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Abstract

Background: Models that predict postoperative complications often ignore important
intraoperative events and physiological changes. This study tested the hypothesis that accuracy,
discrimination, and precision in predicting postoperative complications would improve when using
both preoperative and intraoperative data input data compared with preoperative data alone.

Methods: This retrospective cohort analysis included 43,943 adults undergoing 52,529 inpatient
surgeries at a single institution during a five-year period. Random forest machine learning models
in the validated MySurgeryRisk platform made patient-level predictions for seven postoperative
complications and mortality occurring during hospital admission using electronic health record
data and patient neighborhood characteristics. For each outcome, one model trained with
preoperative data alone; one model trained with both preoperative and intraoperative data. Models
were compared by accuracy, discrimination (expressed as AUROC: area under the receiver
operating characteristic curve), precision (expressed as AUPRC: area under the precision-recall
curve), and reclassification indices.

Results: Machine learning models incorporating both preoperative and intraoperative data had
greater accuracy, discrimination, and precision than models using preoperative data alone for
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predicting all seven postoperative complications (intensive care unit length of stay >48 hours,
mechanical ventilation >48 hours, neurological complications including delirium, cardiovascular
complications, acute kidney injury, venous thromboembolism, and wound complications) and in-
hospital mortality (accuracy: 88% vs. 77%, AUROC: 0.93 vs. 0.87, AUPRC: 0.21 vs. 0.15).
Overall reclassification improvement was 2.4-10.0% for complications and 11.2% for in-hospital
mortality.

Conclusions: Incorporating both preoperative and intraoperative data significantly increased the
accuracy, discrimination, and precision of machine learning models predicting postoperative
complications and mortality.
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Introduction

Predicting postoperative complications in the preoperative setting better informs the
surgeon’s decision to offer an operation as well as the patient’s decision to undergo surgery.
These predictions can also guide targeted risk-reduction strategies (i.e., prehabilitation) for
modifiable risk factors, plans for postoperative triage and resource use, and expectations
regarding short- and long-term functional recovery. Online risk calculators, mobile device
applications, and automated predictive analytic platforms can be easily accessed to
accomplish these goals.(1-4) However, these models often ignore intraoperative data, and
thereby miss potentially important opportunities to generate updated predictions that can
further inform future decisions regarding postoperative triage, surveillance for
complications, and targeted preventative measures (e.g., renal protection bundles for patients
at high risk for acute kidney injury (AKI) and continuous cardiorespiratory monitoring for
patients at high risk for cardiovascular complications).

Although it seems logical and advantageous to use intraoperative data in predicting
postoperative complications, this advantage remains theoretical until establishing that
predictive performance improves with the incorporation of intraoperative data. Furthermore,
we would hope that these enhanced predictions could translate into better decisions and
outcomes for patients undergoing surgery. This study addresses the former objective by first
quantifying the added value of intraoperative data for predicting seven postoperative
complications and mortality with a MySurgeryRisk extension that incorporates vital sign
and mechanical ventilator data collected during surgery. The original MySurgeryRisk
platform uses electronic health record (EHR) data and patient neighborhood characteristics
to predict postoperative complications and mortality, but ignores intraoperative data.(4) We
hypothesized that accuracy, discrimination, and precision in predicting postoperative
complications and mortality would improve when using both preoperative and intraoperative
data input features compared with preoperative data alone.
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Materials and Methods

Data Source

Participants

Outcomes

We created a single-center longitudinal cohort of surgical patients with data from
preoperative, intraoperative, and postoperative phases of care. We used random forest
machine learning models to predict seven major postoperative complications and death
during admission, comparing models using preoperative data (i.e. EHR and patient
neighborhood characteristics) alone versus models using the same preoperative data plus
intraoperative physiological time-series vital sign and mechanical ventilator data. The
University of Florida Institutional Review Board and Privacy Office approved this study
with waiver of informed consent (IRB #201600223).

The University of Florida Integrated Data Repository was used as an honest broker to
assemble a single center longitudinal perioperative cohort for all patients admitted to the
University of Florida Health for longer than 24 hours following any type of operative
procedure between June 15t, 2014 through March 15, 2019 by integrating electronic health
records with other clinical, administrative, and public databases as previously described.(4)
The resulting dataset included detailed information on patient demographics, diagnoses,
procedures, outcomes, comprehensive hospital charges, hospital characteristics, insurance
status, laboratory, pharmacy, and blood bank data as well as detailed intraoperative
physiologic and monitoring data for the cohort.

We identified all patients with age 18 years or greater and excluded patients who died during
surgery and had incomplete records. If patients underwent multiple surgeries during one
admission, only the first surgery was used in our analysis. The final cohort consisted of
43,943 patients undergoing 52,529 surgeries. Supplemental Digital Content 1 illustrates
derivation of the study population. Supplemental Digital Content 2 illustrates cohort use and
purpose.

We modeled risk for developing seven postoperative complications and mortality occurring
during the index hospital admission. Complications included intensive care unit (ICU)
length of stay >48 hours, mechanical ventilation >48 hours, neurological complications
including delirium, cardiovascular complications, acute kidney injury, venous
thromboembolism, and wound complications.

Predictor Features

The risk assessment used 367 demographic, socioeconomic, comorbidity, medication,
laboratory value, operative, and physiological variables from preoperative and intraoperative
phases of care. The preoperative model used 134 variables; an additional 233 intraoperative
features were added to develop postoperative models. We derived preoperative comorbidities
from International Classification of Diseases (ICD) codes to calculate Charlson comorbidity
indices.(5) We modeled primary procedure type on ICD-9-CM codes with a forest structure
in which nodes represented groups of procedures, roots presented the most general groups of
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procedures, and leaf nodes represented specific procedures. Medications were derived from
RxNorm codes grouped into drug classes as previously described.(4) We converted
intraoperative time series data into statistical features such as minimum, maximum, mean,
and short- and long-term variability.(6) Intraoperative data input features that were added to
preoperative features to generate the postoperative model included heart rate, systolic blood
pressure, diastolic blood pressure, body temperature, respiratory rate, minimum alveolar
concentration (MAC), positive end-expiratory pressure (PEEP), peak inspiratory pressure
(PIP), fraction of inspired oxygen (FiO2), blood oxygen saturation (Sp0O2), and end-tidal
carbon dioxide (EtCO2). The time series features are then used to produce statistical features
such as minimum, maximum, average, long term variability, short term variability, duration
of measurement, counts of readings in certain value ranges decided based on average and
standard deviation of the measurements of overall datasets. We also included surgical
variables (e.g., nighttime surgery, surgery duration, operative blood loss, and urine output)
during surgery. Supplemental Digital Content 3 lists all input features and their statistical
characteristics. Supplemental Digital Content 4 lists the percentages of missing values for
each variable in the training and testing cohorts.

Models were trained on a development cohort of 40,560 surgeries. All results were reported
from a validation cohort of 11,969 surgeries. We performed five-fold cross-validation using
random partitions to generate five disjoint folds, allocating one fold for validation and the
other four for training. Using a validation cohort of 11,969 surgeries, the overall sample size
allows for a maximum width of the 95% confidence interval for area under the receiver
operating characteristic curve (AUROC) to be between 0.02 to 0.04 for postoperative
complications with prevalence ranging between 5% and 30% for AUROC of 0.80 or higher.
The sample size allows for a maximum width of 0.07 for hospital mortality given 2%
prevalence.

Predictive Analytic Workflow

The proposed MySurgeryRisk PostOp algorithm is conceptualized as a dynamic model that
readjusts preoperative risk predictions using physiological time series and other data
collected during surgery. The resulting adjusted postoperative risk is assessed immediately at
the end of surgery. This workflow simulates clinical tasks faced by physicians involved in
perioperative care where patients’ preoperative information is subsequently enriched by the
influx of new data from the operating room. The final output produces MySurgeryRisk
PostOp, a personalized risk panel for complications after surgery with both preoperative and
immediate postoperative risk assessments. The algorithm consists of two main layers,
preoperative and intraoperative, each containing a data transformer core and a data analytics
core.(4) Details regarding MySurgeryRisk predictive analytic workflow are provided in
Supplemental Digital Content 5. Briefly, the MySurgeryRisk platform uses a data
transformer to integrate data from multiple sources, including the EHR with zip code links
to US Census data for patient neighborhood characteristics and distance from the hospital,
and optimizes the data for analysis through preprocessing, feature transformation, and
feature selection techniques. In the data analytics core, the MySurgeryRisk PostOp
algorithm was trained to calculate patient-level immediate postoperative risk probabilities
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for selected complications using all available preoperative and intraoperative data with
random forest classifiers.(7) We chose random forest methods to maintain consistency with
previous work with the original MySurgeryRisk model.(4) This work also describes our
methods for reducing data dimensionality. Random forest models are composed of an
assembly of decision trees (i.e., a forest of trees). Each decision tree performs a
classification or prediction task; the most common class (i.e., majority vote) or average
prediction is then identified. Supplemental Digital Content 6 lists allowable ranges for
continuous variables, determined by clinical expertise. Figure 1 illustrates our method for
building the random forest machine learning models and model analytic flow.

Model Validation

Results are reported from application of the trained model to the test cohort, with 10,637
unique patients undergoing 11,969 surgeries from March 15t, 2018 through March 15t, 2019
time period. Using the prediction results obtained from the 1000 bootstrap cohorts,
nonparametric confidence intervals for each of the performance metrics were calculated.

Model Performance

Results

We assessed each model’s discrimination using AUROC. For each complication, we
calculated Youden’s index threshold to identify the point on the receiver operating
characteristic curve with the highest combination of sensitivity and specificity, using this
point as the cut-off value for low versus high risk.(8) We used these cut-off values to
determine the fraction of correct classifications as well as sensitivity, specificity, positive
predictive value, and negative predictive value for each model. When rare events are being
predicted, a model can have high accuracy by favoring negative predictions in a
predominantly negative dataset.(9) False negative predictions of complications are
particularly harmful because patients and their caregivers may consent to an operation under
the pretense of an overly optimistic postoperative prognosis, as well as missing opportunities
for any preoperative mitigation of risk factors through prehabilitation and other optimization
strategies. Additionally, the appropriate escalation in levels of monitoring and patient care
may be missed with false negative findings. Therefore, model performance was also
evaluated by calculating area under the precision-recall curve (AUPRC), which is well-
suited for evaluating rare event predictive performance.(10) To assess the statistical
significance of AUROC, AUPRC, and accuracy differences between models, we performed
Wilcoxon’s Sign-Ranked test.(11) We used bootstrap sampling and non-parametric methods
to obtain 95% confidence intervals for all performance metrics. We used the Net
Reclassification Improvement (NRI) index to quantify how well the postoperative model
reclassified patients compared with the preoperative model.(12)

Participant Baseline Characteristics and Outcomes

Table 1 lists subject characteristics of primary interest. Supplemental Digital Content 7 lists
all additional subject characteristics used to build the models. Approximately 49% of the
population was female. Average age was 57 years. The incidence of complications in the
testing cohort was as follows: 28% for prolonged ICU stay, 6% for mechanical ventilation
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for >48 hours, 20% for neurological complications and delirium, 18% for acute kidney
injury, 19% for cardiovascular complications, 8% for venous thromboembolism, 25% for
wound complications, and 2% for in-hospital mortality. The distribution of outcomes did not
significantly differ between training and testing cohorts, as listed in Table 1.

Model Performance

Compared with the model using preoperative data alone, the postoperative model using both
preoperative and intraoperative data had higher accuracy, AUROC, and AUPRC for all
complications and mortality predictions, as described below and in Table 2. The net
reclassification index as well as event, non-event, and overall classification improvements
for each outcome are listed in Table 3. Figures 2-9 illustrate predictive performance for
individual complications and mortality. Figures include gray regions for which predictive
discrimination or precision are <0.2, precluding reasonable clinical application. In addition,
feature weights from the best performing model for each complication are provided in
Supplemental Digital Content 6, along with feature names and descriptions.

Prolonged ICU Stay

The postoperative model achieved greater accuracy (0.83 vs. 0.77, p<0.001), discrimination
(AUROC 0.88 vs. 0.87, p<0.001), and precision (AUPRC 0.80 vs. 0.72, p<0.001) in
predicting ICU stay > 48 hours with greater specificity and positive predictive value at the
cost of lower sensitivity (75% vs. 82%, p<0.001) than the model using preoperative data
alone (Table 2). The postoperative model misclassified 7.9% of all cases that featured
prolonged ICU stays, and correctly reclassified 12.6% of all cases that did not (Figure 2).
Overall, there was a 6.8% reclassification improvement by the postoperative model.

Prolonged Mechanical Ventilation

The postoperative model achieved greater accuracy (0.92 vs. 0.82, p<0.001), discrimination
(AUROC 0.96 vs. 0.89, p<0.001), and precision (AUPRC 0.71 vs. 0.45, p<0.001) in
predicting mechanical ventilation >48 hours with greater sensitivity, specificity, and positive
predictive value, and similar negative predictive value compared with the model using
preoperative data alone (Table 2). The postoperative model correctly reclassified 11.0% of
all cases that featured prolonged mechanical ventilation and 9.9% of all cases that did not
(Figure 3). Overall reclassification improvement was 10.0%.

Neurological Complications and Delirium

The postoperative model achieved greater accuracy (0.81 vs. 0.78, p<0.001), discrimination
(AUROC 0.89 vs. 0.86, p<0.001), and precision (AUPRC 0.69 vs. 0.64, p<0.001) in
predicting postoperative neurological complications and delirium with greater specificity,
positive predictive value, and negative predictive value than the model limited to
preoperative data alone (Table 2). The postoperative model correctly reclassified 2.1% of all
cases that featured postoperative neurological complications and delirium and 3.1% of all
cases that did not (Figure 4). Overall reclassification improvement was 2.9%.

J Surg Res. Author manuscript; available in PMC 2021 October 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Datta et al.

Page 7

Cardiovascular Complications

The postoperative model achieved greater accuracy (0.78 vs. 0.70, p<0.001), discrimination
(AUROC 0.87 vs. 0.80, p<0.001), and precision (AUPRC 0.66 vs. 0.51, p<0.001) in
predicting postoperative cardiovascular complications with greater sensitivity, specificity,
negative predictive value, and positive predictive value than the model using preoperative
data alone (Table 2). The postoperative model correctly reclassified 2.3% of all cases that
featured postoperative cardiovascular complications and 9.2% of all cases that did not
(Figure 5). Overall, there was 7.9% reclassification improvement by the postoperative
model.

Acute Kidney Injury

The postoperative model achieved greater accuracy (0.79 vs. 0.69, p<0.001), discrimination
(AUROC 0.84 vs. 0.81, p<0.001), and precision (AUPRC 0.57 vs. 0.47, p<0.001) in
predicting postoperative AKI with greater specificity and positive predictive value but
similar negative predictive value and lower sensitivity (71% vs. 80%, p<0.001) than the
model using preoperative data alone (Table 2). The postoperative model misclassified 8.7%
of all cases that featured postoperative AKI, but correctly reclassified 13.9% of all cases that
did not (Figure 6). Overall, there was 9.9% reclassification improvement by the
postoperative model.

Venous Thromboembolism

The postoperative model achieved greater accuracy (0.75 vs. 0.7, p<0.001), discrimination
(AUROC 0.83 vs. 0.80, p<0.001), and precision (AUPRC 0.28 vs. 0.25, p<0.001) in
predicting postoperative venous thromboembolism with greater specificity and positive
predictive value, but similar negative predictive value and lower sensitivity (0.76 vs 0.79,
p<0.001) than the model using preoperative data alone (Table 2). The postoperative model
misclassified 2.7% of all cases that featured postoperative venous thromboembolism and
correctly reclassified 5.6% of all cases that did not (Figure 7). Overall, there was 4.9%
reclassification improvement by the postoperative model.

Wound Complications

The postoperative model achieved greater accuracy (0.69 vs. 0.67, p<0.001), discrimination
(AUROC 0.75 vs. 0.74, p=0.002), and precision (AUPRC 0.52 vs. 0.5, p<0.001) in
predicting wound complications with greater specificity and positive predictive value, but
similar negative predictive value and lower sensitivity (0.66 vs 0.69, p<0.001) than the
model using preoperative data alone (Table 2). The postoperative model misclassified 2.5%
of all cases that featured wound complications but correctly reclassified 4.1% of all cases
that did not (Figure 8). Overall, there was 2.4% reclassification improvement by the
postoperative model.

Hospital Mortality

The postoperative model achieved greater accuracy (0.88 vs. 0.77, p<0.001), discrimination
(AUROC 0.93 vs. 0.87, p<0.001), and precision (AUPRC 0.21 vs. 0.15, p<0.001) in
predicting postoperative in-hospital mortality with greater specificity and positive predictive
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value, and similar sensitivity and negative predictive value compared with preoperative data
alone (Table 3). The postoperative model correctly reclassified 2.2% of all cases of
postoperative in-hospital mortality and 11.5% of all cases in which the patient survived to
hospital discharge (Figure 9). Overall reclassification improvement was 11.2%.

Time-consumption in Model Training

For one point of grid search (e.g., one value of estimator number, minimum sample leaf

number, best k value, and maximum allowable feature number) with 5-fold cross validation,
the typical time for model training with both preoperative and intraoperative data was 550 —
690 seconds. Using preoperative data alone, training time was 395 — 460 seconds using a 64
bit system containing Intel® Xeon® W-2133 CPY at 3.60 GHz processor with 64 GB RAM.

Discussion

By incorporating intraoperative physiological data to preoperative data, we added value to a
machine learning model that can predict postoperative complications by improving the
accuracy, discrimination, and precision relative to a previous model that accessed
preoperative data alone. This improvement held true for all postoperative complications
tested as well as in-hospital mortality; there were no cases in which accuracy,
discrimination, or precision did not improve by incorporating intraoperative data. The only
negative results occurred with the prediction of prolonged ICU stay, venous
thromboembolism, and wound complications; specifically, the postoperative models had
lower sensitivity than models using preoperative data alone. In predicting prolonged ICU
stay, it appears that the model using preoperative data alone had unusually low thresholds for
classifying patients as high risk. The postoperative models raised this threshold, correctly
classifying a greater proportion of patients and achieving greater accuracy, discrimination,
and precision, at the cost of lower sensitivity. For predicting venous thromboembolism and
wound complications, although postoperative model accuracy, discrimination, and precision
were greater than that of the preoperative model, overall reclassification improvements were
not statistically significant. Additionally, the optimum thresholds for predicting in-hospital
mortality for both models fall outside of clinically applicable discrimination or precision
(i.e., 0.2). This likely occurred because mortality rates were low (approximately 2%) and
mortality predictions were tested using 30% of the test cohort, representing only 3,591
surgeries of the 52,529 surgeries in the entire cohort, whereas predictions for the other seven
postoperative complications were tested using the entire test cohort (11,969 surgeries).
Based on dataset behavior, mortality risks are more descriptive when using risk scores for
complications than the raw variables used to estimate risk for those complications. Because
complication risks must be developed and validated prior to use as mortality prediction
factors, only the test cohort could be used to train, validate, and test in-hospital mortality
predictions. Therefore, 30% of the test cohort was used to report mortality model
performance.

Online risk calculators like the National Surgical Quality Improvement Program (NSQIP)
Surgical Risk Calculator can reduce variability and increase the likelihood that patients will
engage in prehabilitation, but they have time-consuming manual data acquisition and entry
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requirements, which hinders their clinical adoption.(13-18) Emerging technologies can
circumvent this problem. The MySurgeryRisk platform autonomously draws data from
multiple input sources and uses machine learning techniques to predict postoperative
complications and mortality. However, easily and readily available predictions are only
useful if they are accurate and precise enough to augment clinical decision-making. In a
prospective study of the original MySurgeryRisk platform, the algorithm predicted
postoperative complications with greater accuracy than physicians, but there was room for
continued improvement.(19) The present study demonstrates that incorporation of
intraoperative physiological time-series data improves predictive accuracy, discrimination,
and precision, presumably by representing important intraoperative events and physiological
changes that influence postoperative clinical trajectories and complications. Dziadzko et al.
(20) used a random forest model to predict mortality or the need for greater than 48 hours of
mechanical ventilation using EHR data from patients admitted to academic hospitals,
achieving excellent discrimination (AUROC 0.90), similar to MySurgeryRisk discrimination
for mechanical ventilation for greater than 48 hours (AUROC 0.96) using both preoperative
and intraoperative data. Therefore, the MySurgeryRisk PostOp extension takes another step
toward clinical utility, maintaining autonomous function while improving accuracy,
discrimination, and precision.

Despite advances in the facility of use and performance, predictive analytic platforms face a
major barrier to clinical adoption: predictions do not directly translate into decisions. When
predicted risk for postoperative AKI is very low or very high, it is relatively clear whether
the patient would benefit from renal-protection bundles. Similarly, when predicted risk for
cardiovascular complications is very low or very high, it is relatively clear whether the
patient would benefit from continuous cardiac monitoring. However, a substantial number of
patients are at intermediate risk for these complications, and thus the need for additional
intervention or investigation remains uncertain. In the present study, we dichotomized
outcome predictions into low- and high-risk categories to facilitate analysis of model
performance, however any risk for a complication exists on a continuum. MySurgeryRisk
platforms addresses this and makes predictions along a continuum (i.e., range from 0%
-100% chance of a complication), but this method is also unable to augment clinical
decisions for intermediate-risk scenarios. The average risk across a population usually
defines intermediate risks. Therefore, this challenge will affect most patients and their
corresponding risks, which leaves additional room for modeling improvements.

We predict that advances in machine learning technologies will rise to meet this challenge.
Predictive analytics indirectly inform discrete choices facing clinicians; reinforcement
learning models can provide instructive feedback by identifying specific actions that yield
the highest probability of achieving a defined goal. For example, a reinforcement learning
model could be trained to achieve hospital discharge with baseline renal and cardiovascular
function, without major adverse kidney or cardiac events, making recommendations for or
against renal protection bundles and continuous cardiac monitoring according to these goals.
Similar models have been used to recommend vasopressor doses and intravenous fluid
resuscitation volumes for septic patients, demonstrating efficacy relative to clinician
decision-making in large retrospective datasets(21). However, to our knowledge, these
models have not been tested clinically or applied to surgical decision-making scenarios.
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Therefore, the potential benefits of reinforcement learning to augment surgical decision-
making learning remain theoretical.

This study used data from a single institution, limiting the generalizability of these findings.
As previously discussed, true risk for complications is not dichotomous, but we
dichotomized risk in this study to facilitate model performance evaluation and comparison.
We used administrative codes to identify complications, so coding errors could have
influenced results. The MySurgeryRisk algorithm learned predictive features from raw data,
and so it may have used features that are not classic risk factors. This approach has the
potential advantage of discovering and incorporating unknown or underused risk factors, and
the disadvantage that the existence and identity of these risk factors remain unknown.
Finally, in some cases, intraoperative model input features may have been evidence of a
complication rather than true predictors of a complication, i.e., oliguria intraoperatively may
be evidence of AKI rather than predictive of developing AKI.

Conclusions

Incorporation of both preoperative and intraoperative data significantly increased the
accuracy, discrimination, and precision of machine learning models that predict seven
postoperative complications and in-hospital mortality. These predictions have the theoretical
benefit of supporting decisions regarding postoperative triage, surveillance for
complications, and targeted preventative measures. However, it remains unknown whether
better predictions translate to better decisions and outcomes. Future research should apply
these models to clinical settings and seek to enhance decision-making for intermediate-risk
patients, who compose the majority of the population and pose unique predictive analytic
challenges.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Conceptual diagram of the MySurgeryRisk PostOp platform.
This diagram illustrates the aggregation of data transformers for both preoperative and

intraoperative layers, merging clean features from both layers to feed a data analytics
module that produces risk predictions. The preoperative models use the same framework, but
without the intraoperative layer.

J Surg Res. Author manuscript; available in PMC 2021 October 01.




1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Datta et al. Page 13
0.81 0.8
2
2
206" 206
2 3
@ 44
2 0.41 g 04
== Preoperative model - == Preoperative model
== Preoperative cutoff == Preoperative cutoff
02 = Eosioperave Eicd 02 = Eosaperaine tuoh
= g Al . o= § d U
= %S%%ally inapplicable =N )gg%%ally inapplicable
0.0

o
(=
o

02 04 06 08 10
1 - Specificity

00 02 04 06 08 10
Precision

(€)

Risk score from postoperative model

® Low postoperative risk group
10 o High postoperative risk group

0.8

0.6

0.4

0.2

o
L

Low preoperative risk group High preoperative risk group

0.0

(D)

Risk score from postoperative model

@ Low postoperative risk group
10 o High postoperative risk group

0.8

0.6

0.4

0.2

0.0

Low preoperative risk group High preoperative risk group

Figure 2: A model using both preoperative and intraoperative data outperformed a model using
preoperative data alone in predicting postoperative ICU stay >48 hours.
A: The postoperative model had greater area under the receiver operating characteristic

curve (0.88 vs. 0.87). B: The postoperative model had greater area under the precision-recall
curve (0.80 vs. 0.72). The postoperative model reclassified cases that did (C) and did not (D)
feature prolonged ICU stays. Red dots are patients at high-risk for prolonged ICU stay
according to the postoperative model; green dots are patients at low-risk. C, D: The
postoperative model correctly reclassified 6.8% of all cases. Gray areas represent regions for
which predictive discrimination or precision are <0.2, precluding reasonable clinical

application.
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Figure 3: A model using both preoperative and intraoperative data outperformed a model using
preoperative data alone in predicting postoperative mechanical ventilation >48 hours.

A: The postoperative model had greater area under the receiver operating characteristic
curve (0.96 vs. 0.89). B: The postoperative model had greater area under the precision-recall
curve (0.71 vs. 0.45). The postoperative model reclassified cases that did (C) and did not (D)
feature prolonged mechanical ventilation. Red dots are patients at high-risk prolonged
mechanical ventilation according to the postoperative model; green dots are patients at low-
risk. C, D: The postoperative model correctly reclassified 10.0% of all cases. Gray areas
represent regions for which predictive discrimination or precision are <0.2, precluding

reasonable clinical application.
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Figure 4: A model using both preoperative and intraoperative data outperformed a model using
preoperative data alone in predicting postoperative neurological complications and delirium.

A: The postoperative model had greater area under the receiver operating characteristic
curve (0.89 vs. 0.86). B: The postoperative model had greater area under the precision-recall
curve (0.69 vs. 0.64). The postoperative model reclassified cases and did (C) and did not (D)
feature neurological complications and delirium. Red dots are patients at high-risk for
neurological complications and delirium according to the postoperative model; green dots
are patient at low-risk. C, D: The postoperative model correctly reclassified 2.9% of all
cases. Gray areas represent regions for which predictive discrimination or precision are <0.2,

precluding reasonable clinical application.
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Figure 5: A model using both preoperative and intraoperative data outperformed a model using
preoperative data alone in predicting postoperative cardiovascular complication.

A: The postoperative model had greater area under the receiver operating characteristic
curve (0.87 vs. 0.80). B: The postoperative model had greater area under the precision-recall
curve (0.66 vs. 0.51). The postoperative model reclassified cases that did (C) and did not (D)
feature cardiovascular complications. Red dots are patients at high-risk for cardiovascular
complications according to the postoperative model; green dots are patients at low-risk. C,
D: The postoperative model correctly reclassified 7.9% of all cases. Gray areas represent
regions for which predictive discrimination or precision are <0.2, precluding reasonable

clinical application.
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Figure 6: A model using both preoperative and intraoperative data outperformed a model using
preoperative data alone in predicting postoperative acute kidney injury.
A: The postoperative model had greater area under the receiver operating characteristic

curve (0.84 vs. 0.81). B: The postoperative model had greater area under the precision-recall
curve (0.57 vs. 0.47). The postoperative model reclassified cases that did (C) and did not (D)
feature acute kidney injury. Red dots are patients at high-risk for mortality according to the
postoperative model; green dots are patients at low-risk. C, D: The postoperative model
correctly reclassified 9.9% of all cases. Gray areas represent regions for which predictive
discrimination or precision are <0.2, precluding reasonable clinical application.
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Figure 7: A model using both preoperative and intraoperative data outperformed a model using
preoperative data alone in predicting postoperative venous thromboembolism.

A: The postoperative model had greater area under the receiver operating characteristic
curve (0.83 vs. 0.80). B: The postoperative model had greater area under the precision-recall
curve (0.28 vs. 0.25). The postoperative model reclassified positive cases that did (C) and
did not (D) feature venous thromboembolism. Red dots are patients at high-risk for venous
thromboembolism according to the postoperative model; green dots are patients at low-risk.
C, D: The postoperative model correctly reclassified 4.9% of all cases. Gray areas represent
regions for which predictive discrimination or precision are <0.2, precluding reasonable

clinical application.
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Figure 8: A model using both preoperative and intraoperative data outperformed a model using
preoperative data alone in predicting postoperative wound complication.

A: The postoperative model had greater area under the receiver operating characteristic
curve (0.75 vs. 0.74). B: The postoperative model had greater area under the precision-recall
curve (0.52 vs. 0.50). The postoperative model reclassified cases that did (C) and did not (D)
feature wound complications. Red dots are patients at high-risk for wound complications
according to the postoperative model; green dots are patients at low-risk. C, D: The
postoperative model correctly reclassified 2.4% of all cases. Gray areas represent regions for
which predictive discrimination or precision are <0.2, precluding reasonable clinical

application.
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Figure 9: A model using both preoperative and intraoperative data outperformed a model using
preoperative data alone in predicting postoperative hospital mortality.

A: The postoperative model had greater area under the receiver operating characteristic
curve (0.93 vs. 0.87). B: The postoperative model had greater area under the precision-recall
curve (0.21 vs. 0.15). The postoperative model reclassified cases that did (C) and did not (D)
feature in-hospital mortality. Red dots are patients at high-risk for mortality according to the
postoperative model; green dots are patients at low-risk. C, D: The postoperative model
correctly reclassified 11.2% of all cases. Gray areas represent regions for which predictive
discrimination or precision are <0.2, precluding reasonable clinical application.
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Table 1:
Characteristics of training and testing cohorts.
Training Testing
Date ranges June 2014-Feb 2018  March 2018-Feb 2019
(n=40560) (n=11969)
Average age (years) 56.5 57.5
Ethnicity, n (%) Not Hispanic 38116 (93.9) 11210 (93.6)
Hispanic 1772 (4.4) 599 (5)
Missing 717 (1.8) 171 (1.4)
Race, n (%) White 31399 (77.3) 9376 (78.3)
African American 6136 (15.1) 1739 (14.5)
Other 2483 (6.1) 702 (5.9)
Missing 587 (1.5) 163 (1.4)
Gender, n (%) Male 20614 (50.8) 6072 (50.7)
Female 19991 (49.2) 5908 (49.3)
Primary Insurance, n (%) Medicare 18581 (45.8) 5774 (48.2)
Private 12463 (30.7) 3308 (27.6)
Medicaid 6577 (16.2) 1928 (16.1)
Uninsured 2984 (7.4) 970 (8.1)
Outcomes, n (%) ICU Stay > 48 hours 10355 (25.5) 3408 (28.5)
MV Duration > 48 hours 2372 (5.9) 767 (6.4)
Neurological Complications and Delirium 5860 (14.5) 2364 (19.8)
Acute Kidney Injury 6098 (15) 2111 (17.6)
Cardiovascular Complication 5866 (14.5) 2240 (18.7)
Venous Thromboembolism 2283 (5.6) 943 (7.9)
Wound 7548 (18.6) 3044 (25.4)
192 (2.3) 93 (2.6)

Hospital Mortalitya

aModeIs for hospital mortality were developed using 8,378 surgeries and validated using 3,591surgeries among 11,969 surgeries in the test cohort.
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Table 3:

Net Reclassification Index (NRI) and classification improvement indices for predicting postoperative
complications and mortality with preoperative and intraoperative input data relative to preoperative input data
alone.

Classification Improvement (%)

Complication NRI (95% CI) p Event  Non-Event  Overall
ICU stay > 48 hours 0.05 (0.03-0.06) <0.001 -7.9 12.6 6.8
MV duration > 48 hours 0.21 (0.16-0.22) <0.001 10.9 9.9 10.0
Neurological Complications and Delirium  0.05 (0.03-0.07)  <0.001 21 31 2.9
Acute Kidney Injury 0.05 (0.04-0.07) <0.001 -8.7 13.9 9.9
Cardiovascular Complication 0.12 (0.1-0.12)  <0.001 2.3 9.2 7.9
Venous Thromboembolism 0.03 (0.04-0.06) 0.09 -2.7 5.6 4.9
Wound Complication 0.02 (0.01-0.04) 0.14 -25 4.1 24
Hospital Mortality 0.14 (0.06-0.21)  0.024 2.2 115 11.2

ClI: confidence interval, ICU: intensive care unit, MV: mechanical ventilation.
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