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Diabetic retinopathy (DR) is an eye disease that damages the blood vessels of the eye. DR causes blurred vision or it may lead to
blindness if it is not detected in early stages. DR has five stages, i.e., 0 normal, 1 mild, 2 moderate, 3 severe, and 4 PDR.
Conventionally, many hand-on projects of computer vision have been applied to detect DR but cannot code the intricate
underlying features. ,erefore, they result in poor classification of DR stages, particularly for early stages. In this research, two
deep CNN models were proposed with an ensemble technique to detect all the stages of DR by using balanced and imbalanced
datasets.,emodels were trained with Kaggle dataset on a high-end Graphical Processing data. Balanced dataset was used to train
both models, and we test these models with balanced and imbalanced datasets. ,e result shows that the proposed models detect
all the stages of DR unlike the current methods and perform better compared to state-of-the-art methods on the same
Kaggle dataset.

1. Introduction

Diabetes mellitus, commonly known as diabetes, causes high
blood sugar. Persistently high blood sugar level leads to
various complications and general vascular deterioration of
the heart, eyes, kidneys, and nerves [1]. Diabetic retinopathy
(DR) is one of the leading diseases caused by diabetes [2]. It
damages the blood vessels of the retina, for those who have
diabetes type-I or type-II. DR is classified into two major
classes: nonproliferative (NPDR) and proliferative (PDR) [3].
In NPDR, the changes are detected in the retina that needs to
be monitored. ,e NPDR is subdivided into three stages
according to the level of damage in the retina, namely, mild,
moderate, and severe. ,e NPDR would turn to PDR with a
high risk if timely not diagnosed. In PDR, fragile (breakable)
new blood vessels form on the surface of the retina over time.
,ese abnormal vessels can bleed or develop scar tissue,

causing severe loss of sight (neovascularization, vitreous
hemorrhages). ,e disease progresses from mild NPDR to
PDR, as shown in Figure 1. ,e influence of DR can be al-
leviated if it can be detected and treated at an early stage.

Globally, patients are expected to increase from 382
million to 592 million by 2025 with diabetes [4]. And, with
DR, this is excepted to increase from 126.6 million to 191.0
million by 2030 [5]. ,e international diabetes federation
estimates that global incidence of adult diabetes will be
increased from 8.4% in 2017 to 9.9% by 2045 [6]. In the early
stage, patients are asymptomatic but in advanced stage, it
may lead to blurred vision, floaters, and visual acuity loss.
Hence, it is difficult and utmost important to detect DR in
early stages to avoid the worse effect on later stages.

Figure 1 shows the images of all stages; it is clear that
normal and mild stage visually look similar. So, it is difficult
to detect mild stage. ,e color fundus images are used to
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diagnose DR. ,e manual analysis can only be done by
experts, which is expensive in terms of time and cost.
,erefore, it is important to use computer vision techniques
to automatically analyze fundus images. Many automatic
techniques have been applied to detect DR. Computer vision-
based method can be divided into two categories: hand-on
engineering [7] and end-to-end learning [8, 9]. ,e hand-on
engineering methods were based on single selected features,
such as blood vessels outline, exudes, hemorrhages, micro-
aneurysms, and maculopathy of retinal fundus image or their
combinations [7]. ,e end-to-end learning automatically
learns features and hence performs better classification.Many
hand-on engineering and end-to-end learning methods
[8–14] detect DR using Kaggle dataset, but no approach could
detect mild stage. To treat this fatal disease, early stage de-
tection is important. ,is study focuses on detecting all the
stages of DR (including mild stage) using end-to-end deep
ensemble networks. ,e result shows that the proposed
approach outperforms state-of-the-art methods.

,e remainder of this paper is organized as follows.
Section 2 reviews recent literature related to DR detection.
,e proposed model is described in Section 3. ,e perfor-
mance evaluation and results are presented in Section 4.
Conclusions of the research and suggestions for future work
are summarized in Section 5.

2. Literature Review

,e classification of DR has been extensively studied in the
literature. Several studies have proposed methods to
detect DR stages and its severity [15–21]. DR can be
detected in many ways such as single stage detection and
binary classification. ,e problem in these methods is that
we cannot detect the severity of the disease. So, the so-
lution is multiclass classification. Pratt et al. [20] proposed
a CNN-based method; however, Pratt et al.’s [20] archi-
tecture did not detect the mild stage and achieved 30%

sensitivity and 95% specificity, which indicates that the
architecture did not classify the affected stages properly.
,e major issue with their sensitivity results is that they
used an imbalanced/skewed dataset. Another study [22]
shows a better result when using a balanced dataset for
training; however, a balanced dataset has not yet been
used to detect DR when testing a model. In addition,
Bravo et al. [23] used a balanced dataset to train a model
and achieved 50.5% accuracy; however, the test dataset
was not balanced. Further, Chandrakumar et al. [16]
implemented a deep CNN deployed with a dropout layer
to detect DR and achieved 94% accuracy on the DRIVE
dataset. ,ey used spatial feature analysis for detection;
however, the number of samples in the dataset was not
sufficient. Furthermore, Takahashi et al. [21] proposed an
AI disease-staging system that grades DR by using a
retinal area. ,at proposed system directly suggests
treatments and determines prognoses. However, they
used modified Davis staging, which is not commonly
employed for grading DR. In that study, in the network
misclassified some images, the false negative rate was
lower than the false positive rate.

Moreover, deep learning classification algorithms have
proven to be very effective if the model is trained in a su-
pervised manner with sufficient data. Transfer learning with
different CNN models has achieved good accuracy and DR
classification results [24, 25]. Kori et al. [26] used an en-
semble technique to detect DR stages and DME, and,
according to [27], ensemble models perform well. Similarly,
Choi et al. [28] pretrained a model with transfer learning and
used an ensemble voting technique that improved accuracy.
Hagos et al. [29] used transfer learning to train an Inception-
V3 model that classified all stages. ,ey achieved 90.9%
accuracy on the test dataset. Similarly, Carson et al. [30] also
used transfer learning to classify all DR stages. However,
they all use transfer learning and an ensemble technique but
did not use balance dataset to train and test a model.
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diabetic retinopathy 

(NPDR)
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Diabetic retinopathy 
(DR)

Figure 1: Stages of DR.
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,e literature shows that researchers have applied or
proposed various methods for detecting and classifying DR
stages. As mentioned above, there are many ways to detect
DR, but multiclassification detects the severity of DR stages.
In the multiclass classification, the stages are divided into 5
stages as discussed in the Introduction section. However,
most of the literature is not able to properly classify all stages
of DR, especially the initial stage. It is important to detect the
early stage of DR for treatment, as at a later stage it is difficult
to cure and can lead to blindness. To the best of our
knowledge, no other work has identified the early stages
using the Kaggle dataset we used for our research with a
balanced dataset. Our models can detect the mild stage and
perform better than the current state of the art. Moreover, in
the literature, no one has shown the result of a balanced
dataset. Imbalanced dataset can lead to bias in classification
accuracy. If the samples in the classes are equally distributed
in a balanced dataset, then the network can learn the pos-
sibilities correctly, but, in the case of an imbalanced dataset,
the networks exceed the high sampling class.

3. The Proposed Method

3.1. Preprocessing. ,e different preprocessing steps we
perform on the input dataset before giving it to themodel are
shown in Figure 2.

We used the Kaggle dataset which contains 35126 color
fundus images, each of size 3888× 2952 pixels, shown in
Figure 2(a). It contains an image of five classes according to
DR severity. Table 1 shows the distribution of sample images
in different classes of Kaggle dataset. ,e distribution of
samples images is shown in the first row of Table 1, which is
clearly imbalanced. Training a deep network with imbal-
anced dataset may lead to biasness of classification. In the
first preprocessing step, we resized each image to 786× 512,
which maintains the original aspect ratio, shown in
Figure 2(b). Moreover, we randomly cropped 512× 512
patches to reduce training overhead, as depicted in
Figure 2(c). Furthermore, to speed up training time and
avoid feature biasness, each image was mean normalized as
shown in Figure 2(d). In the end, the dataset is balanced with
upsampling [22]. Upsampling was performed by rotating an
image to 90 degrees, augmenting minority classes, and
flipping image, as shown in Figure 2(e), which increase the
size of dataset, balance the samples in each class, and avoid
overfilling. ,e distribution of balanced samples images of
the different classes is shown in second row of Table 1, in
which the balanced dataset is divided into three sets: training
(64%), testing (20%), and validation (16%), and the vali-
dation set is used during the training to check and reduce
overfitting. Finally, we make batches from the training
dataset, i.e., dataset_1, dataset_2, and dataset_3, which are
used to train the models.

Table 1 shows the total number of samples in each class.
,e original dataset contains 35126 samples with different
numbers of samples in each class; i.e., this dataset is highly
imbalanced. To balance this dataset, we performed the
preprocessing steps mentioned above. ,e balanced dataset
contains 129050 samples. ,is dataset is further divided into

the training, test, and valid datasets, and the training dataset
is further divided into three smaller datasets, dataset_1,
dataset_2, and dataset_3, each of which has an equal number
of samples, i.e., 27530.

3.2. Model 1. ,e combination of several machine learning
techniques into a single predictive model is called an en-
semble method. It may include decreasing variance (bag-
ging) and bias (boosting) or improving prediction (stacking)
[31]. We employ a bagging ensemble technique, wherever
the bagging represents bootstrap aggregation. ,e variance
of an estimate can be reduced by taking an average of
multiple estimates. Bootstrap sampling is used in Bagging
method to obtain data subsets for training a base learner.,e
output of a base learner is aggregated by voting and aver-
aging for classification.

,e proposed approach ensembles the result of three
datasets trained with DenseNet-121. Algorithm 1 presents
the proposed model in detail. Let H� {DenseNet-121} be a
pretrained model. A model is fine-tuned with three fundus
images datasets (X,Y), where X is the number of images,
size of 512 × 512, and Y contains the corresponding labels;
Y � {y/y ϵ {normal, mild, moderate, severe, PDR}}. ,ree
bags of datasets are divided into mini batches, each of size
n � 5, such that (Xi,Yi) ϵ (Xtrain, Ytrain), i � 1, 2, . . ., N/n;
iteratively optimizing (fine-tuning) the CNN model h ϵH
reduces the empirical loss:

L w; Xi(  �
1
n


xϵXi, yϵYi

l(h(w, x), y), (1)

where x is the input, y is the class, h(x, w) is a CNN model
predicting class y for input x, and w and l are the categorical
cross-entropy penalty functions. ,e stochastic gradient
descent is used to update the learning parameters:

wt+1 � cwt − α∇wJ x
i
, y

i
; w , (2)

where α is the learning rate and is set as 0.0001. γ is a
Nesterov momentum which helps accelerate SGD in the
relevant direction and dampens oscillations, set as 0.9. In the
start wt, t� 0 is initialized to the learned weights of themodel
h ϵH using transfer learning. ,e output layer of a model, h
ϵH, uses SoftMax as an activation function which generates
the probabilities of how much the input belongs to the set of
different classes {normal, mild, moderate, severe, PDR}. We
use 50 epochs for training with early termination if the
model starts overfitting.

In case of testing a model, an unseen example from the
class label is used to predict the model efficiency. ,e results
of all models were combined by averaging which provides a
unified output. ,e ensemble approach leads to better
performance by combining the strengths of individual
models. ,e proposed bagging ensemble is shown in Fig-
ure 3. Let Xtest be a new test sample; then the ensemble
output is given by

m
∗

� argmaxm

h∈Huh w, Xtest( 

|Hu|
, (3)
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Figure 2: Preprocessing steps: (a) original image, (b) aspect ratio, (c) cropped 512× 512 image, (d) normalization applied to cropped image,
and (e) augmented image.

Table 1: Dataset samples in each dataset.

Dataset/class 0 1 2 3 4 Total
Original 25810 2443 5292 873 708 35126
Balanced 25810 25810 25810 25810 25810 129050
Training 16518 16518 16518 16518 16518 82590
Dataset_1 5506 5506 5506 5506 5506 27530
Dataset_2 5506 5506 5506 5506 5506 27530
Dataset_3 5506 5506 5506 5506 5506 27530
Test 5160 5160 5160 5160 5160 25800
Valid 4132 4132 4132 4132 4132 20660

Dataset_1

Dataset_2

Dataset_3

DenseNet121

DenseNet121

DenseNet121

Average Output

Normal

Mild

Moderate

Severe

PDR

Main dataset

Figure 3: Ensemble Model 1 for classification of DR stages.

Require: fundus images (X,Y); where Y� {y/y ϵ {normal, mild, moderate, severe, PDR}}
Output: the trained model that classifies the fundus images x ϵX
(1) Perform preprocessing:

(i) Resize the image to dimension 786× 512
(ii) Perform augmentation: randomly crop five patches, of size 512× 512, of each image and perform flip flop and 90 degree

rotation
(iii) Mean normalize the each image

Import a set of pretrained models H� { DenseNet-121 }
Replace the last fully connected layer of each model by a layer of (5×1) dimension
for each ∀hϵH do

α� 0.0001
for epochs� 1 to 50 do
for each mini batch(Xi,Yi) ϵ (Xtrain, Ytrain) do

Update the parameters of the model h(.) using Eq.2
if the validation error is not improving for five epochs then
stop training

end
end

end
end
foreach xϵXtest do

Ensemble the output of all models, hϵ H, using equation (3)
End

ALGORITHM 1:,e proposed algorithm.
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where h(.) is the fine-tuned model, |H| is the cardinality of
the models, and m represents the different modalities such
that m ϵ {normal, mild, moderate, severe, PDR}.

3.3. Model 2. ,is model is an improved version for the
classification of DR stages in this study. Algorithm 2 presents
the details of the proposed model. Let H� {DenseNet-121,
ResNet50, Inception-V3} be pretrained models. ,e models
are fine-tuned with three fundus images datasets (X,Y),
under the same conditions as Model 1 (Section 3.2). ,e
proposed bagging ensemble for Model 2 is illustrated in
Figure 4.

4. Results

In this section, the results of the proposed models are
discussed using imbalanced and balanced datasets. ,e
proposed models were trained utilizing a high-end Graphics
Processing Unit (NVIDIA GeForce GTX 1070 Laptop) with
the CUDA Deep Neural Network library. In addition, the
TensorFlow and Keras (http://keras.io/) were used (Keras as
deep learning package and TensorFlow as machine learning
back end).

4.1. Performance Parameters. We used the following metrics
to evaluate the performance of the proposed model. Here,
the objective was to properly classify all DR stages specially
the early stages of DR.

Accuracy. Accuracy can be calculated as positive and
negative classes:

accuracy �
TP + TN

TP + TN + FP + FN
. (4)

Here, TP is true positive, TN is true negative, FP is false
positive, and FN is false negative.
Recall/Sensitivity. Recall (or sensitivity) is also known
as the TP Rate (TPR).

sensitivity �
TP

TP + FN
. (5)

Specificity. Specificity is also known as the TN Rate.

specificity �
TN

TN + FP
. (6)

Precision. Precision is the rate of correctly predicted
number of classes over the total number of classes
predicted by the model.

precision �
TP

TP + FP
. (7)

Area under the Curve [32] and Receiver Operating
Curve (AUC-ROC) [33] represent the degree or measures of
separability of different classes. ,e higher the AUC score,
the better the model and vice versa.

Table 2 shows the number of samples in the datasets.,e
imbalanced dataset contains 5608 samples, and the balanced

Require: fundus images (X,Y); where Y� {y/y ϵ {normal, mild, moderate, severe, PDR}}
Output: the trained model that classifies the fundus images x ϵX
(1) Perform preprocessing:

(i) Resize the image to dimension 786× 512
(ii) Perform augmentation: randomly crop five patches, of size 512× 512, of each image and perform flip flop and 90 degree

rotation
(iii) Mean normalize the each image

Import a set of pretrained models H� {Dense121, ResNet50, Inception-V3}
Replace the last fully connected layer of each model by a layer of (5×1) dimension
foreach ∀h ϵH do

α� 0.0001
for epochs� 1 to 50 do
foreach mini batch(Xi,Yi) ϵ (Xtrain, Ytrain) do

Update the parameters of the model h(.) using Eq.2
if the validation error is not improving for five epochs then
stop training

end
end

end
end
foreach x ϵ Xtest do

Ensemble the output of all models, h ϵ H, using equation (3)
End

ALGORITHM 2:,e proposed algorithm.
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dataset contains 25800 samples (5160 samples in each class).
,ese samples are obtained by the preprocessing steps.

To show the effect of the imbalanced dataset, we have
used two datasets: (i) imbalanced dataset and (ii) balanced
dataset. In the end, we also have shown the comparative
results of the models.,e distribution of test dataset samples
is given in Table 2.

4.2. Model 1. Model 1 is similar to a bagging technique
where only a single base model is used with different bags of
datasets. We consider the DenseNet-121 dataset as the base
model, and we used three balanced datasets to train this
model discussed in Section 3.1. ,e results were computed
using a batch size of 5. ,e resulting confusion matrices are
shown in Figure 5. Each class of a dataset is equally dis-
tributed in the balanced dataset; therefore, the classification
result is also better than the result obtained using the im-
balanced dataset. With the balanced dataset, Class 1 (mild) is
predicted accurately compared to the imbalanced dataset
where only eight images are predicted. We obtained higher
accuracy with the imbalanced dataset due to the unequal
distribution of samples. We can also see a difference in Class
4 (PDR) prediction. Here, the balanced dataset outperforms
the imbalanced dataset.,e overall accuracy achieved by this
model was 78.13% and 60.80% on the imbalanced and
balanced datasets, respectively. To obtain more accurate
results, we also evaluated results using the ROC curve,
shown in Figure 6, and class-wise results, given in Table 3.

Table 3 lists class-wise results for both balanced and
imbalanced datasets in terms of recall, precision, and
specificity. As can be seen, the results are significantly better
in the balance dataset compared to those in the imbalanced
dataset. ,e values differ due to the different number of
samples. In the recall column, all class values for the bal-
anced dataset are better than those for the imbalanced
dataset, particularly for Class 1 and Class 4. ,ese classes are
predicted very well in Model 1. In the precision column,
Class 1 and Class 4 are predicted more accurately in the
balanced dataset than in the imbalanced dataset. In the
specificity column, the values for the balanced dataset are

less than the values for the imbalanced dataset. Balanced
dataset results are better than imbalanced dataset results;
however, the overall accuracy values differ. As accuracy
results differ, we also find the ROC curve for the balanced
and imbalanced dataset as shown in Figure 6.

,e ROC curve for the balanced dataset indicates the
equal distribution of samples. ,e most accurate prediction
was obtained for Class 0 because its area is 0.96, which is near
1. We can also see that Classes 1-4 curves are also near 1,
which means that Model 1 classifies all images accurately.
With the imbalanced dataset, the highest curve is achieved
by Class 4 because it has the lowest number of samples, and
the predicted images are also high, which is why the curve is
near 1. Class 0 has more samples than all other classes, and
the predicted value is also very high. However, as the
number of samples increases, the curve decreases to 0, which
is why the area of Class 0 is 0.82.

4.3. Model 2. Model 2 is the same as Model 1; however, the
training models differ. With Model 2, we trained three deep
CNN models, i.e., DenseNet-121, ResNet50, and Inception-
V3, with different bags of training datasets. Note that the
same test dataset was used for all three models. ,e models
are tested with balanced and imbalanced datasets, and the
results are shown in Figure 7. ,e classes are distributed
equally in the balanced dataset; therefore, the classification
result is better than that of the imbalanced dataset. With the
balanced dataset, Class 1 (mild) is predicted accurately, while
in the imbalanced dataset only two images are predicted. In
addition, in the balanced dataset, approximately 2000 images
are predicted accurately in each class; 5000 images were
predicted for Class 0. We obtain higher accuracy with the
imbalanced dataset due to the unequal sample distribution.
We can also see a difference in Class 1 (mild) and Class 4
(PDR) predictions. For these classes, the balanced dataset
outperforms the imbalanced dataset. ,e overall accuracy
achieved by this model was 80.36% and 60.89% on the
imbalanced and balanced dataset, respectively.

,e ROC curves for the balanced and imbalanced
datasets are shown in Figure 8. For more accurate results, we

Table 2: Test dataset samples in both balanced and imbalanced datasets.

Class dataset 0 (normal) 1 (mild) 2 (moderate) 3 (severe) 4 (PDR) Total
Imbalanced 4119 391 845 140 113 5608
Balanced 5160 5160 5160 5160 5160 25800

Dataset_1

Dataset_2

Dataset_3

ResNet50

DenseNet121

Inception-V3

Average Output

Normal

Mild

Moderate

Severe

PDR

Main dataset

Figure 4: Ensemble Model 2 for classification of DR stages.
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Table 3: Model 1 class-wise result of balanced and imbalanced dataset.

Dataset Balanced Imbalanced
Class Recall Precision Specificity Recall Precision Specificity
Class 0 0.974811 0.620958 0.776313 0.971595 0.810614 0.288973
Class 1 0.561047 0.629622 0.882527 0.02046 0.117647 0.986468
Class 2 0.430233 0.394597 0.798163 0.298225 0.604317 0.961583
Class 3 0.472868 0.648247 0.909147 0.457143 0.561404 0.988553
Class 4 0.60124 0.835938 0.953846 0.495575 0.777778 0.996315
Accuracy 60.80 78.13
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Figure 5: Confusion Matrices: (a) balanced dataset, (b) imbalanced dataset.

0.0
0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0
False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

Receiver operating characteristic (ROC)

Microaverage ROC curve (area = 0.87)
Macroaverage ROC curve (area = 0.87)
ROC curve of class 0 (area = 0.96)
ROC curve of class 1 (area = 0.87)
ROC curve of class 2 (area = 0.75)
ROC curve of class 3 (area = 0.86)
ROC curve of class 4 (area = 0.89)

(a)

Receiver operating characteristic (ROC)

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

Microaverage ROC curve (area = 0.95)
Macroaverage ROC curve (area = 0.84)
ROC curve of class 0 (area = 0.82)
ROC curve of class 1 (area = 0.65)
ROC curve of class 2 (area = 0.82)
ROC curve of class 3 (area = 0.94)
ROC curve of class 4 (area = 0.96)

(b)

Figure 6: ROC for Model 1: (a) balanced dataset and (b) imbalanced dataset.
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also consider class-wise results, as shown in Table 4. Table 4
shows the class-wise results for both balanced and imbal-
anced datasets in terms of recall, precision, and specificity.
,e balanced dataset shows improved results compared to
the imbalanced dataset, in terms of recall, precision, spec-
ificity, and accuracy. In the recall and precision columns, all
values were improved for the balanced dataset, and speci-
ficity was also improved. Overall accuracy for the imbal-
anced dataset was higher than that for the balanced dataset
due to the unequal number of samples in the imbalanced

dataset. ,e negative class (Class 0), which is predicted
accurately, has the large number of samples; however,
positive Classes1-4 are misclassified. We calculated ROC
curves for both balanced and imbalanced datasets shown in
Figure 8.

,e ROC curve for the balanced dataset shows the
equality in sample distribution. ,e more accurately pre-
dicted class is 0 because its area is 0.97, which is close to 1.
We can also see that Classes 1- 4 curves are also near to 1,
which means that Model 2 classified all images accurately.
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Figure 7: Confusion matrices: (a) balanced dataset and (b) imbalanced dataset.

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

Microaverage ROC curve (area = 0.88)
Macroaverage ROC curve (area = 0.88)
ROC curve of class 0 (area = 0.97)
ROC curve of class 1 (area = 0.88)
ROC curve of class 2 (area = 0.76)
ROC curve of class 3 (area = 0.88)
ROC curve of class 4 (area = 0.92)

Receiver operating characteristic (ROC)

(a)

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

Microaverage ROC curve (area = 0.95)
Macroaverage ROC curve (area = 0.85)
ROC curve of class 0 (area = 0.84)
ROC curve of class 1 (area = 0.66)
ROC curve of class 2 (area = 0.85)
ROC curve of class 3 (area = 0.95)
ROC curve of class 4 (area = 0.97)

Receiver operating characteristic (ROC)

(b)

Figure 8: ROC curves for Model 2: (a) balanced dataset and (b) imbalanced dataset.
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With the imbalanced dataset, the highest curve was achieved
by Class 4 because it has lowest number of samples, and the
predicted number of images was also high, which is why the
curve is close to 1. ,ere were more samples in Class 0 than
the other classes, and the predicted value is also very high.
However, as the number of samples increases, the curve
decreases to 0, which is why the area of Class 0 is 0.84. It is
vital to detect all DR stages for early treatment of the disease.
Class 1 (mild) is the first stage of the disease and detection at
this stage is important to provide better treatment.

4.4. Model Comparison. In this section, the results obtained
in Model 1 and Model 2 are compared with each other and
also to those of other models. Model 2 returned much better
results than Model 1 because the stages are classified
properly. Models 1 and 2 achieved 78.13% and 80.36%
accuracy, respectively, as shown in Table 5. ,e models are
also trained with different batch sizes, and accuracy, recall,
and specificity results change as the batch size changes given
in Table 5.

Various models are compared in Table 5. ,ese models
were trained with the same architecture but with different
batch sizes, except for themodel proposed by Pratt et al. [20].
Models batch_size_2, batch_size_3, and batch_size_4 were
trained with Model 1 architecture but with different batch
sizes, i.e., batch sizes 2, 3, and 4, respectively. Model 1 used
batch size 5. ,e results for Model 1 with batch size 5 are
discussed in detail in Section 4. DenseNet-121, ResNet50,
Inception-V3, Xception, and Dense169 were trained using
the entire balanced dataset with batch size 8, and these
models are tested on an imbalanced dataset. Pratt et al.’s [20]
model is used for comparison with the proposed models
because that study [18] also used the Kaggle dataset and

investigated classification of DR stages. Model 2 was trained
with batch size 5, and those results are also discussed in
Section 4. Our proposed models, 1 and 2, outperform Pratt
et al.’s [20] model if we consider accuracy, recall, and
specificity of the model tested on the imbalanced dataset.
However, Model 2 outperforms both Model 1 and the Pratt
et al.’s [20] model relative to recall and specificity.

,e results of Model 1, Model 2, and the model of Pratt
et al. [20] are compared in Figure 9. Pratt et al.’s [20] model
achieved a specificity value of 95%, which is a higher value
than that achieved by both Model 1 and Model 2 with the
imbalanced dataset. With the imbalanced dataset, Model 1
and Model 2 achieved 84.43% and 95.84%, respectively.
Compared to Pratt et al.’s [20] model, recall and accuracy
increased from 30% to 44.85% and 75% to 78.13%, re-
spectively, withModel 1.WithModel 2, recall was 47.7% and

Table 4: Model 2 class-wise result of balanced and imbalanced dataset.

Dataset Balanced Imbalanced
Class Recall Precision Specificity Recall Precision Specificity
Class 0 0.980236 0.609959 0.767048319 0.981063 0.827735 0.356542
Class 1 0.510659 0.644727 0.900055 0.005115 0.060606 0.993166
Class 2 0.437597 0.408023 0.804172 0.400000 0.686992 0.964377
Class 3 0.539147 0.63458 0.889753 0.485714 0.519084 0.986006
Class 4 0.576826 0.849843 0.960332 0.513274 0.828571 0.997310
Accuracy 60.89 80.36

Table 5: Comparison of models.

Models Imbalance acc. Balance acc. Recall Specificity
Batch_size_2 77.00 60.44 48.36 85.40
Batch_size_3 77.40 61.62 49.87 84.98
Batch_size_4 77.78 60.41 46.33 85.48
Model 1 78.13 60.80 44.85 84.43
DenseNet-121 78.08 — 49.80 85.93
ResNet50 77.28 — 45.14 84.8
Inception-V3 71.25 — 48.17 84.54
Xception 74.41 — 46.26 84.61
Dense169 73.91 — 47.58 84.85
Pratt et al.’s [20] model 75.00 — 30.00 95.00
Model 2 80.36 60.89 47.70 85.94
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Figure 9: Comparison results of Model 1 andModel 2 for balanced
and imbalanced datasets and Pratt et al.’s [20] model.
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accuracy was 80.36%, which means that Model 2 yielded
better classification than Pratt et al.’s [20] model and Model
1 and classified all stages of DR. Recall values are much
higher in the balanced dataset compared to those in im-
balanced dataset. Accuracy and recall can be improved if a
larger batch size is used.

5. Conclusions

Diabetes is one of the fast-growing diseases in the world and
causes many diseases. Diabetic retinopathy (DR) is one of
those diseases. DR has different stages from mild to severe
and then PDR (Proliferative Diabetic Retinopathy). In the
later stages of the disease, it may lead to symptoms such as
floaters, blurred vision, and finally a vision loss. Manually
diagnosing this disease is tedious and error prone. So,
computer vision-based techniques applied to diagnose a
disease in an automatic way are discussed in the literature. In
this study, we presented two deep ensemble CNN Models 1
and 2 to classify the stages of DR using both balanced and
imbalanced datasets. ,e proposed two models outperform
other single deep learning architectures in terms of accuracy,
such as DenseNet-121, ResNet50, Inception-V3, and
Dense169, which indicates that ensemble technique can
strengthen the capability of classifying model. Model 2 yields
higher accuracy with 80.36% than Model 1 does with 78.13%
on imbalanced dataset, which indicates that diversity of base
classifiers used for ensemble framework is the key factor to
high accuracy of ensemble classifying model. Moreover, the
confusion matrices of Models 1 and 2 with the balanced and
imbalanced datasets have shown equalization of training
dataset which makes the classifying model more stable.

In the future, we intend to extend Kaggle dataset by
adding fundus images of the same patient during a long
period in collaboration with doctors and, oreover, training
specific models for specific stages to increase the accuracy of
early stages.
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