of a 

bounding box R. In this section, we assume R to be the unit square [0, 1] × [0, 1] for 

simplicity. We prove the following theorem that shows our kernel construction admits an 

efficient approximation scheme that is polynomial in 1/ϵ and the size of the bi-filtrations.

Theorem 5. Assume ϕ is absolutely bounded, Lipschitz, internally stable and efficiently 
computable. Given two bi-filtrations X and Y of size n and ϵ > 0, we can compute a number 
r such that r ≤ X, Y Φ ≤ r + ϵ in polynomial time in n and 1/ϵ.
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The proof of Theorem 5 will be illustrated in the following paragraphs, postponing most of 

the technical details to Appendix A.

Algorithm. Given two bi-filtrations X and Y of size n and ϵ > 0, our goal is to efficiently 

approximate X, Y Φ by some number r. On the highest level, we compute a sequence of 

approximation intervals (with decreasing lengths) J1, J2, J3,…, each containing the desired 

kernel value X, Y Φ. The computation terminates as soon as we find some Ji of width at 

most ϵ, in which case we return the left endpoint as an approximation to r.

For s ∈ ℕ (ℕ being the set of natural numbers), we compute Js as follows. We split R into 2s 

× 2s congruent squares (each of side length 2−s) which we refer to as boxes. See Figure 5(a) 

for an example when s = 3. We call a pair of such boxes a box pair. The integral from (1) can 

then be split into a sum of integrals over all 24s box pairs. That is,

X, Y Φ = ∫Δ(2)ΦXΦYdμ = ∑
(B1, B2)

∫Δ(2) ∩ (B1 × B2)ΦXΦYdμ .

For each box pair, we compute an approximation interval for the integral, and sum them up 

using interval arithmetic to obtain Js.

We first give some (almost trivial) bounds for X, Y Φ. Let (B1, B2) be a box pair with 

centers located at c1 and c2, respectively. By construction, vol(B1 × B2) = 2−4s. By the 

absolute boundedness of ϕ, we have

∫Δ(2) ∩ (B1 × B2)
ΦXΦYdμ ≤ ∫(B1 × B2)

1
2v1n ⋅ 1

2v1n dμ (7)

=
v1

2n2

2 vol(B1 × B2) =
v1

2n2

24s + 1 , (8)

where 1 2 is the maximal weight. Let U ≔
v1

2n2

24s + 1 . If c1 ≤ c2, then we can choose [0, U] as 

approximation interval. Otherwise, if c1 ≰ c2, then Δ(2) ∩ (B1 × B2) = ∅; we simply choose 

[0, 0] as approximation interval.

We can derive a second lower and upper bound for X, Y Φ as follows. We evaluate ΦX and 

ΦY at the pair of centers (c1, c2), which is possible due to the efficiency hypothesis of ϕ. Let 

vX = ΦX(c1, c2) and vY = ΦY(c1, c2). Then, we compute variations δX, δY ≥ 0 relative to the 

box pair, with the property that, for any pair (p, q) ∈ B1 × B2, ΦX(p, q) ∈ [vX − δX, vX + δX], 
and ΦY(p, q) ∈ [vY − δY, vY + δY]. In other words, variations describe how far the value of $

{ \Phi_{ \cal{ X \cal} _} $} (or ${ \Phi_{ \cal{ Y \cal} _} $}) deviates from its value at (c1, 

c2) within B1 × B2. Combined with the derivations starting in (7), we have for any pair (p, q) 

∈ B1 × B2,
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max{0, (vX − δX)(vY − δY)} (9)

≤ ΦX(p, q)ΦY(p, q) (10)

≤ min
v1

2n2

2 , (vX + δX)(vY + δY) . (11)

By multiplying the bounds obtained in (9) by the volume of Δ(2) ∩ (B1 × B2), we get a lower 

and an upper bound for the integral of ΦXΦY over a box pair (B1, B2). By summing over all 

possible box pairs, the obtained lower and upper bounds are the endpoints of Js.

Variations.

We are left with computing the variations relative to a box pair. For simplicity, we set δ ≔ δX
δ ≔ δx and explain the procedure only for X; the treatment of Y is similar.

We say that a slice ℓ traverses (B1, B2) if it intersects both boxes in at least one point. One 

such slice is the center slice ℓc, which is the slice through c1 and c2. See Figure 5(b) for an 

illustration. We set D to be the maximal bottleneck distance of the center slice and every 

other slice traversing the box pair (to be more precise, of the persistence diagrams along the 

corresponding slices). We set W as the maximal difference between the weight of the center 

slice and any other slice traversing the box pair, where the weight w is defined as in Section 

3. Write λc1 for the parameter value of c1 along the center slice. For every slice ℓ traversing 

the box pair and any point p ∈ ℓ ∩ B1, we have a value λp, yielding the parameter value of p 
along ℓ. We define L1 as the maximal difference of λp and λc1 among all choices of p and ℓ. 
We define L2 in the same way for B2 and set L ≔ max{L1, L2}. With these notations, we 

obtain Lemma 6 below.

Lemma 6. For all (p, q) ∈ B1 × B2,

|ΦX(p, q) − ΦX(c1, c2)| ≤
v3n

2 D + v1nW + v2nL .

Proof. Plugging in (6) and using triangle inequality, we obtain

|ΦX(p, q) − ΦX(c1, c2)|
= ℓϕXℓ(λp, λq) − ℓcϕXℓc(λc1, λc2)

≤ ℓ ϕXℓ(λp, λq) − ϕXℓc(λp, λq) + ϕXℓc(λp, λq) ℓ − ℓc

+ ℓc ϕXℓc(λp, λq) − ϕXℓc(λc1, λc2)
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and bound the three parts separately. The first summand is upper bounded by 
v3nD

2  because 

of internal stability of the feature map ϕ and because ℓ ≤ 1
2  for any slice ℓ. The second 

summand is upper bounded by v1nW by the absolute boundedness of ϕ. The third summand 

is bounded by v2nL, because ∥ (λp, λq) − (λc1, λc2) ∥ 2 ≤ 2 ∥ (λp, λq) − (λc1, λc2) ∥ ∞ ≤ L and 

by ϕ being Lipschitz, ϕXℓc(λp, λq) − ϕXℓc(λc1, λc2) ≤ 2v2nL and ℓ ≤ 1
2 . The result 

follows. ■

Next, we bound D by simple geometric quantities. We use the following lemma, whose 

proof appeared in [48]:

Lemma 7 ([48]). Let ℓ and ℓ′ be two slices with parameterizations b + λa and b′ + λa′, 

respectively. Then, the bottleneck distance of the two persistence diagrams along these slices 
is upper bounded by

2‖a − a′‖∞ + ‖b − b′‖∞
ℓℓ′ .

We define A as the maximal infinity distance of the directional vector of the center slice ℓc 

and any other slice ℓ traversing the box pair. We define B as the maximal infinity distance of 

the base point of ℓc and any other ℓ. Finally, we set M as the minimal weight among all slices 

traversing the box pair. Using Lemma 7, we see that

D ≤ 2A + B
Mℓc

,

and we set

δ ≔ v3n(2A + B)
2Mℓc

+ v1nW + v2nL . (12)

It follows from Lemma 6 and Lemma 7 that δ indeed satisfies the required variation 

property.

We remark that δ might well be equal to ∞, if the box pair admits a traversing slice that is 

horizontal or vertical, in which case the lower and upper bounds derived from the variation 

are vacuous. While (12) looks complicated, the values v1, v2, v3 are constants coming from 

the considered feature map ϕ, and all the remaining values can be computed in constant time 

using elementary geometric properties of a box pair. We only explain the computation of A 
in Figure 5(a) and skip the details of the other values.

Analysis.

At this point, we have not made any claim that the algorithm is guaranteed to terminate. 

However, its correctness follows at once because Js indeed contains the desired kernel value. 

Moreover, handling one box pair has a complexity that is polynomial in n, because the 
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dominant step is to evaluate ΦX at the center (c1, c2). Hence, if the algorithm terminates at 

iteration s0, its complexity is

∑
s = 1

s0
O 24spoly(n) .

This is because in iteration s, 24s box pairs need to be considered. Clearly, the geometric 

series above is dominated by the last iteration, so the complexity of the method is 

O(24s0poly(n)). The last (and technically most challenging) step is to argue that 

s0 = O(log n + log1
ϵ ), which implies that the algorithm indeed terminates and its complexity is 

polynomial in n and 1/ϵ.

To see that we can achieve any desired accuracy for the value of the kernel, i.e., that the 

interval width tends to 0, we observe that, if the two boxes B1, B2 are sufficiently far away 

and the resolution s is sufficiently large, the magnitudes A, B, W, and L in (12) are all small, 

because the parameterizations of two slices traversing the box pair are similar (see Lemmas 

11, 12, 13 and 14 in Appendix A). Moreover, if every slice traversing the box pair has a 

sufficiently large weight (i.e., the slice is close to the diagonal), the value M in (12) is 

sufficiently large. These two properties combined imply that the variation of such a box pair 

(which we refer to as the good type) tends to 0 as s goes to ∞. Hence, the bound based on 

the variation tends to the correct value for good box pairs.

However, no matter how high the resolution, there are always bad box pairs for which either 

B1, B2 are close, or are far but close to horizontal and vertical, and hence yield a very large 

variation. For each of these box pairs, the bounds derived from the variation are vacuous, but 

we still have the trivial bounds [0, U] based on the absolute boundedness of ϕ. Moreover, the 

total volume of these bad box pairs goes to 0 when s goes to ∞ (see Lemma 9, Lemma 10 in 

Appendix A). So, the contribution of these box pairs tends to 0. These two properties 

complete the proof of Theorem 5.

A more careful investigation of our proof shows that the complexity of our algorithm is 

O(n80+k(1/ϵ)40), where k is the efficiency constant of the feature map (Section 2). We made 

little effort to optimize the exponents in this bound.

6. Conclusions and future developments

We restate our main results for the case of a multi-filtration X with d parameters: there is a 

feature map that associates to X a real-valued function ΦX whose domain is of dimension 

2d, and introduces a kernel between a pair of multi-filtrations with a stable distance function, 

where the stability bounds depend on the (2d-dimensional) volume of a chosen bounding 

box. The proofs of these generalized results carry over from the results of this paper. 

Moreover, assuming that d is a constant, we claim that the kernel can be approximated in 

polynomial time to any constant (with the polynomial exponent depending on d). A proof of 

this statement requires to adapt the definitions and proofs of Appendix A to the higher-

dimensional case; we omit details.
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Other generalizations include replacing filtrations of simplicial complexes with persistence 

modules (with a suitable finiteness condition), passing to sublevel sets of a larger class of 

(tame) functions and replacing the scale-space feature map with a more general family of 

single-parameter feature maps. All these generalizations will be discussed in subsequent 

work.

The next step is an efficient implementation of our kernel approximation algorithm. We have 

implemented a prototype in C++, realizing a more adaptive version of the described 

algorithm. We have observed rather poor performance due to the sheer number of box pairs 

to be considered. Some improvements under consideration are to precompute all 

combinatorial persistence diagrams (cf. the barcode templates from [44]), to refine the 

search space adaptively using a quad-tree instead of doubling the resolution and to use 

techniques from numerical integration to handle real-world data sizes. We hope that an 

efficient implementation of our kernel will validate the assumption that including more than 

a single parameter will attach more information to the data set and improve the quality of 

machine learning algorithms using topological features.
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Appendix A.: Details on the Proof of Theorem 5

Overview.

Recall that our approximation algorithm produces an approximation interval Js for s ∈ ℕ by 

splitting the unit square into 2s × 2s boxes. For notational convenience, we write u ≔ 2−s for 

the side length of these boxes.

We would like to argue that the algorithm terminates after O(log n + log1
ϵ ) iterations, which 

means that after that many iterations, an interval of width ϵ has been produced. The 

following Lemma 8 gives an equivalent criterion in terms of u and n.

Lemma 8. Assume that there are constants e1, e2 > 0, such that width(Js) = O(ne1ue2). Then, 

width(Js0) ≤ ϵ for some s0 = O log n + log 1
ϵ .

Proof. Assume that width(Js) ≤ cne1ue2 for constants c and s sufficiently large. Since u = 2−s, 

a simple calculation shows that cne1 ue2 ≤ ϵ if and only if s ≥
log c + e1 log n + log 1

ϵ
e2

. Hence, 

choosing
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s ≔
log c + e1log n + log1

ϵ
e2

= O log n + log1
ϵ

ensures that width(Js0) ≤ ϵ. □

In the rest of this section, we will show that width(Js) = O(n2 u0.1).

Classifying box pairs.

For the analysis, we partition the box pairs considered by the algorithm into 4 disjoint 

classes. We call a box pair (B1, B2):

• null if c1 ≰ c2,

• close if c1 ≤ c2 such that ∥ c1 − c2 ∥ 2 < u,

• non-diagonal if c1 ≤ c2 such that ∥ c1 − c2 ∥ 2 ≥ u and any line ℓ that traverses 

(B1, B2) satisfies ℓ < u
1
5 ,

• good if it is of neither of the previous three types.

According to this notation, the integral from (1) can then be split as

X, Y Φ = X, Y null + X, Y close + X, Y non–diag + X, Y good,

where, X, Y null is defined Σ(B1, B2)null∫Δ(2) ∩ (B1 × B2)ΦXΦYdμ and analogously for the 

other ones. We let Js,null, Js,close, Js,non–diag, Js,good denote the four approximation intervals 

obtained from our algorithm when summing up the contributions of the corresponding box 

pairs. Then clearly, Js is the sum of these four intervals. For simplicity, we will write Jnull 

instead of Js,null when s is fixed, and likewise for the other three cases.

We observe first that the algorithm yields Jnull = [0, 0], so null box pairs can simply be 

ignored. Box pairs that are either close or non-diagonal are referred to as bad box pairs in 

Section 5. We proceed by showing that the width of Jclose, Jnon–diag, and Jgood are all 

bounded by O(n2u0.1).

Bad box pairs.

We start with bounding the width of Jclose. Let ℬclose be the union of all close box pairs. 

Note that our algorithm assigns to each box pair (B1, B2) an interval that is a subset of [0, 

U]. Recall that U =
v1

2n2

24s + 1 . U can be rewritten as 
v1

2n2
2 vol(B1 × B2), where vol(B1 × B2) is the 

4-dimensional volume of the box pair (B1, B2). It follows that
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width(Jclose) ≤
v1

2n2

2 vol(ℬclose) . (A.1)

Lemma 9. For u ≤ 1
2 , vol(ℬclose) ≤ 4πu.

Proof. Fixed a point p ∈ R, for each point q ∈ R such that (p, q) ∈ ℬclose and p < q, there 

exists a unique close box pair (B1, B2) that contains (p, q). By definition of close box pair, 

we have that:

p − q 2 ≤ p − c1 2 + c1 − c2 2 + c2 − q 2 ≤ u + 2u .

Moreover, for u ≤ 1
2 , 2u ≤ u, and so ∥ p − q ∥ 2 ≤ 2 u. Equivalently, q belongs to the 2-ball 

B(p, 2 u) centered at p and of radius 2 u. Then,

vol(ℬclose) = ∫ℬclose
1dμ ≤ ∫p ∈ R∫q ∈ B(p, 2 u)1dμ

≤ ∫p ∈ R4πudμ = 4πu . □

Consequently, combined with (A.1), we have

width(Jclose) ≤
4πv1

2n2
2 u = O(n2u0 . 1) .

Note that u < 1 and hence, u ≤ u0.1.

For the width of Jnon–diag, we use exactly the same reasoning, making use of the following 

Lemma 10. Let ℬnon‐diag be the union of all non-diagonal box pairs.

Lemma 10. For u ≤ 2− 5
2 , vol(ℬnon‐diag) ≤ 2u

1
5 .

Proof. Fixed a point p ∈ R, for each point q ∈ R such that (p, q) ∈ ℬnon‐diag and p < q, there 

exists a unique non-diagonal box pair (B1, B2) that contains (p, q). We have that q lies in:

• Triangle T1(p) of vertices p = (p1, p2), (1, p2), and (1, p2 + (1 − p1)
a2
a1

), if the line ℓ 

of maximum slope passing through B1 × B2 is such that ℓ = a2 where a = (a1, a2) 

is the (positive) unit direction vector of ℓ;

• Triangle T2(p) of vertices p = (p1, p2), (p1, 1), and (p1 + (1 − p2)
a1
a2

, 1), if the line ℓ 

of minimum slope passing through B1 × B2 is such that ℓ = a1 where a = (a1, a2) 

is the (positive) unit direction vector of ℓ.
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Let us bound the area of the two triangles. Since the calculations are analogous, let us focus 

on T1(p). By definition, the basis of T1(p) is smaller than 1 while its height is bounded by 
a2
a1

. The maximum value for the height of T1(p) is achieved for a2 = u
1
5 . So, by exploiting the 

identity a1
2 + a2

2 = 1, we have

a2
a1

2
= u

2
5

1 − u
2
5

.

Under the conditions u ≤ 2− 5
2  and 1

2u− 2
5 ≥ 1 we have

a2
a1

≤ 2u
1
5 .

Therefore, area(T1(p)) ≤ 2
2 u

1
5 . Similarly, area(T2(p)) ≤ 2

2 u
1
5 . Finally,

vol(ℬnon−diag) = ∫ℬnon−diag1dμ

≤ ∫p ∈ R∫q ∈ T1(p) ∪ T2(p)1dμ

≤ ∫p ∈ R 2u
1
5dμ ≤ 2u

1
5 . □

Good box pairs.

For good box pairs, we use the fact that the variation of a box pair yields a subinterval of 

[(vX − δX)(vY − δY)vol(B1 × B2), (vX + δx)(vY + δY)vol(B1 × B2)] as an approximation, so the 

width is bounded by 2(vXδY + vYδX)vol(B1 × B2). Let ℬgood be the union of all good box 

pairs. Since the volumes of all good box pairs sum up to at most one, that is, vol(ℬgood) ≤ 1, 

it follows that the width of Jgood is bounded by 2(vXδY + vYδX). By absolute boundedness, 

vX and vY are in O(n), and recall that by definition,

δX =
v3n(2A + B)

2Mℓc
+ v1nW + v2nL = O n A + B

M2 + W + L

based on the fact that ℓ ≥ M. The same bound holds for δY. Hence,

width(Jgood) = O n2 A + B
M2 + W + L .

It remains to show that A + B
M2 + W + L = O(u0.1). Note that M ≥ u

1
5  because the box pair is 

assumed to be good. We will show in the next lemmas that A, B, W, and L are all in O( u), 
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proving that the term is indeed in O(u0.1). This completes the proof of the complexity of the 

algorithm.

Lemma 11. Let (B1, B2) be a good box pair. Let a, a′ be the unit direction vectors of two 
lines that pass through the box pair. Then, ∥ a − a′ ∥ ∞ ≤ 2 u. In particular, A = O( u).

Proof. Since (B1, B2) is a good box pair, the largest value for ‖a − a′‖∞ is achieved when ℓ 
and ℓ′ correspond to the lines passing through the box pair(B1, B2) with minimum and 

maximum slope, respectively. By denoting as c1 = (c1,x, c1,y), c2 = (c2,x, c2,y) the centers of 

B1, B2, we define ℓ to be the line passing through the points c1 + ( − u
2 , u

2 ), c2 + ( u
2 , − u

2 ). 

Similarly, let us call ℓ′ the line passing through the points c1 + ( u
2 , − u

2 ), c2 + ( − u
2 , u

2 ). So, the 

unit direction vector a of ℓ can be expressed as

a =
(c2 + (u

2, − u
2)) − (c1 + (− u

2, u
2))

(c2 + (u
2, − u

2)) − (c1 + (− u
2, u

2)) 2
.

Similarly, the unit direction vector a′ of ℓ′ is described by

a′ =
(c2 + (− u

2, u
2)) − (c1 + (u

2, − u
2))

(c2 + (− u
2, u

2)) − (c1 + (u
2, − u

2)) 2
.

Then, by denoting as (·, ·) the scalar product,

a − a′ ∞
2 ≤ a − a′ 2

2 = a 2
2 + a′ 2

2 − 2 a, a′ = 2(1 − a, a′ )

= 2 1 −
c2 − c1 + (u, − u)
c2 − c1 + (u, − u) 2

,
c2 − c1 + (−u, u)
c2 − c1 + (−u, u) 2

= 2 1 −
c2 − c1 2

2 − 2u2

c2 − c1 + (u, − u) 2 c2 − c1 + (−u, u) 2
.

By an elementary calculation, one can prove that

c2 − c1 + (u, − u) 2 c2 − c1 + (−u, u) 2
= 4u2(u2 + 2(c2, x − c1, x)(c2, y − c1, y)) + c2 − c1 2

4 .

Then,
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a − a′ ∞
2

≤ 2 1 −
c2 − c1 2

2 − 2u2

4u2(u2 + 2(c2, x − c1, x)(c2, y − c1, y)) + c2 − c1 2
4

= 2 1 +
2u2 − c2 − c1 2

2

4u2(u2 + 2(c2, x − c1, x)(c2, y − c1, y)) + c2 − c1 2
4 .

Since (B1, B2) is a good box pair, ∥ c2 − c1 ∥ 2 ≥ u. So,

a − a′ ∞
2 ≤ 2 1 + 2u − 1

4(u2 + 2(c2, x − c1, x)(c2, y − c1, y)) + 1
.

Since 4(u2 + 2(c2, x − c1, x)(c2, y − c1, y)) + 1 ≥ 1, we have that

a − a′ ∞
2 ≤ 2(1 + 2u − 1) = 4u .

Therefore,

a − a′ ∞ ≤ 2 u . □

Lemma 12. Let (B1, B2) be a good box pair. Let ℓ = aλ + b, ℓ′ = a′λ + b′ be two lines that 
pass through the box pair such that a, a′ are unit direction vectors and b, b′ are the 
intersection points with the diagonal of the second and the fourth quadrant. Then 
∥ b − b′ ∥ ∞ ≤ 4 u. In particular, B = O( u).

Proof. Since (B1, B2) is a good box pair, the largest value for ‖b − b′‖∞ is achieved when ℓ 
and ℓ′ correspond to the lines passing through the box pair(B1, B2) with minimum and 

maximum slope, respectively. By denoting the centers of B1 and B2 by c1 and c2, we define ℓ 
to be the line passing through the points c1 + ( − u

2 , u
2 ), c2 + ( u

2 , − u
2 ). Similarly, let us call ℓ′ 

the line passing through the points c1 + ( u
2 , − u

2 ), c2 + ( − u
2 , u

2 ). So, ℓ can be expressed as

(x, y) =
c2 + (u

2, − u
2) − c1 − (− u

2, u
2)

c2 + (u
2, − u

2) − c1 − (− u
2, u

2) 2
t + c1 + (− u

2, u
2),

where t is a parameter running on ℝ. By intersecting ℓ with the line y = −x, we get:
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c2, x + u
2 − c1, x + u

2
c2 + (u

2, − u
2) − c1 − (− u

2, u
2) 2

t + c1, x − u
2

=
−c2, y + u

2 − c1, y + u
2

c2 + (u
2, − u

2) − c1 − (− u
2, u

2) 2
t − c1, y − u

2,

which can be written as

c1, x + c1, y =
c1, x + c1, y − c2, x − c2, y

c2 + (u
2, − u

2) − c1 − (− u
2, u

2) 2
t,

letting us deduce that

t =
(c1, x + c1, y) c2 + (u

2, − u
2) − c1 − (− u

2, u
2) 2

c1, x + c1, y − c2, x − c2, y

So, by replacing t in the equation of ℓ we retrieve b:

b =
c2 + (u

2, − u
2) − c1 − (− u

2, u
2)

c2 + (u
2, − u

2) − c1 − (− u
2, u

2) 2
(c1, x + c1, y) c2 + (u

2, − u
2) − c1 − (− u

2, u
2) 2

c1, x + c1, y − c2, x − c2, y
+ c1 + (− u

2, u
2)

=
(u, − u)(c1, x + c1, y)

c1, x + c1, y − c2, x − c2, y
+

(c2 − c1)(c1, x + c1, y)
c1, x + c1, y − c2, x − c2, y

+ c1 + (− u
2, u

2) .

Similarly,

b′ =
(−u, u)(c1, x + c1, y)

c1, x + c1, y − c2, x − c2, y
+

(c2 − c1)(c1, x + c1, y)
c1, x + c1, y − c2, x − c2, y

+ c1 + (u
2, − u

2) .

So,

b − b′ ∞ = 2
c1, x + c1, y

c1, x + c1, y − c2, x − c2, y
− 1 (u, − u)

∞
=

c1, x + c1, y + c2, x + c2, y
c2, x + c2, y − c1, x − c1, y

u, − u ∞

≤ 4r
|c2, x + c2, y − c1, x − c1, y|u .

Since (B1, B2) is a good box pair,
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c2, x + c2, y − c1, x − c1, y = c2 − c1 1 ≥ c2 − c1 2 ≥ u .

Finally,

b − b′ ∞ ≤ 4
uu = 4 u . □

Lemma 13. Let (B1, B2) be a good box pair. Let ℓ, ℓ be the weights of two lines ℓ and ℓ′ that 

pass through the box pair. Then ∣ ℓ − ℓ′ ∣ ≤ 4 u. In particular, W = O( u).

Proof. If ℓ = a1 and ℓ′ = a1′ , then, by applying Lemma 11,

|ℓ − ℓ′| = |a1 − a1′ | ≤ a − a′ ∞ ≤ 2 u .

On the other hand, if ℓ = a1 and ℓ′ = a2′ , then there exists a line ℓ″ passing through the box 

pair (B1, B2) such that a″ = ( 2
2 , 2

2 ). By applying twice Lemma 11,

|ℓ − ℓ′| = |a1 − a2′ | ≤ |a1 − 2
2 | + | 2

2 − a2′ |
= |a1 − a1″| + |a2″ − a2′ | ≤ a − a″ ∞ + a″ − a′ ∞
≤ 4 u .

The cases ℓ = a2, ℓ′ = a2′  and ℓ = a2, ℓ′ = a1′  can be treated analogously to the previous ones. 

□

Lemma 14. Let (p, q), (p′, q′) be two points in a good box pair (B1, B2) and let ℓ, ℓ′ be the 
lines passing through p, q and p′, q′, respectively. In accordance with the usual 
parametrization, we have that ∣ λp − λp′ ∣ ≤ 2u + 4 u and ∣ λq − λq′ ∣ ≤ 2u + 4 u. As a 

consequence, L = O( u).

Proof. Thanks to the definition of λp, the triangular inequality and Lemma 12, we have that:

λp = p − b 2 ≤ p − p′ 2 + p′ − b′ 2 + b′ − b 2
≤ 2u + λp′ + 4 u .

So, we have that λp − λp′ ≤ 2u + 4 u, and, similarly, λp′ − λp ≤ 2u + 4 u. Then,

|λp − λp′| ≤ 2u + 4 u .

Analogously, it can be proven that

|λq − λq′| ≤ 2u + 4 u . □
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Figure 1. 
The three black points mark the three critical points of some simplex σ in X. The shaded 

area denotes the positions at which σ is present in the bi-filtration. Along the given slice (red 

line), the dashed lines denote the first position where the corresponding critical point 

“affects” the slice. This position is either the upper-vertical, or right-horizontal projection of 

the critical point onto the slice, depending on whether the critical point is below or above the 

line. For σ, we see that it enters the slice at the position marked by the blue point.
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Figure 2. 

Computing persistent homology of a point cloud in ℝ2. (a) A nested sequence of topological 

spaces formed by unions of balls at increasing parameter values. (b) A mono-filtration of 

simplicial complexes that captures the same topological information as in (a). (c) 0-

dimensional and 1-dimensional persistence diagrams combined.
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Figure 3. 
The persistence diagrams of 2D shape objects. Black and red points are 0-dimensional and 

1-dimensional features respectively (ignoring points with ∞ persistence).
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Figure 4. 
An illustration of the construction of a feature map for multi-parameter persistent homology. 

(a) Given a bi-filtration X and a point (p, q) ∈ Δ(2), the line ℓ passing through them is 

depicted and the parameter λp and λq computed. (b) The point (λp,λq) is embedded in the 

persistence diagram of the mono-filtration Xℓ obtained as the slice of X along ℓ. (c) The 

point (λp, λq) is assigned the value ϕXℓ(λp, λq) via the feature map ϕ.
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Figure 5. 
(a) The two given slices realize the largest and smallest possible slope among all slices 

traversing the pink box pair. It can be easily seen that the difference of the unit vector of the 

center line to one of the unit vectors of these two lines realizes A for the given box pair. (b) 

Computing variations for the center slice and a traversing slice of a box pair.

Corbet et al. Page 31

Comput Graph X. Author manuscript; available in PMC 2020 December 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Our contribution.
	Related work.

	Preliminaries
	Mono-filtrations.
	Bi-filtrations.
	Slices of a bi-filtration.
	Persistent homology.
	Stability of persistent homology.
	Feature maps for mono-filtrations.

	A feature map for multi-parameter persistent homology
	Stability
	Approximability
	Variations.
	Analysis.

	Conclusions and future developments
	Details on the Proof of Theorem 5
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.

