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Abstract

Motivation: Chromosomal patterning of gene expression in cancer can arise from aneuploidy, genome disorganiza-
tion or abnormal DNA methylation. To map such patterns, we introduce a weighted univariate clustering algorithm
to guarantee linear runtime, optimality and reproducibility.

Results: We present the chromosome clustering method, establish its optimality and runtime and evaluate its per-
formance. It uses dynamic programming enhanced with an algorithm to reduce search-space in-place to decrease
runtime overhead. Using the method, we delineated outstanding genomic zones in 17 human cancer types. We iden-
tified strong continuity in dysregulation polarity—dominance by either up- or downregulated genes in a zone—along
chromosomes in all cancer types. Significantly polarized dysregulation zones specific to cancer types are found,
offering potential diagnostic biomarkers. Unreported previously, a total of 109 loci with conserved dysregulation po-
larity across cancer types give insights into pan-cancer mechanisms. Efficient chromosomal clustering opens a win-
dow to characterize molecular patterns in cancer genome and beyond.

Availability and implementation: Weighted univariate clustering algorithms are implemented within the R package
‘Ckmeans.1d.dp’ (4.0.0 or above), freely available at https://cran.r-project.org/package¼Ckmeans.1d.dp.

Contact: joemsong@cs.nmsu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Cancer has been characterized by abnormal gene activity, such as
loss of function of tumor-suppressor genes (Liotta et al., 1991; Woo
et al., 2017). However, single-gene characterization does not convey
cancer transcriptome patterns associated with genomic regions, pos-
sibly resulting from aneuploidy (Turkheimer et al., 2006), DNA
methylation heterogeneity (Wang et al., 2015b) or genome disorgan-
ization (Achinger-Kawecka and Clark, 2017; Kaiser and Semple,
2017; Taberlay et al., 2016). Driven by allelic imbalance, entire
chromosomal arms of 3p (-) and 22q (þ) are differentially expressed
in head and neck squamous cell carcinoma (Masayesva et al., 2004).
Levesque and Raj (2013) observed that a set of genes on a translo-
cated chromosome 19 is transcribed much more than the same set of
genes on the intact copy of the chromosome in human cervical can-
cer cells. Schwarzer et al. (2017) found that megabase-sized active/
inactive compartments and submegabase topologically associating
domains (TADs) spatially insulate gene expression into zones along
chromosomes. Boundaries of TAD can be disrupted in tumor cells

(Flavahan et al., 2016). Such chromosomal expression patterning
motivated us to characterize cancer transcriptome by examining
gene dysregulation in genomic zones along chromosomes.

Early approaches to finding chromosomal expression patterns
operate locally without global optimality. Vogel et al. (2005) clus-
tered genes in heart tissues along chromosomes such that all genes in
a genomic interval must be differentially expressed, stressing local
over global expression patterns. MACAT (Toedling et al., 2005),
LAP (Callegaro et al., 2006) and SODEGIR (Bicciato et al., 2009)
smooth gene expression along chromosomes using kernels, incom-
patible with sharp chromatin boundaries due to compartmentaliza-
tion or TAD insulation. Chromosomal expression was studied using
cytogenetic bands (Wang et al., 2015a), which are predefined thus
not adaptive to data. ClusterScan requires user-specified parameters,
a maximum feature distance or a window size, inflexible to varying
resolutions of chromosomal events (Volpe et al., 2018). More re-
cently, chromosomal segmentation has been applied to find
expression-driven genomic zones. Optimizing the constancy of gene
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activity, segmentation is less sensitive to gene proximity than cluster-
ing. Chromosomal transcription patterns in Drosophila (Rubin and
Green, 2013) were studied by fitting a Gaussian mixture model to
capture segmental gene expression. Later chromosomal segmenta-
tion approaches used dynamic programming to achieve global opti-
mality. SegCorr (Delatola et al., 2017) uses dynamic programming
of runtime Oðkn2Þ, where k is the number of segments and n is the
number of genes. Rendersome (Nilsson et al., 2008) minimized total
variation within segments using dynamic programming also at a
quadratic runtime. The runtime of segmentation is a roadblock to
analyzing a large number of genomic elements, such as transcription
start sites when both coding and noncoding genes are considered.

To overcome such issues, we present a chromosomal clustering
method using a fast, optimal and reproducible weighted univariate
clustering (WUC) algorithm. Based on the linear-time SMAWK al-
gorithm for dynamic programming speedup (Aggarwal et al., 1987),
WUC innovates with an in-place procedure to substantially reduce
the runtime overhead, becoming practical on large sample sizes. We
also describe a statistical routine to estimate the number of clusters
using the Gaussian mixture model. We illustrate the improved em-
pirical runtime, guaranteed optimality and reproducibility of WUC
in comparison with other clustering methods.

By chromosomal clustering, we mapped polarized genomic zones
on transcriptomes of matched tumor-normal pairs from 17 human can-
cer types. A zone is polarized in regulation if either up- or downregu-
lated genes within the zone dominate in proportion. In parallel, on
somatic copy number data with both tumor and matched normal sam-
ple pairs from the same 17 cancer types, we found that zone polariza-
tion in somatic copy number alteration (SCNA) agrees well with
known cancer genome instability. We observed a weak positive correl-
ation in zone polarization between regulation and SCNA: zone polarity
in SCNA is often not transcribed to zone polarity in regulation in
tumors versus matched normal. Top polarized dysregulation zones are
highly specific to cancer types. The polarized zones are enriched for
known genetic and epigenetic events associated with cancer. Most im-
portantly, a total of 109 loci distributed on 21 chromosomes are found
to be conserved in dysregulation polarity across 14 (>80%) or more
cancer types. These conserved loci are largely independent of SCNA,
constituting a unique pan-cancer transcriptomic characteristic.

Applicable to genomic features of any organism with genome se-
quence scaffolds, the chromosome clustering method now can solve
problems of large sample sizes on long chromosomes. It can be used
in studying spatial properties of genome, transcriptome and epige-
nome, opening a window to characterize patterns of molecular ac-
tivity along chromosomes in genomes.

2 Materials and methods

2.1 Optimal, fast and reproducible solution to weighted

univariate clustering
We state the WUC problem and give its dynamic programming solu-
tions. Given an array of n sorted numbers x0 � x1 � � � � � xn�1

with non-negative weights y0, y1, . . . ; yn�1, we define a k-clustering
C(k, n) as k non-overlapping intervals to cover 0; . . . ; n� 1:

Cðk;nÞ ¼
(
½j0 þ 1; j1�|fflfflfflfflfflffl{zfflfflfflfflfflffl}

cluster 0

; ½j1 þ 1; j2�|fflfflfflfflfflffl{zfflfflfflfflfflffl}
cluster 1

; � � � ; ½jk�1 þ 1; jk�|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
cluster k�1

)
(1)

where j0 ¼ �1 < j1 < � � � < jk ¼ n� 1. jk�1 þ 1 and jk are the
lower and upper decision boundaries of cluster k – 1. Let lðj; iÞ be
the weighted mean function defined from xj to xi:

lðj; iÞ ¼ 1

Yi � Yj�1

Xi

l¼j

xlyl ðj � iÞ (2)

where Yi ¼
Pi
l¼0

yl for i � 0 and Y�1 ¼ 0. We define the sum of

squared distances function s(j, i) from each point in ½xj; xi� to the

mean lðj; iÞ as

sðj; iÞ ¼
(Xi

l¼j

yl½xl � lðj; iÞ�2 j � i

1 j > i

(3)

For a clustering C(k, n), the total sum of squared distances is

SSQðCðk; nÞÞ ¼
Xk�1

q¼0

sðjq þ 1; jqþ1Þ

¼
Xn�1

i¼0

yix
2
i �

Xk�1

q¼0

ðYjqþ1
� Yjq Þl2ðjq þ 1; jqþ1Þ (4)

The WUC problem is to find a clustering C�ðk;nÞ to minimize
SSQðCðk; nÞÞ.

Bellman (1973) gave the first dynamic programming solution.
Let S be a k�n matrix:

S½q; i� ¼ min
C
fSSQðCðqþ 1; iþ 1ÞÞg

q ¼ 0; . . . ;k� 1; i ¼ 0; . . . ; n� 1
(5)

which is the minimum SSQ when x0 to xi are grouped by an optimal
clustering C�ðqþ 1; iþ 1Þ. Let J½q; i� in another k�n matrix J be the
smallest index to the points in cluster q of C�ðqþ 1; iþ 1Þ. The fol-
lowing defines recurrence equations for dynamic programming:

S½q; i� ¼ min
q� j� i

S½q� 1; j� 1� þ sðj; iÞ 0 < q � i (6)

J½q; i� ¼ maxfj j argmin
q� j� i

S½q� 1; j� 1� þ sðj; iÞg 0 < q � i (7)

For multiple optimal solutions, we assign the maximum of
all optimal indices to J½q; i�. Matrices S and J are initialized by
S½0; i� ¼ sð0; iÞ; J½0; i� ¼ 0 ð0 � i � n� 1Þ. To prevent empty
clusters, we set S½q; i� ¼ 1 and J½q; i� undefined when i<q. As
solving Eqs. (6) and (7) directly leads to cubic Oðkn3Þ runtime,
previous work sped up the dynamic programming to quadratic
Oðkn2Þ and log-linear O(k n lg n) time, as reviewed in
Supplementary Note N5.

We present a linear O(kn) solution to WUC based on a total
monotone property—even if we constrain the cluster boundaries to
fall on a subset of the data points, the constrained optimal bounda-
ries will not decrease if additional points greater than the current
points in the subproblem are inserted. This property enables one to
fill out each row of the dynamic programming matrix S in linear
time by calling the SMAWK algorithm.

We first show WUC satisfies a concave quadrangle inequality
(Theorem 1). Then we formulate subproblems of WUC as row-
minima search in totally monotonic matrices (Lemma 2, Theorem
3). We further improve SMAWK by an in-place algorithm to per-
form search-space reduction in an array, instead of deleting matrix
columns. We prove the algorithm always terminates (Theorem 4), is
correct (Theorem 5), and runs in linear time to n.

Theorem 1 For any four increasing indices 0 � i1 � i2 � i3 � i4 �
n� 1 to sequence x0; . . . ; xn�1 already sorted in ascending order, s(j, i)

satisfies the concave quadrangle inequality sði2; i3Þ þ sði1; i4Þ
� sði2; i4Þ þ sði1; i3Þ. (Proof given in Supplementary Note N5)

Transforming the WUC problem to k – 1 subproblems of matrix search,

we define an n� n clustering matrix A(q) ðq ¼ 1; . . . ; k� 1Þ via its elem-

ent at row i and column j:

AðqÞi;j ¼ f
S½q� 1; j� 1� þ sðj; iÞ 1 � q � j � i < n
þ1 0 � j < q or i < j < n

(8)

Definition 1 The optimal index function jqðiÞ maps i in given clus-

ter q to the largest index that achieves the minimum S½q; i� by

jqðiÞ ¼ J½q; i�.
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As our derivation next is for a fixed q, we thus drop q to simplify A(q) to

A and jqðiÞ to j(i)—the largest index to the minimum element in row i of

A.

Definition 2 Matrix A is monotonic if and only if jði1Þ � jði2Þ is true for

any i1 < i2.

Definition 3 Matrix A is totally monotonic if and only if every submatrix

of A is monotonic.

Lemma 2 (2 3 2 matrix monotonicity). Let A0 be a 2� 2 submatrix of A

defined by

A0 ¼
�

Ai1 ;j1 Ai1 ;j2

Ai2 ;j1 Ai2 ;j2

�
(9)

where i1 < i2 and j1 < j2. Let j0ði0Þ 2 ½0; 1� be the largest column index

of the minimum element in row i0 2 ½0;1� in A0. Then we have

j0ð0Þ � j0ð1Þ. (Proof given in Supplementary Note N5)

Theorem 3 Clustering matrix A is totally monotonic. (Proof given in

Supplementary Note N5)

The linear-time solution to a totally monotonic matrix search subpro-

blem relies on the search-space reduction algorithm Reduce(A)

(Aggarwal et al., 1987). For a totally monotonic N�M matrix A

(Theorem 3), it trims down columns in A to no more than N in linear

time OðN þMÞ, while still preserving the optimal solutions. If M � N,

no column reduction is performed. We adapt the original Reduce algo-

rithm to Reduce-Min with three changes. Reduce-Min preserves row

minima instead of maxima; all indices are 0-based instead of 1-based;

and multiple optimal solutions are broken by taking the larger column

index, to be consistent with previous versions of the ‘Ckmeans.1d.dp’

package.

Definition 4 An entry Ai;j0 is infeasible if j0 6¼ jðiÞ. Column j0 of A is in-

feasible if Ai;j0 is infeasible for every i. Among multiple optimal solu-

tions, the one with the largest index is feasible and the others infeasible.

As maintaining a copy of matrix A would require at least XðNMÞ
time, the algorithm must compute only needed entries in A in con-
stant time without storing the entire matrix A. For WUC, this is pos-
sible by maintaining only indices of feasible columns in A using a
stack (http://www.ics.uci.edu/~eppstein/PADS/SMAWK.py) or a
preallocated linked list of input size (Luessi et al., 2009). Still, these
implementations require either dynamic memory allocation or
pointer maintenance within the while-loop, thus carrying consider-
able runtime overhead. To reduce this overhead, we accomplish col-
umn reduction in an array of length M in place as given in the
Reduce-Min-In-Place algorithm.

The algorithm moves feasible column indices toward the begin-
ning of the column index array. Inside the while-loop, the column
index array is used in place without dynamic memory deallocation
of infeasible column indices. It realizes the original Reduce algo-
rithm using the simplest data structure with minimal runtime and
memory overhead as compared to previous solutions.

Theorem 4 Reduce-Min-In-Place always terminates. (Proof given in

Supplementary Note N5)

Theorem 5 Reduce-Min-In-Place correctly removes only infeasible can-

didate columns from the input matrix. The output matrix has no more

columns than rows. Additionally, the output matrix is still totally mono-

tonic. (Proof given in Supplementary Note N5)

The SMAWK algorithm reduces columns from A first, recursive-
ly solves a submatrix containing the odd rows, and then calculates
solutions to the even rows. We present the Fill-Row-SMAWK algo-
rithm following the same strategy without explicitly maintaining
matrix A, to calculate an entire row in matrix S. Fill-Row-SMAWK
is called by Algorithm Weighted-Univariate-Clustering-(WUC)-
Linear to compute the entire dynamic programming matrix
(Supplementary Note N5).

Reduce-Min-In-Place runs in OðN þMÞ, the same with the
Reduce algorithm, as manipulating the array adds only a constant
factor. Thus, the runtime of Fill-Row-SMAWK on input matrix of
size N �M is TðN;MÞ ¼ TðN=2;N=2Þ þOðN þMÞ ¼ OðN þMÞ.
As N � n and M � n, the runtime for the entire row of n elements
in S is TðnÞ ¼ OðnÞ. Therefore, the total runtime of WUC on n input
points is O(kn) as x is sorted. Although additional space in O(n) is
needed to store running sums and candidate indices during the re-
cursion, the space complexity remains O(kn) when backtrack must
be conducted.

Reduce-Min(A: N �M total monotonic matrix)

1. p ¼ 0

2. while A has more than N columns

3. if Ap;p < Ap;pþ1 and p < N � 1

4. p ¼ pþ 1

5. elseif Ap;p < Ap;pþ1 and p 	 N � 1

6. delete column N of A

7. elseif Ap;p � Ap;pþ1

8. delete column p of A

9. if p > 0

10. p ¼ p� 1

11. return A

Reduce-Min-In-Place(cols, N, A)

1. M ¼ length(cols)

2. if M � N return cols

3. l ¼ �1 // cols½0::l�: l þ 1 column indices examined and

feasible so far

4. r ¼ 0 // cols½r::M� 1�: M� r column indices to be

examined

5. while ðl þ 1Þ þ ðM� rÞ > N

6. p ¼ l þ 1

7. j ¼ cols½r�
8. jþ ¼ cols½rþ 1�
9. if Ap;j < Ap;jþ and p < N � 1

// Ap;j 	 Aðp; jÞ; Ap;jþ 	 Aðp; jþÞ
10. l ¼ l þ 1

11. cols½l� ¼ j

12. r ¼ rþ 1

13. elseif Ap;j < Ap;jþ and p 	 N � 1

// Column jþ of A is infeasible

14. cols½rþ 1� ¼ j

15. r ¼ rþ 1

16. elseif Ap;j � Ap;jþ // Column j of A is infeasible

17. if p > 0

18. cols½r� ¼ cols½l�
19. l ¼ l � 1

20. else

21. r ¼ rþ 1

22. cols½l þ 1::N � 1� ¼ cols½r::M� 1�
23. return cols½0::N � 1�
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When the number of clusters is given by a range ½kmin;kmax�, the
runtime of each algorithm replaces k by kmax, as solving for kmax

would automatically generate results for smaller k values. To choose
an optimal number of clusters from the range for k, we use the
Bayesian information criterion that promotes likelihood based on a
Gaussian mixture model and penalizes the number of components in
the model. This is an important option for chromosomal clustering
where the number of clusters is typically unknown. We describe a
self-contained theoretical framework with full details of all relevant
algorithms in Supplementary Note N5.

2.2 Mapping genomic zones and their polarity in

human cancers
2.2.1 Human cancer transcriptome profiles

We selected 17 cancer types from National Cancer Institute (NCI)
Genomic Data Common (GDC) (Grossman et al., 2016), requiring
each cancer type having at least eight pairs of tumor and matched
normal RNA-seq samples. We downloaded the HTSeq count files
via the R package ‘TCGAbiolinks’ 2.10.2 (Colaprico et al., 2016).
The counts are the total number of raw reads sequenced from full
mRNA transcripts and aligned to each gene. One library of a colon
adenocarcinoma (COAD) patient was removed as an outlier, due to
its much lower sequencing depth (fewer than 8 million read counts)
than other COAD patients. We used 707 tumor and 683 matched
normal tissue transcriptomes from these 17 cancer types; other
tumor transcriptomic data without matched normal tissues were not
included in our study. Human reference genome GRCh38.p12 and
GENCODE human genome annotation v29 were used in our
analysis.

Raw read counts mapped to each gene were normalized within
and across samples to reduce sequencing biases, using the upper
quantile methods for within-lane and also between-lane correction,
global-scaling and full-quantile normalization from the R package
‘EDASeq’ (Risso et al., 2011) as integrated into the
TCGAanalyze_Normalization function in the ‘TCGAbiolinks’ pack-
age. The GC content of a gene was calculated as the percentage of
GC on all exons of the gene; biases due to GC content were removed
by normalization. Normalized numbers of reads per gene were fur-
ther linearly scaled by the total number of reads in each sample to
counts per million (CPM).

Read counts not normalized by gene size reflect transcription
density in a genomic neighborhood. This will ensure that gene clus-
ters along a chromosome to be equally spread when the same num-
ber of transcripts is expressed by genes of different lengths;
otherwise, shorter genes will be in compact clusters inconsistent
with the biology that all genes are expressed at the same abundance.
In zone polarity calling, the ratio of a gene in cancer versus in nor-
mal is used which is insensitive to gene size.

Occasionally, a patient can have more than one tumor and one
normal profiles. In genomic zone mapping, all profiles for a patient
were used to delineate cluster boundaries weighed by ensemble ex-
pression levels of genes. In zone polarity determination, however,
only one matched pair for each unique patient was used for statistic-
al testing.

2.2.2 Mapping cancer genomic zones by chromosomal clustering

For each cancer type, we pooled its tumor and matched normal tran-
scriptomes to compute genomic zones using WUC. Pooling makes
zone mapping sensitive to transcription activities in both tumors and
normal tissues. We clustered transcription start sites as the position
of each gene weighed by its expression level for each of chromo-
somes 1–22, X and Y. Specifically, the position of a gene on the for-
ward strand of human reference genome is its start coordinate;
otherwise, the position is the end coordinate for a gene on the re-
verse strand. For each chromosome, the resolution r of genomic
zone was set to 1 Mb to match the typical size of a TAD. This effect
of resolution r is to impose an upper limit on the total number of
clusters; the actual width of a cluster is automatically determined
which can be either less than or greater than the resolution. Let L be
the length in base pair of a chromosome. Let G be the number of

annotated genes to be clustered on that chromosome. The maximum
number of clusters along a chromosome was set to
kmax ¼ maxf20;minfG=5; dL=regg, where kmax is at least 20, the

average number of genes in each cluster is at least 5, and the min-
imum average cluster width is r. As long as kmax is large enough, the

clustering result will be insensitive to the actual value of kmax, be-
cause an optimal number of clusters is automatically chosen be-
tween two and kmax using BIC during clustering. Clustering in a

genomic neighborhood is fine-grained where either cancer or normal
tissue shows high transcription activity; otherwise, clustering is

coarse-grained such as around the centromere of each chromosome.
The WUC algorithms are implemented in the ‘Ckmeans.1d.dp’

package version � 4.0.0. The input includes starting genomic coor-
dinates of genes, expression levels as weights and the range of k as
defined above. The output is an optimal clustering. Genomic zones

are further declared by the adaptive histogram R function ahist()
also available in the same package. Instead of always setting zone
boundaries at midpoints between two consecutive clusters, ahist()

puts boundaries between clusters such that a long stretch of chromo-
somal region without any gene such as centromere has its own

empty zone. Specifically, the upper and lower zone boundaries of a
cluster can only extend from its left- and right-most locations by an
amount up to the maximum distance between a pair of consecutive

points within the cluster. If the midpoint with the left neighboring
cluster is between the lower and upper zone boundaries, the lower

zone boundary will shrink to the midpoint; the upper zone boundary
is similarly adjusted. Therefore, the number of zones may be greater
than the number of clusters, as new empty zones may have been cre-

ated. The specifics of determining zone boundaries have no impact
on the determination of zone polarity to be described next. Its main

utility is to provide a more accurate visualization of those genomic
regions with no detectable activities along chromosomes.

2.2.3 Calculating the polarity of a genomic zone

We determine the polarity of a zone by the disproportion between

positive and negative activity of genes within the zone. For tran-
scriptome data, gene activity is measured by expression level; for

SCNA data, gene activity is measured by copy number. We define a
gene to be positive/negative in a matched tumor-normal pair by
requiring a minimum of 5% increase/decrease in activity level:

Gene polarity ¼
þ; log

cancerþ 1

normalþ 1
> log 1:05

�; log
cancerþ 1

normalþ 1
< �log 1:05

none; otherwise

8>>><
>>>: (10)

This criterion is a condition on effect size. The statistical signifi-

cance of a zone will be determined by the collective behavior of
genes within the zone. The polarity of a zone is positive/negative if
there are more genes with positive/negative matched pairs; other-

wise, the zone has no polarity:

Zone polarity ¼
þ; positivegenes > negativegenes
�; positivegenes < negativegenes
none; otherwise

8<
: (11)

We determine the statistical significance of a zone by Pearson’s
chi-squared test on the contingency table:

Resulting P-values of the test on all zones of a given cancer type
were corrected by Benjamini–Hochberg adjustment. If the adjusted

P-value of a zone is no more than 0.05, we call the zone
outstanding.

# positive pairs in zone # positive pairs outside zone

# negative pairs in zone # negative pairs outside zone
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2.2.4 Human cancer somatic copy number alternation profiles

and SCNA polarization maps

Somatic copy number variation data of patients for the same 17 can-
cer types were downloaded from NCI GDC via ‘TCGAbiolinks’
2.10.2. The data include 633 tumor and 633 matched normal copy
number variation profiles in the format of copy number segments.
Each unique patient has one copy number profile from cancer and
one form matched normal tissue. We mapped SCNA data to the
same zones in the genomic zone maps obtained from the transcrip-
tome data. Specifically, within each genomic zone, we obtain its
copy number defined by the average copy number weighted by seg-
ment length in a sample. The polarity of a zone is further determined
using the same method in Eq. (11) but applied on the zone copy
number profiles.

3 Results

3.1 Fast, optimal and reproducible weighted univariate

clustering
3.1.1 Overview of the weighted univariate clustering algorithm

We present the WUC algorithm at the core of the chromosomal clus-
tering method. The input to WUC includes a sorted array of n real
numbers, n non-negative weights and a range of integers up to k to
select an optimal number of clusters. WUC transforms the clustering
problem to k matrix search subproblems solvable by the SMAWK
algorithm (Aggarwal et al., 1987). We improve the SMAWK algo-
rithm by an in-place procedure for search space reduction using an
array, instead of a matrix or a linked list (Hershberger and Suri,
1997). We prove that WUC is correct and always terminates in
O(kn) time. WUC not only achieves theoretical optimality on the
weighted within-cluster sum of squared distances, but also greatly
outperforms mainstream heuristic clustering methods on both in-
ternal and external cluster quality measures.

3.1.2 Optimal weighted univariate clustering produces best

quality clusters

The WUC algorithm provably minimizes the weighted within-
cluster sum of squared distances (SSQ), a widely used objective func-
tion for cluster analysis (see Section 2). Now, we empirically evalu-
ate its performance using two established cluster quality measures:
the average silhouette width (ASW) (Rousseeuw, 1987) and adjusted
Rand index (ARI) (Hubert and Arabie, 1985), neither equivalent to
SSQ nor biased over the number of clusters k. For both measures, a
higher value indicates a better cluster quality. ASW, an internal
measure for cluster validation, evaluates the relative distance be-
tween a point and other points within the same cluster against those
in the nearest cluster. Sharply different from silhouette, ARI is an ex-
ternal measure not based on distance. Instead, it compares a cluster-
ing against the ground-truth clustering by their agreement in
contrast to chance. We compare both measures on our clustering
results with mainstream heuristic methods, including model-based
clustering, heuristic k-means and hierarchical clustering.
Specifically, we used R package ‘mclust’ (Scrucca et al., 2016) for fi-
nite Gaussian mixture model (GMM)-based clustering, four heuris-
tic k-means options—‘Hartigan-Wong’ (Hartigan and Wong,
1979), ‘Lloyd’ (Lloyd, 1982), ‘Forgy’ (Forgy, 1965) and
‘MacQueen’ (MacQueen, 1967)—by R function kmeans
(nstart¼1), and three hierarchical clustering linkage
options—single, average-UPGMA and complete—by R function
hclust in package ‘stats’ (R Core Team, 2016). To make our per-
formance evaluation general, we used three datasets from diverse
domains: the optical density of protein DNase from R package
‘datasets’ (n¼176), a simulated GMM of five components
(n¼251) and locations of dinucleotide CC on the plus strand of the
16 569 bp human mitochondrial (MT) genome (n¼1771). The
datasets are unweighted, as only WUC supports unequal weights.
The ARI is evaluated only on GMM data with fixed k¼5 in three
sample sizes, as the other two datasets do not have ground-truth
clusterings.

WUC leads in both ASW and ARI among all methods (Fig. 1). In
all datasets, WUC achieved the second highest, highest and highest
ASW values on each dataset; the advantage becomes evident when
either the sample size or the number of clusters is large. On the
GMM data of three sample sizes, WUC attained the highest median
ARI values in all cases. The empirical evidence here from diverse
data and important cluster quality measures suggests that the WUC
algorithm has the potential to replace mainstream heuristic cluster-
ing methods in the univariate case.

3.1.3 Reproducibility, runtime and scalability

The reproducibility of WUC and heuristic k-means is compared on
clustering CpG sites for the MT genome in Supplementary Note N1.
WUC returned identical results in all four runs, while heuristic k-
means clusters visibly deviated from the optimal solution in different
ways. Despite the MT genome containing only 435 CpG sites—a
small dataset, differences among the four heuristic runs are evident.
Randomization in heuristic clustering to improve global optimality
sacrificed reproducibility, while the deterministic WUC algorithm
guarantees to reproduce.

On real datasets, WUC is scalable to solve large problems. We
compare WUC with the Hartigan–Wong algorithm, the default op-
tion of kmeans(). It uses a greedy strategy to repeatedly update the
cluster assignment of each point. The large dataset used is CpG sites
along 25 human chromosomes (1–22, X, Y and MT). A CpG site is
a genomic coordinate on a chromosome where a cytosine (C) is fol-
lowed immediately by a phosphate (p) and a guanine (G). Their clus-
ters are called CpG islands. On human reference genome version
GRCh38, we performed four runs on each chromosome at k¼20:
two runs with one restart and two runs with 20 restarts for heuristic
k-means. From results in Supplementary Note N1, heuristic k-means
can finish faster than WUC but with high relative errors greater than
100%; when nstart was set to 20, relative errors were greatly
reduced but it is ten times slower than WUC on an input of
2 500 000 points.

Next, we compare the runtime of the methods as functions of
sample size n and number of clusters k. We include the quadratic
(Wang and Song, 2011), log-linear and linear time solutions for
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Fig. 1. Optimal univariate clustering leads in silhouette cluster quality over heuristic

clustering. Heuristic methods include model-based, heuristic k-means and hierarch-

ical clustering in eight configurations. Cluster quality is measured by average silhou-

ette width (ASW) and adjusted Rand index (ARI)—both the higher the better, as a

function of number of clusters k. (a) Optical density of protein DNase (n¼176). (b)

Simulated data (n¼251) from a five-component Gaussian mixture model. (c)

Locations (n¼ 1771) of CC dinucleotide on the human mitochondrial genome. The

blue vertical lines in (a–c) mark the maximum ASW in each plot. (d–f) ranked ARI

of each method from the same Gaussian mixture model with (b), in different sample

sizes of (d) 25, (e) 100 and (f) 500, each replicated 51 times to produce the box plots
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WUC, all implemented in package ‘Ckmeans.1d.dp’ and the
Hartigan–Wong’s k-means algorithm. Supplementary Figure N1.7
in Supplementary Note N1 compares the runtime of the methods as
a function of n averaged over multiple runs at fixed k¼5. At
n <300, the log-linear solution is fastest due to its low overhead. At
500< n <3000, all three methods used comparable time. As n
increases beyond 5000, the linear solution ran stably faster than log-
linear or heuristic solutions.

3.2 Dysregulated genomic zones in human cancers
To study how cancer may have reshaped gene expression landscapes
along chromosomes, we mapped genomic zones by clustering genes
weighed by expression levels for 17 major human cancer types. The
input data include 1390 RNA-seq transcriptome profiles on
matched tumor-normal pairs for 17 cancer types downloaded from
National Cancer Institute (NCI) Genomic Data Common (GDC)
(Grossman et al., 2016). Table 1 lists the 17 cancer types, their
abbreviations, numbers of zones and numbers of statistically signifi-
cantly polarized zones for each cancer type. We call a zone positive-
ly/negatively polarized if the number of upregulated genes is greater/
fewer than the number of downregulated genes inside the zone;
otherwise, the zone has no regulation polarity. Among the 3615–
3984 zones for each cancer type, the number of significantly posi-
tively polarized zones ranges from 206 (5%) to 1126 (31%) and the
number of significantly negatively polarized zones varies from 237
(6%) to 1218 (34%). The statistical significance of disproportion is
determined by Pearson’s chi-squared test. The total numbers of out-
standing genomic zones in every cancer type are higher than those
expected by chance by permutation tests (Supplementary Note
N2.1). Genomic zones and associated statistics for all 17 cancer
types are given in Supplementary Table S1. We examined the robust-
ness of zone boundaries along chromosome 12, of an average
chromosomal length, on BRCA, COAD and ESCA of maximum,
median and minimum sample sizes, respectively. By bootstrapping,
numbers of zones varied only slightly by one to four and zone boun-
daries are about 88, 87 and 70% identical to those estimated using
original samples (Supplementary Note N2.2). This suggests that
zone boundaries are robust to the sample sizes used in this study.

Of the same 17 cancer types, 1266 copy number alteration pro-
files of matched tumor-normal samples were also used to map polar-
ization in SCNA over zone boundaries derived above for each
cancer type. Positive and negative polarities in SCNA within a zone
are defined by dominance in the proportion of amplified/deleted
copies of a genomic zone.

Zone boundaries are obtained by univariate clustering weighted
by pooled tumor and normal samples to capture gene neighbor-
hoods in both cancer and normal tissues. Zone polarity calling used
numbers of differentially expressed genes, not sums of gene expres-
sion, in a zone. It contrasts proportions of up- and downregulated
genes within versus outside a zone, robust to outliers of highly dif-
ferentially expressed genes in the zone. Significantly polarized zones
represent outstanding dysregulation or SCNA patterns not expected
by chance. Human cancer genome polarization maps of both dysre-
gulation and SCNA are shown by chromosome (Supplementary Fig.
S1) and by cancer type (Supplementary Fig. S2).

By comparing outstanding genomic zones of each human cancer
type and known regulatory signals in public repositories including
ENCODE, we find that cancer-related genetic and epigenetic events
are enriched in the outstanding zones (Supplementary Note N2.3).
For example, Pol2 binding sites of breast cancer cell line MCF-7 are
enriched in positively polarized zones of BRCA. The H3K4me3 epi-
genetic modification is enriched in outstanding genomic zones of all
cancer types. Such evidence provides support to the biological rele-
vance of the outstanding zones.

3.2.1 Conserved dysregulation loci across cancer types

The human cancer dysregulation maps suggest that regulation polar-
ity is highly conserved at many genomic loci across cancer types.
Figure 2 and Supplementary Figure S1 show polarization maps of
the 17 cancer types by chromosome. Curated cancer genes and loci
from COSMIC Cancer Gene Census (CGC) v87 (Futreal et al.,
2004) are marked along chromosomes. As zone boundaries vary by
cancer type, we define loci as zone intersections across cancer types.
Some loci maintain a conserved polarity across cancer types, pre-
senting visible vertical patterning (Fig. 2a and Supplementary Figs
S1.1a–S1.24a). Strong conservation of dysregulation polarity across
cancer types is found at 109 loci over all chromosomes except 21,
22 and Y, as summarized in Supplementary Table S2. A locus is
declared conserved if it shares the same regulation polarity across 14
or more (>80%) cancer types. Via a permutation test, the P-value of
having more than the observed conserved loci is no more than 0.001
(Supplementary Note N2.4), suggesting these loci are statistically
significant.

A total of 59 out of the 109 loci are downregulated among
>80% cancer types. In Figure 2a, b, the chr17:68.87–70.47 Mb
locus is negatively (-) polarized in regulation in 15 cancer types
excluding ESCA or THCA, despite genomic amplification (þ) at this
locus in 13 cancer types (Fig. 2c and d). The locus at chr17:10.12–

Table 1. Statistics of regulation zones and their polarization in 17 human cancer types

Cancer study (project ID) Sample size #Zones Outstanding Positiveþ Negative-

Bladder Urothelial Carcinoma (BLCA) 19�2 3752 1229 544 685

Breast Invasive Carcinoma (BRCA) 112�2 3615 2344 1126 1218

Cholangiocarcinoma (CHOL) 9�2 3984 1203 600 603

Colon Adenocarcinoma (COAD) 40�2 3733 1929 968 961

Esophageal Carcinoma (ESCA) 8�2 3708 443 206 237

Head and Neck Squamous Cell Carcinoma (HNSC) 43�2 3618 1666 852 814

Kidney Chromophobe (KICH) 23�2 3804 1994 947 1047

Kidney Renal Clear Cell Carcinoma (KIRC) 72�2 3699 2293 1098 1195

Kidney Renal Papillary Cell Carcinoma (KIRP) 31�2 3744 1763 801 962

Liver Hepatocellular Carcinoma (LIHC) 50�2 3656 1803 854 949

Lung Adenocarcinoma (LUAD) 57�2 3683 2076 1017 1059

Lung Squamous Cell Carcinoma (LUSC) 49�2 3730 2181 1064 1117

Prostate Adenocarcinoma (PRAD) 52�2 3663 1915 866 1049

Rectum Adenocarcinoma (READ) 9�2 3905 901 422 479

Stomach Adenocarcinoma (STAD) 27�2 3660 1228 585 643

Thyroid Carcinoma (THCA) 58�2 3681 2034 968 1066

Uterine Corpus Endometrial Carcinoma (UCEC) 23�2 3731 1490 709 781

Note: Numbers of significantly positively (þ) and negatively (-) regulated zones are based on P-values (� 0.05) corrected for multiple testing by the Benjamini–

Hochberg method.
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11.74 Mb is consistently downregulated (-) in all cancer types des-
pite somatic copy number gain (þ) in CHOL, KIRC, KIRP and
THCA (Fig. 2a and c). Cancer fusion gene GAS7 is located at this
locus (Fig. 2b and d), which suppresses tumor cell migration in lung
cancer (Tseng et al., 2015). At locus chr2:166.05–167.46 Mb, regu-
lation is negatively polarized (-) in all cancer types except insignifi-
cant in ESCA, but SCNA polarization at the same locus is positive,
negative and insignificant in 10 (þ), 3 (-) and 4 cancer types, respect-
ively (Supplementary Fig. S1.2). The locus of chr15:95.26–
97.03 Mb, toward the q-arm telomere of chr15, has significantly
more genes downregulated than upregulated in all cancer types,
while the SCNA polarity of this locus across cancers is mixed (4
amplified, 8 deleted and 5 insignificant) (Supplementary Fig. S1.15).

The other 50 loci are upregulated among >80% cancer types.
One upregulated (þ) and amplified (þ) locus chr7:102.17–
102.59 Mb (Supplementary Fig. S1.7) overlaps haploinsufficient
gene CUX1, CUT-like homeobox 1, known to be both oncogenic
and tumor suppressing (CGC v87). Although underexpressed CUX1
promotes tumor development, overexpression of CUX1 is associated

with advanced cancers (Ramdzan and Nepveu, 2014). At locus
chr14:18.24–20.57 Mb (Supplementary Fig. S1.14), next to the
centromere at the beginning of 14q, genes are mostly upregulated
(þ) in all cancer types except BRCA, while SCNA polarity splits be-
tween being positive and negative at this locus. Locus chr17:31.69–
32.58 Mb is also both upregulated (þ) and amplified (þ) (Fig. 2).
This locus contains gene SUZ12, suppressor of zeste 12 homolog
(Drosophila). It is found to be frequently overexpressed in colorectal
cancer (Liu et al., 2015), non-small cell lung cancer (Liu et al.,
2014), ovarian cancer (Li et al., 2012) and tongue squamous cell
carcinoma (Hu et al., 2017).

Somatic alteration at genomic loci is less consistent than regula-
tion polarity across cancer types. The SCNA polarity at a locus often
oscillates between being positive and negative across cancer types.
In contrast to loci of conserved regulation polarity being found on
21 chromosomes (Supplementary Table S2), conservation (>80%
cancer types) in SCNA zone polarity is found at loci located on only
nine chromosomes (1, 4–8, 12, 17 and 20) (Supplementary Fig. S1).
SCNA loci with the same polarization sign among >80% cancer
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(a)

(b)

(c)

(d)

Fig. 2. Maps of significant polarization in regulation and somatic copy number alteration (SCNA) along chromosome 17 across cancer types. (a) 17p is dominated by negative

(-, blue) polarity in regulation, but 17q is more dominated by positive polarity (þ, red) in regulation. Six loci surrounded by boxes are conserved in zone regulation polarity

across cancer types. (b) Numbers of cancer types either positively (red) or negatively (blue) polarized in regulation along chromosomal loci. Loci are defined by intersections

among zones. Dark red/blue bars indicate 14 (80%) or more of cancer types being identically polarized at a locus. Known cancer genes are marked along chromosomes. (c)

Statistically significant zone polarization in SCNA along the chromosome across cancer types, corresponding to amplification (þ, purple) and deletion (-, green), respectively.

(d) Numbers of cancer types either positively (purple) or negatively (green) polarized in SCNA at loci along the chromosome. Dark purple/green bars indicate over 80% of can-

cer types are positively/negatively polarized in SCNA at a locus

Weighted univariate clustering maps cancer genomic zones 5033

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa613#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa613#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa613#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa613#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa613#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa613#supplementary-data


types are heavily populated on chromosome 1q (þ) (Supplementary
Fig. S1.1), 7 (þ) (Supplementary Fig. S1.7), 8q (þ) (Supplementary
Fig. S1.8) and 20 (þ) (Supplementary Fig. S1.20). This suggests that
conservation of regulation polarization at these loci is a strong pan-
cancer characteristic, largely independent of SCNA polarization.

3.2.2 Regulation polarity along chromosomes within cancer type

Polarization in regulation zone displays continuity along chromo-
somes as visible horizontal patterning within each cancer type.
Dysregulation and SCNA polarity maps are shown in
Supplementary Figure S2 by cancer type. Zones with the same polar-
ity can stretch from several million to tens of millions base pairs. In
BRCA, chromosome arms 1q, 6p, 8q, 16p, 19q and 20q present the
strongest continuity in positive (þ) regulation polarity, while 6q, 8p,
16q and 17p are most continuous in negative (-) regulation polarity
(Supplementary Fig. S2.2a). In HNSC (Supplementary Fig. S2.6), we
observe continuous positive (þ) polarization of zones along 3q, 7p,
20 and 22q, and negative (-) polarization of zones along 3p, 10,
17p, 19 and Y. We thus reproduced a previous finding of underex-
pression of 3p and overexpression of 22q in HNSC (Masayesva
et al., 2004). In COAD (Supplementary Fig. S2.4), positively (þ)
polarized zones dominate 7, 8q, 12q, 13q, 16q and 20; negatively (-)
polarized zones dominate 1p, 4, 8p, 15q, 17p and 18q. In READ
(Supplementary Fig. S2.14), positively (þ) polarized zones are most-
ly found on 7, 8q, 12q, 17q and 20q; negatively (-) polarized zones
on 1p, 4, 5q, 8p, 14q, 15q, 17p and 18q. This is consistent with pre-
vious findings on colorectal cancer having overexpressed (þ) 7p, 8q,
13q, 20q and underexpressed (-) 1p, 4, 5q, 8p, 14q, 15q and 18
(Tsafrir et al., 2006).

Horizontal continuity in zone polarity of SCNA along chromo-
somes is prominent. Somatic deletion (-) and amplification (þ) often
extend to a chromosomal arm or even an entire chromosome. In
BRCA (Supplementary Fig. S2.2b), continuous DNA gain dominates
1q, 3q, 5p, 6p, 7, 8q, 10p, 12p, 16p, 19q, 20 and 21q; continuous
DNA loss dominates 1p, 2q, 3p, 4, 6q, 8p, 9, 10q, 13q, 14q, 15q,
16q, 17p, 18q, 22q and Xq. Such a strong continuity suggests that
SCNA occurs at a more global scale than modification in gene ex-
pression programs in cancer.

Although we observe a weak positive correlation in horizontal
polarization continuity between dysregulation and SCNA,

horizontal continuity is not always transcribed from SCNA to dysre-
gulation. In BRCA (Supplementary Fig. S2.2a, b) only six out of 12
positive SCNA arms exhibited continuity in upregulation, and only
4 out of 16 negative SCNA arms exhibited continuity in
downregulation.

Occasionally, horizontal zone polarization patterns in dysregula-
tion and SCNA can phenomenally mismatch along chromosomes. In
BRCA (Supplementary Fig. S2.2), 1p is consistently negatively (-)
polarized in SCNA, but a long stretch of 1p between 25 and 50 Mb
is positively (þ) polarized in regulation. The region of chr7:80–
90 Mb is positively (þ) polarized in SCNA but negatively (-) polar-
ized in regulation. These are examples where horizontal polarization
continuity in regulation cannot be explained by the corresponding
pattern in SCNA, suggesting horizontal continuity in regulation can
be independent of SCNA.

3.2.3 Top dysregulated zones are often specific to cancer type

Most significantly dysregulated zones are specific to cancer type. A
top dysregulated zone may be either consistent with or opposite to
the polarity of SCNA of the zone. Some such top zones are discussed
for their cancer relevance in Supplementary Note N3. The top five
dysregulated zones of each cancer type are visualized in
Supplementary Figure S3. Complementary to the pan-cancer conser-
vation of regulation polarity loci, unique patterns within top genom-
ic zones can characterize a cancer type. These zones could be
potential biomarkers for specific cancer types.

3.2.4 Copy number alteration zone maps are highly consistent

with known cancer aneuploidy

To evaluate the effectiveness of chromosomal clustering, we com-
pare SCNA zone polarization with known cancer genome instabil-
ity. SCNA polarization maps of all 17 cancer types are shown in
Supplementary Figures S1 and S2. Most significantly polarized
zones for each cancer type are displayed in Supplementary Note N4.
With only one exception, they strongly agree with known SCNA in
cancer, despite the fact that only up to 100 or so pairs of matched
tumor normal tissues were used for each cancer type. For example,
in stomach adenocarcinoma (STAD), the most polarized zone
chrY:16.5–87.1 Mb (Fig. 3) covers almost the entire long arm of Yq,
overlapping Yq11.22, Yq11.23 and Yq12. This zone is among the
most heavily negatively polarized, consistent with previous findings
that deletion on Y-chromosome is the most prominent cytogenetic
band abnormality in gastric cancer (Ochi et al., 1986). Except the
top SCNA zones of ESCA identified with a small sample size
(n¼8�2), all top SCNA zones of other 16 cancer types coincide
with frequent genome aberrations known for each respective cancer
type (Supplementary Note N4). Therefore, these findings support
the effectiveness of our methodology in detecting polarized genomic
zones. It also suggests that a moderate number of matched tumor-
normal pairs can reproduce genome instability findings from previ-
ous large-scale cancer genome studies mostly not using matched nor-
mal samples.

4 Discussion

Chromosomes contain domains of gene expression (Cohen et al.,
2000). Genes along the chromosome are clustered by expression and
by function (Birnbaum et al., 2003; Williams and Bowles, 2004),
with as many as 20 genes in each cluster in plants (Williams and
Bowles, 2004). Our study delineated conserved pan-cancer gene
regulation loci and also cancer-specific gene regulation zones, identi-
fying a chromatin impact not explainable by a single-gene regulatory
mechanism. Several chromatin-level mechanisms offer possible
causes of regulatory zoning. Enhancers (Quintero-Cadena and
Sternberg, 2016) shared by genes in a zone could be utilized differ-
entially in cancer and normal tissues, leading to polarization in zone
regulation. Insulated genomic neighborhoods are needed for normal
gene activation and repression (Hnisz et al., 2016). An insulated
neighborhood can be disrupted in cancer directly due to the loss of
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CTCF binding (Bradner et al., 2017). In IDH mutant gliomas, this
loss is a consequence of CTCF anchor site methylation (Flavahan
et al., 2016). The distribution of zone size is consistent with basic
units for chromatin organization: insulated neighborhoods have a
size between 25 and 940 kb (Hnisz et al., 2016); TAD contains one
or more insulated neighborhoods with a size of hundreds of kilo-
bases (Dixon et al., 2012); multi-TAD compartments A and B have
a size of several megabases (Wang et al., 2016).

Chromosomal clustering is different from segmentation.
Segmentation looks for regions with events equal in magnitude;
weighted clustering looks for regions with concentrated events. A
segment can contain events scattered far apart but equal in magni-
tude; a compact cluster contains proximal events. Such differences
are a consequence of their objective functions: segmentation penal-
izes the sum of squared differences in magnitude within a region;
weighted clustering penalizes the weighted sum of squared distances
between locations within a region. Indeed, spatial proximity be-
tween genomic elements is vital to gene regulation (Bonev and
Cavalli, 2016).

Bellman (1973) first used dynamic programming to solve the
problem of univariate clustering with general additive distance
measures at a time complexity of Oðkn3Þ. The R package
‘Ckmeans.1d.dp’ up to version 3.4.5 (Wang and Song, 2011)
reduced the runtime to Oðkn2Þ. The SMAWK algorithm enabled
linear-time dynamic programming in histogram quantization (Wu
and Rokne, 1989), scalar quantization (Wu and Zhang, 1993) and
image thresholding (Luessi et al., 2009). It is not popular most likely
due to the runtime overhead of the original Reduce algorithm based
on linked lists (Hershberger and Suri, 1997) or stacks (http://www.
ics.uci.edu/~eppstein/PADS/SMAWK.py). Our search-space pruning
algorithm Reduce-Min-In-Place addressed this issue, with implica-
tions on a broad range of problems where the SMAWK algorithm is
applicable, far beyond weighted univariate clustering.

In summary, we have developed a chromosomal clustering
method for delineating human cancer regulation zones along chro-
mosomes. The method accelerates the characterization of activity
over long sequences, such as genetic and epigenetic events in the
order of hundreds of millions along chromosomes. This capacity to
identify chromosomal patterns provides an avenue to reveal tran-
scriptome organization anchored to the genome in the molecular
biology of cancer and beyond.
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