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Endometrial cancer is one of the most common malignant tumors, lowering the quality of life among women worldwide.
Autophagy plays dual roles in these malignancies. To search for prognostic markers for endometrial cancer, we mined The
Cancer Genome Atlas and the Human Autophagy Database for information on endometrial cancer and autophagy-related genes
and identified five autophagy-related long noncoding RNAs (lncRNAs) (LINC01871, SCARNA9, SOS1-IT1, AL161618.1, and
FIRRE). Based on these autophagy-related lncRNAs, samples were divided into high-risk and low-risk groups. Survival analysis
showed that the survival rate of the high-risk group was significantly lower than that of the low-risk group. Univariate and
multivariate independent prognostic analyses showed that patients’ age, pathological grade, and FIGO stage were all risk factors
for poor prognosis. A clinical correlation analysis of the relationship between the five autophagy-related lncRNAs and patients’
age, pathological grade, and FIGO stage was also per https://orcid.org/0000-0001-7090-1750 formed. Histopathological
assessment of the tumor microenvironment showed that the ESTIMATE, immune, and stromal scores in the high-risk group
were lower than those in the low-risk group. Principal component analysis and functional annotation were performed to
confirm the correlations. To further evaluate the effect of the model constructed on prognosis, samples were divided into
training (60%) and validation (40%) groups, regarding the risk status as an independent prognostic risk factor. A prognostic
nomogram was constructed using patients’ age, pathological grade, FIGO stage, and risk status to estimate the patients’ survival
rate. C-index and multi-index ROC curves were generated to verify the stability and accuracy of the nomogram. From this
analysis, we concluded that the five lncRNAs identified in this study could affect the incidence and development of endometrial
cancer by regulating the autophagy process. Therefore, these molecules may have the potential to serve as novel therapeutic
targets and biomarkers.

1. Introduction

Endometrial cancer is one of the most common malignant
tumors among women. In 2020, this cancer was the fourth
most common malignant tumor in American women, and
65,620 new cases and 12,590 deaths annually were predicted
[1]. The most common clinical manifestation of endometrial
cancer is irregular vaginal bleeding [2], and common risk fac-
tors include advanced age, obesity, reproductive issues, and

hormone replacement therapy [3–6]. Endometrial cancer is
often divided into two types. The estrogen-related Type I
has a good prognosis; whereas, Type II is unrelated to estro-
gen, differentiates poorly, and is more aggressive [7].

Long noncoding RNA (lncRNA) is an RNA that is ≥200
nucleotides [8]. lncRNA participates in the incidence and
development of several diseases such as cardiovascular
disease, nervous system diseases, and malignant tumors [9–
11]. There are several mechanisms of lncRNA regulation in
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the incidence and development of malignancies [12–14]. For
example, in triple-negative breast cancer, let-7b acts as a
decoy, allowing HOST2 to repress STAT3 expression, and
thus, regulate tumor proliferation and migration [15].

Autophagy is the process in which cells phagocytose
and degrade their own components to satisfy the cell’s
own metabolic needs and to renew certain organelles.
Autophagy is also related to the incidence and develop-
ment of cardiovascular disease, neurodegenerative diseases,
and malignant tumors [16–18], although the role of
autophagy in malignancies has not been elucidated yet.
However, some studies indicate that autophagy can pro-
mote the progression of malignant tumors and inhibit
their incidence and development [19, 20]. In mammary
cancer, for example, autophagy-mediated degradation of
NBR1 restricts metastasis [21].

Several advances in the study of autophagy have also
been made in endometrial cancer. For example, inhibition
of autophagy results in progestin resistance via the
PI3K/AKT/mTOR pathway [22]. Several articles about
screening immune-related lncRNAs to construct prognostic
models through a coexpression method had been published
[23, 24]. Likewise, using a coexpression method, we identi-
fied five autophagy-related lncRNAs in silico by collating
and merging data on endometrial cancer samples in The
Cancer Genome Atlas (TCGA) database (https://portal.gdc
.cancer.gov/) [25] and data on autophagy-related genes in
the Human Autophagy Database (HADb) (http://www
.autophagy.lu/) [26]. We then constructed a prognostic
nomogram to estimate the patients’ survival rate and
concluded that these lncRNAs have potential as novel thera-
peutic targets and tumor biomarkers.

2. Materials and Methods

2.1. Autophagy-Related lncRNAs. We obtained the list of
autophagy-related genes from HADb [26]. Fragments per
kilobase million (FPKM) RNA-seq data of 575 endometrial
cancer samples, which included 23 normal samples and 552
tumor samples, were downloaded from the TCGA database
(https://portal.gdc.cancer.gov/) [25]. The Ensembl human
genome browser, GRCh38.p13 (http://asia.ensembl.org/
index.html), was used to annotate and classify the lncRNAs
and protein-coding genes. The expression matrix of all genes
was generated by data processing and divided into an
lncRNA expression matrix and an mRNA expression matrix.
By integrating autophagy-related genes with the mRNA
expression matrix, the expression matrix of autophagy-
related genes was produced. Autophagy-related lncRNAs
and the expression matrix of autophagy-related lncRNAs
were analyzed using the limma package in R software. The
autophagy-related lncRNAs were selected based on the cri-
teria that the absolute value of the correlation coefficient
was greater than 0.6 (jRj > 0:6) and the P value was less than
0.001 (P < 0:001).

2.2. Cox Regression and Survival Analysis. Clinical data for
endometrial cancer samples were downloaded from UCSC
Xena (https://xenabrowser.net/) [25, 27, 28] and organized

and merged with the expression matrix of autophagy-
related lncRNAs. Using the survival package in R software,
univariate and multivariate Cox regression analyses were
performed to obtain a list of autophagy-related lncRNAs
associated with prognosis. The hazard ratios (HRs) were used
to identify risk-related lncRNAs (HR > 1) and protective
lncRNAs (HR < 1). Next, the samples were divided into
high-risk and low-risk groups based on the risk score: risk
score =∑n

i=1coefðiÞ × xðiÞ, where coefðiÞ and xðiÞ represent
the estimated regression coefficient and the expression value
of each autophagy-related lncRNA, respectively. Then, the
survival and survminer packages in R software were used to
draw survival curves for the two groups. The pheatmap pack-
age in R software was used to draw risk curves for the high-
risk and low-risk groups.

2.3. Independent Prognostic Analysis and Clinical Correlation
Analysis. The survival package in R software was used to con-
duct univariate and multivariate independent prognostic
analyses to evaluate the effects of age, pathological grade,
and FIGO stage on prognosis. The survivalROC package in
R software was used to draw a multi-index ROC curve to
assess the accuracy of the constructed model. Then, the
ggpubr package in R software was used for clinical correla-
tion analysis.

2.4. Tumor Microenvironment Scores and Principal
Component Analysis. Based on the ESTIMATE algorithm,
the limma and estimate packages in R software were used
to calculate ESTIMATE, immune, and stromal scores in the
tumor microenvironment for all samples. By collating and
merging clinical data, ESTIMATE, immune, and stromal
scores for different risk statuses were then obtained. Next, R
software was used to draw box plots of immune and stromal
scores for different risk statuses. Principal component analy-
sis was then performed on all risk-associated genes and
immune-related lncRNAs using limma and scatterplot3d
packages in R software.

2.5. Functional Annotation. Gene sets REACTOME_
AUTOPHAGY (systematic name: M27935), GO_REGULA-
TION_OF_AUTOPHAGY (systematic name: M10281),
GO_NEGATIVE_REGULATION_OF_AUTOPHAGY (sys-
tematic name: M12149), and GO_MACROAUTOPHAGY
(systematic name: M11871) were downloaded from the gene
set enrichment analysis (GSEA) database (https://www.gsea-
msigdb.org/gsea/index.jsp). Then, the expression matrix of
all genes and clinical data for different risk statuses were
sorted and merged. Next, gene set enrichment analysis of
these four gene sets was performed using GSEA (4.0.2)
software [29, 30]. The enriched gene sets were obtained based
on a P value < 0.05 and a false discovery rate ðFDRÞ value <
0:25 after performing 1,000 permutations.

2.6. Multivariate Cox Regression Analysis and Nomogram.
All samples were divided into training (60%) and valida-
tion (40%) groups using the foreign, survival, and caret
packages in R software. Multivariate Cox regression analy-
sis was performed with the rms, foreign, and survival
packages in R software. The nomogram was constructed
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using the rms, foreign, and survival packages in R soft-
ware. We then used the concordance index (C-index) to
evaluate the discrimination and predictive abilities of the
nomogram. The range of the C-index value was 0.5 to
1.0. A higher C-index indicates greater discrimination abil-
ity of the predicting mode. Then, survival and timeROC
packages in R software were used to draw a multi-index
ROC curve for the training and validation groups.

2.7. Data Statistics. All statistical analyses were performed
using R software (R-3.6.1) and strawberry-Perl-5.30.0.1. P
values < 0.05 were considered statistically significant.

3. Results

3.1. Univariate and Multivariate Cox Regression Analysis.
To identify autophagy-related lncRNAs associated with
prognosis, transcript data for endometrial cancer samples
and autophagy-related genes were integrated. This
revealed 32 autophagy-related genes and 171 autophagy-
related lncRNAs which were coexpressed. For the
autophagy-related lncRNAs, univariate Cox regression analy-
sis was conducted, and a forest map was constructed, revealing
18 autophagy-related lncRNAs associated with prognosis
(Figure 1(a)). As shown in Figure 1, AC137630.1,
AL161618.1, NRAV, PCED1B-AS1, LINC02166, LINC01871,
ACBD3-AS1, SCARNA9, and ELN-AS1 were protective,
while AL163051.2, Z83843.1, ADNP-AS1, Z98884.2, FIRRE,
AL133243.2, SOS1-IT1, MCCC1-AS1, and TRAF3IP2-AS1
were associated with risk. Multivariate Cox regression anal-
ysis identified five autophagy-related lncRNAs (Table 1).
The endometrial cancer samples were divided into high-risk
and low-risk groups based on the median of risk scores, calcu-
lated using the following function: risk score = ðexpression
level of LINC01871 × −0:292Þ + ðexpression level of SCARNA
9 × −0:284Þ + ðexpression level of SOS1 − IT1 × 0:414Þ + ð
expression level of AL161618:1 × −0:703Þ + ðexpression level
of FIRRE × 0:379Þ. The coexpression relationship between the
five autophagy-related lncRNAs and autophagy-related genes
was visualized on a Sankey diagram (Figure 1(b)).

Regression coefficients, P value, hazard ratio, and associ-
ated 95% confidence interval for the autophagy-related
lncRNAs are shown.

3.2. Survival Analysis and Risk Curves. To compare the differ-
ences in overall survival rates between different risk statuses,
a survival curve was plotted (Figure 2(a)). As shown in
Figure 2, the overall survival rate of the high-risk group was
significantly lower than the low-risk group. Risk curves for
the two groups (Figures 2(b) and 2(c)) showed that the risk
value of the high-risk group was higher than that of the
low-risk group and the survival time of patients that died
was shorter than that of surviving patients. To compare the
expression levels of the five autophagy-related lncRNAs in
different risk states, a heat map was plotted (Figure 2(d)).
As shown in Figure 2, the expression levels of FIRRE and
SOS1-IT1 in the high-risk group were higher than those in
the low-risk group, while the expression levels of
AL161618.1, LINC01871, and SCARNA9 in the high-risk

group were lower than those in the low-risk group. Survival
curves of these five lncRNAs (Figures 2(e)–2(g)) showed that
low survival rates were associated with low expressions of
SCARNA9 and LINC01871 and high expressions of SOS1-
IT1.

3.3. Independent Prognostic Analysis and Clinical Correlation
Analysis. To analyze the effects of age, pathological grade,
FIGO stage, and risk status on prognosis, univariate and mul-
tivariate independent prognostic analyses were performed
(Figures 3(a) and 3(b)). As shown in Figure 3, patients’ age,
pathological grade, FIGO stage, and risk status were all risk
factors for poor prognosis by univariate and multivariate
independent prognostic analyses. A multi-index ROC curve
was drawn to evaluate the accuracy of the constructed model
(Figure 3(c)). As shown in Figure 3, the risk, age, pathological
grade, and FIGO stage scores (AUC) were 0.721, 0.614, 0.652,
and 0.709, respectively. Subsequently, a clinical correlation
analysis to evaluate the correlation between the five
autophagy-related lncRNAs and the patients’ age, pathologi-
cal grade, and FIGO stage was performed (Figures 3(d)–3(f)).
This analysis showed that expressions of FIRRE and SOS1-
IT1 were associated with the patient’s age, pathological grade,
and FIGO stage, while AL161618.1 was associated with the
patient’s pathological grade and FIGO stage. SCARNA9
was associated with the patient’s pathological grade.

3.4. Tumor Microenvironment Score and Principal
Component Analysis. The tumor microenvironment is com-
plex and closely related to the incidence and development
of tumors [31–34]. Notably, autophagy is also closely related
to the tumor microenvironment. For example, by inhibiting
autophagy, cadherin-6 facilitates epithelial mesenchymal
transition (EMT) and cancer metastasis in thyroid cancer
[35]. In this study, we calculated the ESTIMATE, immune,
and stromal scores of endometrial cancer samples and
merged these scores with collated clinical data and generated
box plots of ESTIMATE, immune, and stromal scores for dif-
ferent risk statuses (Figures 4(a)–4(c)). As shown in Figure 4,
the medians of ESTIMATE, immune, and stromal scores in
the low-risk group were higher than those in the high-risk
group. Principal component analysis based on the expression
of autophagy-related lncRNAs and risk-associated genes
(Figures 4(d) and 4(e)) showed that the separation between
the high- and low-risk groups was significant.

3.5. Functional Annotation. To functionally annotate the
five autophagy-related lncRNAs, gene set enrichment anal-
ysis of four autophagy-related gene sets was performed
(Figures 5(a)–5(d)). As shown in Figure 5, the high-risk
group was better enriched in the gene sets than the low-risk
group. Therefore, we concluded that the five autophagy-
related lncRNAs were associated with the autophagy process.

3.6. Multivariate Cox Regression Analysis and Nomogram. To
further evaluate the effect of the model constructed based on
the five autophagy-related lncRNAs on prognosis, we divided
all tumor samples into training (60%) and validation (40%)
groups, taking risk status as an independent prognostic risk
factor. Multivariate Cox regression analysis to evaluate the
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correlation between patients’ age, pathological grade, FIGO
stage, risk status, and prognosis (Table 2) showed that path-
ological grade, FIGO stage, and risk status were associated
with a patient’s prognosis. The survival rate of the patient
was estimated on a nomogram using patients’ age, patholog-
ical grade, FIGO stage, and risk status (Figure 6(a)). The
accuracy of the nomogram was assessed using the C-index
and multi-index ROC curve for the training group
(Figure 6(b)). The C-index, 3-year survival, and 5-year sur-
vival AUC values were 0.737 (standard error ± 0:037),

Table 1: Multivariate Cox regression analysis of the five autophagy-
related lncRNAs.

lncRNA Coefficient HR HR.95L HR.95H P value

LINC01871 -0.292 0.747 0.590 0.946 0.015

SCARNA9 -0.284 0.753 0.608 0.931 0.009

SOS1-IT1 0.414 1.514 1.060 2.162 0.023

AL161618.1 -0.703 0.495 0.287 0.855 0.012

FIRRE 0.379 1.461 1.037 2.059 0.030
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MCCC1−AS1

AL163051.2
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0.001

0.004
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0.009

0.003
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0.727 (0.591−0.895)

1.515 (1.135−2.022)
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1.952 (1.395−2.732)
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0.733 (0.584−0.919)

1.964 (1.413−2.730)

0.471 (0.274−0.809)
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Figure 1: Univariate Cox regression analysis. (a) Forest plot of autophagy-related lncRNAs. The P value, hazard ratio, and associated 95%
confidence interval for the autophagy-related lncRNAs are shown in the plot. Red indicates a risk-associated lncRNA (HR > 1) and green
indicates a protective lncRNA (HR < 1). (b) Sankey coexpression diagram. The left column represents autophagy-related genes, the middle
column represents autophagy-related lncRNAs, and the right column represents risk types.
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Figure 2: Continued.
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0.722, and 0.786, respectively, confirming the accuracy of
the nomogram. The stability of the nomogram was evalu-
ated using the C-index and multi-index ROC curve of the
verification group (Figure 6(c)). The C-index, 3-year sur-
vival, and 5-year survival AUC values were 0.831
(standard error ± 0:032), 0.812, and 0.85, respectively, vali-
dating the stability of the nomogram.

Age ≥ 65 was compared to age < 65; Grade 2 and Grade 3
were compared to Grade 1; Stage II, Stage III, and Stage IV
were compared to Stage I; the high-risk group was compared
to the low-risk group. Regression coefficients, P value, hazard
ratio, and 95% confidence interval of the clinical characteris-
tics are shown.

4. Discussion

Autophagy can regulate the occurrence and development
of malignant tumors in various ways. For example, in
human breast cancer, autophagy induction is enhanced
via cell growth suppression by integral membrane protein

2A [36] PAQR3 inhibits tumor progression in NSCLC cells
by modulating EGFR-regulated autophagy [37]. In addi-
tion, melatonin/PGC1A/UCP1 promotes tumor slimming
and restrains tumor progression by initiating autophagy
and lipid browning [38]. It has been established that
lncRNA also regulates the development of tumors. For
example, in ovarian cancer, lncRNA RHPN1-AS1 acts as
a competing endogenous RNA (ceRNA) against miR-596
and upregulates LETM1, promoting tumorigenesis and
metastasis [39]. In triple-negative breast cancer, lncRNA
HUMT hypomethylation activates FOXK1 transcription,
promoting lymphangiogenesis and metastasis [40]. Inter-
estingly, lncRNA can also regulate the occurrence and
development of tumors by regulating autophagy. For
example, in breast cancer, lncRNA RNA H19 induces
autophagy activation via the H19/SAHH/DNMT3B axis,
contributing to tamoxifen resistance [41]. FOXP1-induced
lncRNA CLRN1-AS1 inactivates the Wnt/β-catenin signal-
ing pathway, suppressing autophagy and proliferation in
pituitary prolactinoma [42].
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Figure 2: Survival analysis and risk curves. (a) A survival curve for endometrial cancer. Red indicates the high-risk group and blue indicates
the low-risk group. (b) A risk curve for endometrial cancer. Red is the high-risk group and green is the low-risk group. (c) A scatter plot of
different survival statuses of endometrial cancer patients. Red dots denote patients that died and green dots denote patients that survived. (d)
Hierarchical clustering of five autophagy-related lncRNA expression levels. Differences in expression levels of five autophagy-related
lncRNAs in different risk statuses. Red indicates the low-risk group and blue indicates the high-risk group. (e–g) Survival curves of
autophagy-related lncRNAs. Blue represents the low expression group and red represents the high expression group.
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Figure 3: Independent prognostic analysis and clinical correlation analysis. (a) A Forest plot of univariate independent prognostic analysis.
The P value and hazard ratios and associated 95% confidence intervals are shown in the plot. Red indicates a risk-associated factor (HR > 1)
and green indicates a protective factor (HR < 1). (b) A Forest plot of multivariate independent prognostic analysis. The P value and hazard
ratios and associated 95% confidence intervals are shown in the plot. Red indicates a risk-associated factor (HR > 1) and green indicates a
protective factor (HR < 1). (c) Multi-index ROC curve. Risk scoreAUC = 0:721; ageAUC = 0:614; gradeAUC = 0:652; stage AUC = 0:709.
(d) lncRNA expression level in groups aged below 65 and above 65. Red indicates the group aged under 65 and blue indicates the group
aged over 65. (e) lncRNA expression level in different pathologic grades. (f) lncRNA expression level in different FIGO stages. ∗P < 0:05;
∗∗P < 0:01; ∗∗∗P < 0:001. ns, P > 0:05.
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shows a significant difference between high- and low-risk groups (P < 0:05). (b) Immune scores for different risk statuses. The box-plot shows
a significant difference between high- and low-risk groups (P < 0:05). (c) Stromal scores for different risk statuses. The box-plot shows a
significant difference between high- and low-risk groups (P < 0:05). (d, e) Principal component analysis of low- and high-risk groups
based on autophagy-related lncRNAs and risk-associated genes. Red indicates the high-risk group and green indicates the low-risk group.
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In this study, we mined TCGA and HADb for data on
endometrial cancer samples and found five autophagy-
related lncRNAs (LINC01871, SCARNA9, SOS1-IT1,
AL161618.1, and FIRRE). Of these five autophagy-related
lncRNAs, the functions of LINC01871, SOS1-IT1, and
AL161618.1 are not clear; however, SCARNA9 is downregu-
lated in cervical cancer [43]. FIRRE is associated with sponta-
neous regression of neuroblastoma [44]. In diffuse large B-
cell lymphoma, FIRRE promotes tumor development by acti-

vating the Wnt/β-catenin signaling pathway [45]. lncRNA
biomarkers discovered in endometrial cancer have universal
applicability [46, 47]. In contrast, we discovered that
lncRNAs could regulate the progress of tumors by regulating
autophagy in endometrial cancer, which is important to the
study of its mechanism. However, the functions of these
lncRNAs in endometrial cancer have not been studied. Using
a bioinformatics approach, we found that the five lncRNAs
may regulate the occurrence and development of
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Figure 5: Functional annotation. (a–d) Gene set enrichment analysis (GSEA) indicated significant enrichment of the autophagy-related
phenotype in the high-risk patients.
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Table 2: Multivariate Cox regression analysis of clinical characteristics.

Variable Coefficient HR Lower.95 Upper.95 P value

Age ≥ 65 0.464 1.590 0.896 2.822 0.113

Grade 2 2.070 7.927 1.009 62.253 0.049

Grade 3 2.074 7.954 1.070 59.142 0.043

Stage II 0.611 1.843 0.771 4.404 0.169

Stage III 0.818 2.265 1.173 4.374 0.015

Stage IV 1.406 4.080 1.749 9.517 0.001

High-risk group 0.866 2.377 1.255 4.502 0.008
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Figure 6: Multivariate Cox regression analysis and nomogram. (a) A survival nomogram. An individual patient’s value is located on each
variable axis, and a vertical upward line determines the number of points received for each variable value. The sum of these numbers is
located on the “Total points” axis, and a vertical downward line determines the likelihood of 3- or 5-year survival. (b) A multi-index ROC
curve for training samples. Red indicates 3-year survival and blue indicates 5-year survival. (c) A multi-index ROC curve for validation
samples. Red indicates 3-year survival and blue indicates 5-year survival.

10 BioMed Research International



endometrial cancer by regulating autophagy. We also esti-
mated the patients’ survival rate using a nomogram, but the
specific role and mechanism of these lncRNAs in endome-
trial cancer remains unknown. We identified five
autophagy-related lncRNAs which have potential as new
tumor biomarkers and therapeutic targets, but their mecha-
nisms need to be further explored.

5. Conclusion

By mining the information on endometrial cancer samples in
the TCGA database, we found five autophagy-related
lncRNAs and constructed a risk model based on the five
autophagy-related lncRNAs. The differences in tumor micro-
environment scores in different risk statuses were also com-
pared. Finally, we drew a nomogram to estimate patients’
survival rates using the patients’ age, pathological grade,
FIGO stage, and risk status.
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