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Abstract

Gut injury continues to be the devastating and unpredictable critical illness associated with 

increased cell death of intestinal epithelial cells (IECs). The IECs, immune system and 

microbiome are the interrelated entities to maintain normal intestinal homeostasis and barrier 

integrity. In response to microbial invasion, IEC cell death occurs to maintain intestinal epithelium 

function and retain the continuous renewal and tissue homeostasis. But the imbalance of IEC cell 

death results in increased intestinal permeability and barrier dysfunction that leads to several acute 

and chronic intestinal diseases, such as intestinal ischemia/reperfusion (I/R), sepsis, inflammatory 

bowel diseases (IBD), necrotizing enterocolitis (NEC), etc. During the pathophysiological state, 

the excessive IEC apoptotic cell death leads to a chronic inflammatory condition, later switches to 

necroptotic cell death mechanism that induces more pathological features than apoptosis and may 

also induce other lytic cell death mechanisms like pyroptosis and ferroptosis to increase the 

pathogenesis of the intestinal diseases. But still, there remains gaps in the fundamental knowledge 

about the IEC cell death mechanisms in chronic intestinal diseases. Together, a deep understanding 

of the specific cell death mechanisms underlying chronic intestinal diseases, including sepsis, 

IBD, NEC, and intestinal I/R, is desperately needed to develop emerging novel promising 

therapeutic strategies. This review aims to show how the acute and critical illness in the gut are 

driven by IEC cell death mechanism, such as apoptosis, necrosis, necroptosis, pyroptosis, and 

ferroptosis.
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1 Introduction:

The intestinal epithelium consists of a single layer of tightly linked columnar epithelial cells, 

providing the intestinal mucosa’s first-line defense. It is organized in crypt-villus units 

encompassing the luminal surface of the intestinal mucosa and is continuously replaced 

every 4–5 days. The intestinal epithelium has various critical physiological functions beyond 

absorption and digestion, and it mainly provides a critical barrier to prevent the translocation 

of destructive intraluminal substances including foreign antigens, and microorganisms, and 

their toxins [1]. In the event of a sensation of danger molecules, enterocytes transmit the 

signals to underlying cells/tissues and to the body to initiate innate and adaptive immune 

defense mechanisms together with specialized immune cells [2]. Therefore, the epithelium, 

the immune system, and the microbiome are the three closely interrelated entities to 

maintain the balanced homeostasis in the gut [3]. The alteration in these entities, including 

the dysregulation of the immune system, the perturbation of intestinal epithelial 

homeostasis, uncontrolled bacterial colonization, and the epithelial barrier dysfunction 

contribute to the onset of the gut injury [4]. Consequently, the disruption of intestinal 

membrane permeability by altering cell-cell junctional proteins such as occludin, E-

cadherin, and ZO-1, is a pathogenic key factor and an early marker in the development of 

systemic inflammatory response syndrome and multiple organ failure (MOF).

Now the key question is, how disruption of intestinal epithelium homeostasis arises and 

progresses into the acute and chronic gut injury? What is the central risk factor for the 

enhanced intestinal permeability? In this regard, the growing evidence shows that increased 

intestinal permeability is highly associated with dysregulated intestinal epithelial cells 

(IECs) death [3]. The inappropriate IECs apoptosis promotes gut injury, intestinal barrier 

dysfunction, and translocation of bacteria, that results in chronic gastrointestinal (GI) 

disorders. Apoptosis is the important event to maintain the function of the intestinal 

epithelium at normal state, but the excessive cell death leads to the chronic inflammatory 

condition during the pathophysiological state, as found in the patients with critical GI 

symptoms [3]. Beyond apoptosis, the other programmed and non-programmed cell death 

mechanisms including necrosis, necroptosis, pyroptosis, and ferroptosis also play a key role 

in the pathogenesis of acute and chronic gut injury. We postulate that IECs cell death 

mechanism plays a key role in the intestinal hyperpermeability seen in the chronic intestinal 

diseases. This review highlights mechanisms of how intestinal epithelial cell death results in 

acute and chronic GI disorders, as well as preventive approaches to IECs death mechanisms 

for restoring and maintaining the gut barrier.

2 Intestinal epithelial cell death

The persistent IECs renewal is essential for maintaining tissue homeostasis. As we 

mentioned earlier, the excessive IECs cell death disrupts intestinal barrier integrity and 

permits the invasion of luminal antigens into the lamina propria (LP), thereby leading to a 

chronic inflammatory condition in the LP [5]. At present IECs undergoes several cell death 

pathways including apoptosis, necrosis, necroptosis, pyroptosis, and ferroptosis, depending 

on their stress, inflammatory, and microbial dysbiosis state. Therefore, IECs cell death is a 

hallmark of intestinal inflammation. To understand the pathophysiology and pathogenesis of 
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acute and chronic GI disease, as well as the development of therapeutic approaches for GI 

illnesses, it is therefore essential to focus on the cellular and molecular mechanisms of IECs 

cell death.

2.1 Apoptosis

Apoptosis is a programmed cell death, characterized by the cell rounding, nuclear 

fragmentation, and blebbing of the plasma membrane [6]. It occurs spontaneously in IECs as 

the end-phase of migration and differentiation along the crypt-villus axis to maintain the 

regular gut morphology and function, including the intestinal homeostatic balance between 

epithelial cells proliferation and apoptosis [7]. The imbalance of this event turns out to the 

excessive loss of villi IECs beyond the frequency of crypt IECs regeneration, which leads to 

pathological IEC shedding [8]. In the early era of pathogenic microbial translocation, the 

dysregulated apoptosis is initially mediated by pattern recognition receptors (PRRs) 

including toll-like receptors (TLRs) and nucleotide-binding domain leucine-rich repeat 

containing receptors (NLRs) of IECs and other inflammatory cells; These receptors 

recognize the ligands such as pathogen-associated molecular patterns (PAMPs) and damage-

associated molecular patterns (DAMPs) of the pathogenic microbes [9]. After receptor-ligand 

binding occurs, the IECs quickly upregulate the expression levels of pro-inflammatory 

cytokines and mediators including tumor necrosis factor (TNF)-α and nitric oxide (NO) and 

pro-inflammatory chemokines to attract the inflammatory cells. Moreover, this chronic 

inflammatory environment induces the concomitant expression of death receptors such as 

Fas and tumor necrosis factor receptor-1 (TNFR1) and their ligands such as Fasl, TNF-α, 

and TNF-related apoptosis-inducing ligand (TRAIL), by the same or adjacent cells to induce 

the extrinsic cell death mechanism of enterocytes [10]. The binding of ligands to their 

respective death receptors recruits TNF receptor type 1-associated death domain (TRADD) 

protein and receptor-interacting protein kinase 1 (RIPK1) to TNFR1 to form a complex I 
[11]. Subsequently, RIPK1 dissociates from TNFR1 and recruits adaptor proteins such as 

Fas-associated death domain (FADD) to initiate the caspases cascade including Caspase-8 to 

form the death-induced signaling complex (DISC) [12]. Finally, the activation of Caspase-8 

can either directly activates the downstream Caspases like Caspase-3, -6, and -7 or cleaves 

pro-Bid to form Bid which is translocated to mitochondria (intrinsic pathway) and induces 

cytochrome c along with the activating factor 1 (Apaf-1) to activate Caspase-3 and -9 [12], 

thereby results in apoptosis. Although the Caspase-mediated apoptosis is essential for IECs 

turnover and gastrointestinal tract morphology, growing evidence has shown the pathogenic 

function of Caspase-mediated IECs apoptosis in the chronic GI disease, such as IBDs, 

Crohn’s disease (CD) and ulcerative colitis (UC) [13] (Fig. 1).

2.2 Necrosis

Unlike apoptosis, necrosis is an unprogrammed or uncontrolled and accidental form of cell 

death, characterized by cell and organelles swelling, moderate chromatin condensation, 

rupture of the plasma membrane, and extensive cell lysis [6]. During the presence of various 

pathological stimuli, the inappropriate release of pro-inflammatory cytokines, including 

TNF-α, not only mediates IEC apoptotic cell death, but also induces necrotic cell death [14]. 

Whereas necrosis is highly associated with increase caspase-independent inflammation and 

reactive oxygen species (ROS) levels [15]. Once the intestinal integrity disturbance happens, 
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intestinal mucosal T lymphocytes induce the expression levels of Th1 cytokines, such as 

TNF-α and interleukin (IL)-1, and stimulate IECs to generate ROS that acts as secondary 

messengers to regulate inflammation and its mediated signaling pathways [16]. As well the 

phagocytic leukocyte-derived ROS also maintains the chronic inflammatory state in the 

intestine and worsens the infectious GI diseases [17]. While mitochondrial generation and 

removal of ROS are dynamically balanced and useful for cells without causing damage, 

over-generating of ROS in IECs is dangerous [16] and induce intestinal injury (Fig. 2A).

2.3 Necroptosis

Necroptosis, a novel manner of cell death modality, is an inflammatory form of programmed 

cell death mechanism with a necrosis phenotype characteristic, but not of apoptosis [18]. In 

detail, necroptosis is highly regulated by an intracellular protein platform, including the 

combination of death ligands and receptors along with adapter proteins, but under the 

inhibition of caspase activation [19]. TNFR1 and Fas are often used as a prevalent upstream 

signal by both necroptosis and apoptosis, but during necroptosis, suppression of caspase-8 

system [13, 20] and recruitment of receptor interacting protein kinase (RPIK)-3 through the 

RIPK homotypic interaction motif (RHIM) domain to RIPK1 occur to form a necrosis-

inducing complex [11, 21]. The interaction of RIPK1 and RIPK3 kinases through RHIM 

results in their auto- and trans-phosphorylation, and RIPK3-mediated phosphorylation of the 

downstream pseudo-kinase mixed lineage kinase domain-like (MLKL) [22, 23]. The 

phosphorylation of MLKL in IECs ultimately increases cytokine/alarmin expression such as 

interleukin 8 (IL-8), IL-1β, IL-33, and high mobility group box 1 (HMGB1), nuclear factor 

kappa-light-chain-enhancer of activated B cells (NFκB)-p65 translocation and NACHT, 

LRR and PYD domains-containing protein 3 (NALP3) inflammasome assembly [24]. 

Thereby the phosphorylation of RIP3 and MLKL is essential for necrosis execution [25, 26] 

(Fig. 2B). Taken together, the central function of caspase-8 [13] and inhibition of RIP3 [27] 

and MLKL [11] in IECs preserve epithelial barrier integrity, maintains homeostasis and 

prevents chronic intestinal inflammation by protecting IECs from necroptotic cell death. 

However, the functions and detailed mechanisms of necroptosis in IECs-mediated chronic 

GI tract diseases remain largely unknown.

2.4 Pyroptosis

Pyroptosis is also a programmed and inflammatory form of cell death but caspase cascade 

dependent mechanism, described morphologically as cell rupture, followed by membrane 

“re-sealing,” and cell swelling with nuclear condensation [6]. In response to microbial 

infection, the subset of NLRs is triggered by detecting a variety of DAMPS and PAMPs, 

promoting to form a multimeric protein complex known as the inflammasome through 

oligomerize with an adaptor protein known as ASC (an apoptosis-associated speck-like 

protein containing a CARD domain), and a proenzyme, caspase-1 [28]. The inflammasome 

formation stimulates the protease activity of caspase 1 (canonical pathway) that cleaves the 

pore-forming effector protein, gasdermin-D, and results in the release of IL-1β and IL-18 to 

a form of pyroptosis-mediated inflammatory cell death [28]. The influence of lipo-

polysaccharides (LPS) from gram-negative bacterial components leads to the activation of 

caspase-11 and pyroptosis of enterocytes [29] (Fig. 2C). Recent studies show that pyroptosis 

acts as a central role in intestinal immune defense and pathology by regulating microbial 
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infections and secretion of IL-18, ROS production, or lysosomal damage [15, 28]. However, 

luminal content occasionally carries pathogenic microbes or toxic elements proficient of 

producing mucosal damage, pyroptosis-mediated NLRP3 inflammasome [30], caspase-1 [31] 

and cytokines, such as IL-1 and IL-18 [32], results to the chronic inflammatory state in GI 

tract diseases. Thus, it is important to understand the debate in the protective and destructive 

function of pyroptosis mechanism in IECs during the acute and chronic GI diseases.

2.5 Ferroptosis

Ferroptosis is a new form of iron-dependent, caspase-independent, lipid oxidation-mediated 

programmed cell death, differing from traditional apoptosis, necroptosis, and classic 

necrosis [33]. It is characterized by morphologically shrinkage of mitochondria and increases 

in mitochondrial membrane density, biochemically accumulation of iron and lipid ROS (L-

ROS), and genetically involvement of a unique set of genes [34]. The increased levels of lipid 

peroxidation (LPO) by deficiency of glutathione peroxidase 4 (GPx4) activation through 

system Xc− inhibition, and oxidation of arachidonic acid (AA) and its esterifiable 

phosphatidylethanolamine (PE) production [34, 35], subsequently leading to the destruction of 

IECs and intestinal mechanical barrier [36] (Fig. 2D). Recently, the finding of reduced 

activity of GPx4 in the lesioned areas of the gut of the CD patients in IECs suggests that 

reduction of GPx4 activity in IECs induces ferroptosis [37]. It appears that dietary derived 

compounds, pathogenic microbial mediated metabolites, such as fatty acids, could trigger 

ferroptosis that contributes to the pathogenesis of the GI diseases. However, the evidence for 

supporting ferroptosis in IECs is very less. Thus, this review brings up an interesting 

research topic related to IECs ferroptosis mechanisms in chronic GI disease.

3 Cell death in IECs-mediated acute and chronic GI injury

Apoptosis is a crucial factor for usual intestinal mucosal turnover. The balance between 

proliferation and apoptosis of IECs is partially dependent on the microenvironment, host 

state, and stress categories in the intestine; the defect in balance is strongly connected with 

several intestinal diseases and GI injuries [38]. It is essential to characterize the duration of 

intestinal diseases as an acute injury that lasts only for a few (7–14) days, and chronic GI 

injuries that persist for months or longer [4]. Several studies have been performed to evaluate 

the pathological features of IEC apoptosis during the pathogenesis of acute and chronic GI 

injury. The clinical patients with acute and chronic intestinal diseases, in vitro IEC models, 

and in vivo animal models are mostly accessible to study the IEC cell death mechanism 

(Table 1). Here we target the pathogenic impact of cell death in IEC to the acute and chronic 

diseases, as well as the available therapeutic approach to prevent IEC cell death to regulate 

intestinal diseases.

3.1 IEC cell death in Sepsis

Sepsis is a serious and life-threatening dysfunction of the organs, and it is secondary to a 

dysregulated host response to infection, affecting the intestine intensely [38]. There is 

increased apoptosis in the colon and ileum of septic patients in whom focal regions of 

columnar epithelial apoptosis occurred in crypt or villus [39]. In another clinical study, 

trauma patients who are much more prone to sepsis disclosed the increased severity of crypt 
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epithelial apoptosis in the colon specimens, compared to control patients. Simultaneously, 

these trauma patients experienced a statistically significant increase in the number of 

cytokeratin-18 positive IECs [40]. In patients with septic shock, norepinephrine uses to 

maintain adequate blood pressure at ICU admission is associated with more enterocyte 

damage and higher intestinal fatty acid-binding protein (I-FABP), a marker for the early 

diagnosis of intestinal damage [41]. Thereby, the greater degree of apoptosis in the intestinal 

villi and crypts of septic patients suggested the enhanced IEC apoptosis in sepsis [39].

Several preclinical models of sepsis also suggested the key role of IEC apoptosis in the 

pathophysiology of sepsis. Mostly, cecal ligation and puncture (CLP) and pneumonia 

induced sepsis murine model have been used to evaluate the role of IEC apoptosis. There is 

a decrease in intestinal proliferation and an increase in gut epithelial cells apoptosis 

observed in both murine models of pneumonia-induced sepsis and CLP induced sepsis 
[42–44]. Whereas, methicillin-resistant Staphylococcus aureus (MRSA) pneumonia-induced 

sepsis showed intestinal apoptosis that highly associated with increased proapoptotic Bid 

and Bax proteins and the antiapoptotic Bcl-xL protein in the mitochondrial pathway, and 

FasL in the receptor-mediated pathway. This study shows that MRSA pneumonia-induced 

sepsis alters intestinal integrity by increasing IEC apoptosis and decreasing crypt 

proliferation and villus length, through apoptosis mechanism mediated by the mitochondrial 

pathway [45]. At the same time, mice lacking intestinal epithelium functional NF-kB (Vil-

Cre/Ikkβf/Δ) showed an increase in IEC apoptosis and intestinal permeability along with 

decreased villus length and atrophy in CLP induced sepsis animals, compared to septic in 

wild-type mice. During ongoing sepsis, Vil-Cre/Ikkβf/Δ mice showed increased serum levels 

of pro-inflammatory, including TNF and monocyte chemoattractant protein-1 (MCP-1) and 

anti-inflammatory cytokines, such as IL-10, compared to septic wild-type mice. This result 

indicates that inhibition of IEC specific NF-κB worsens the sepsis-induced intestinal injury 

and aggravates mortality in CLP mice [46]. TNFR1 is crucial for LPS-induced IEC apoptosis 

and shedding, and the destiny of IECs is also dependent on NFκB signaling, via NFκB1 

favoring cell survival or via NFκB2 favoring apoptosis [8]. Neutralizing TNF activity with 

anti-TNF antibody in CLP induced septic Vil-Cre/Ikkβf/Δ and septic wild-type mice, 

prevented intestinal hyperpermeability by increasing claudin-2 gene expression. This 

outcome suggests that TNF is the main mediator of the dysfunction of the intestinal barrier 

in sepsis, where anti-TNF antibody significantly decreases sepsis-induced IECs apoptosis 

and hyperpermeability [46].

In order to enhance our understanding to highlight the link of IECs apoptotic cell death in 

sepsis, Hu et al., showed that increased STING signaling that promotes the phosphorylation 

of STAT3, STAT6, IRF3, and NFκB, is highly associated with intestinal inflammation and 

induction of IEC apoptosis in patients with sepsis, as well as in CLP induced septic mice 
[47]. The mice with STING genetic depletion showed a reduced inflammatory response, 

intestinal permeability, and bacterial translocation. The treatment of DNase I protects the 

intestinal injury by decreasing mtDNA levels in CLP-induced septic animals. These findings 

indicate us that mtDNA-STING pathway regulation can be a promising therapeutic approach 

to improve mucosal healing in patients with sepsis and protect the intestinal barrier [47]. In a 

very current study, both genetic (hepcidin-1 knockout [HKO]) iron overload and iatrogenic 

(intravenous) iron overload mice developed sepsis after administration of clinical isolates E. 
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coli within 24 h and associated with high bacterial multiplication and dissemination [48]. 

Hence host and pathogenic microbes are using iron as an essential micronutrient, it seems 

that iron-dependent ferroptosis cell death mechanism in IECs may have an impact on the 

severity of the pathogenesis of sepsis during the pathogenic microbial infection. But still, 

scientific evidence is needed to fill this gap.

Inhibition of cell death mechanism by blocking apoptotic markers or over-expressing anti-

apoptotic markers prevents the pathogenesis of sepsis and enhances survival rate. Transgenic 

mice Fabpl-Bcl-2 (intestine-specific overexpression of Bcl-2, linked to Fabpl) showed 

decreased gut epithelial apoptosis in both sepsis model by decreasing the levels of active 

caspase 3. Therefore, preventing IEC apoptosis by overexpression of Bcl-2 was related to a 

survival advantage in sepsis [42, 44]. Bid−/− mice and Fabpl-Bcl-2 mice had decreased 

intestinal apoptosis, thereby, inhibited MRSA pneumonia-induced sepsis, compared to wild 

type animals. It is now highlighted that the potential to genetically manipulate the 

mitochondrial pathway could have theoretically therapeutic benefit in more lethal sepsis 

models whose high apoptosis of the gut is associated with increased mortality [45]. In the 

continuation of the previous study, Lyons et al. co-expressed both the genes such as Bcl-2 

and TAg (large T-antigen, is limited to villus enterocytes) to Fabp that resulted in the 

expression of both genes in their villus enterocytes, but Bcl-2 alone in the crypt. As 

anticipated, bi-transgenic sepsis animals had reduced crypt apoptosis, but had a paradoxical 

increase in the markers of apoptosis such as caspase 3, BAX and cytochrome c in villus, 

compared with septic fabpi-Tag (TAg alone) mice, associated with decreased proliferation in 

both compartments [38]. Other than programmed cell death, the non-programmed cell death 

mechanism also plays a significant role in the pathogenesis of sepsis. But still, scientific 

evidence is needed to fill this knowledge gap.

3.2 IEC cell death in intestine ischemia/reperfusion (I/R)

Intestinal I/R injury is a complex and multifactorial pathophysiological process triggered by 

ROS formation and lipid mediator synthesis alteration [49]. The nonspecific damage caused 

by ischemia and injury increases the levels of several inflammatory cytokines and attracts 

the inflammatory cells, such as polymorphonuclear leukocytes and mast cells, into the 

intestinal wall, leading to intestinal epithelial apoptosis, intestinal hyperpermeability and 

intestinal barrier dysfunction which could result in MOF and death [50]. Thus, dysregulated 

apoptosis and inflammation are the main mediators in the pathogenesis of I/R-induced 

intestinal injury. The clinically relevant intestinal I/R models have resulted in a deeper 

understanding of the pathophysiology of human small intestinal and colon I/R over the past 

years. It has been shown that isolated jejunum from the patients undergoing 

pancreaticoduodenectomy was subjected to ischemia followed by reperfusion [51]. After 

ischemia, there is a significant increase in I-FABP across the jejunum, revealing the 

progression of epithelial cell damage. But at the same time, a decrease in I-FABP staining 

after reperfusion reveals the endogenous clearing mechanism for damaged enterocytes that 

results in normal epithelial lining [51]. The causative agents of the human intestinal I/R-

induced inflammation were characterized by complement activation, cytokines production, 

and release into the systemic circulation, endothelial activation, and neutrophil influx into 

intestinal I/R-damaged tissue [52].
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In preclinical studies, briefly, Ikeda et al. [53] exhibited that ischemia and I/R injury leads to 

apoptosis, which becomes the main mediator of cell death to intestinal epithelium after IR. 

Rats subjected to ischemia and I/R showed increased mucosal injury along with detached 

epithelial cells that exhibited majority with characteristic morphological features of 

apoptosis and rest of the cells with necrosis features [53]. It is evident that villus tip epithelial 

cells are more susceptible to ischemia and loss of intestinal alkaline phosphatase and lactase 

instantly following ischemia and returned with reperfusion, confirming that differentiated 

cells are particularly sensitive to ischemic injury [54]. I/R rats underwent laparotomy and 

vascular occlusion of both superior mesenteric artery (SMA) and portal vein (PV) for 20 min 

followed by reperfusion showed a significant decrease in the enterocyte proliferation index 

in both jejunum and ileum [49, 50]; this reduction in cell turnover is highly associated with 

SHh signaling pathway inhibition [50].

Few studies have investigated the efficacy of regulated IEC necrosis after intestinal I/R. I/R 

group rats received 1hr of ischemia followed by reperfusion showed an increase in the levels 

of necroptosis mediated markers RIP1/3 and MLKL, and these levels are inhibited by RIP1 

kinase inhibitor necrostatin-1. In meanwhile, blocking both apoptotic and necroptotic cell 

death mechanism, using the pan-caspase inhibitor Z-VAD and necrostatin-1 respectively, 

confers better protection against intestinal I/R injury. But at the same time, in the presence of 

either only one of the inhibitor, these two pathways can be converted to one another. In in 
vitro oxygen and glucose deprivation-induced IR (IEC-6) model, necrostatin-1 decreases cell 

death and pro-inflammatory cytokine gene expression and confers IEC-6 protection via 

inhibiting HMGB1-TLR4/RAGE signaling activation [19]. Rats subjected to SMA occlusion 

consisting of 1.5 h of ischemia and 6 h of reperfusion, showed the activation of poly 

(adenosine diphosphate-ribose) polymerase 1 (PARP-1) and RIP1/3 mediated necrosome 

formation. The pretreatment of PARP-1-specific inhibitor PJ34 and the RIP1-specific 

inhibitor Necrostatin-1 resulted in a decrease in intestinal epithelial cell death and optimal 

protection of the intestine. Thus, in the development of I/R-induced intestinal injury, 

PARP-1 could function as a RIP1 downstream signaling molecule, and the RIP1/PARP-1-

dependent cell death signaling pathway functioned independently of caspase 3 inhibition 
[55]. IEC specific ablation of IkB kinase (IKK)-β resulted in the prevention of the systemic 

inflammatory response triggered by IR and in severe apoptotic damage to the re-perfused 

intestinal mucosa, suggesting that NFκB system has a dual role for both tissue safety and 

systemic inflammation which could be inhibited by using NFκB and IKK inhibitors [56]. The 

forced overexpression of Bcl-2 inhibits I/R-induced p53-dependent apoptosis pathways in 

the intestinal epithelium of transgenic mice Fabpl-Bcl-2 [57]. Overall, targeting the IEC cell 

death mechanisms could be beneficial to alleviate intestinal IR tissue injury.

3.3 IEC cell death in inflammatory bowel diseases

Inflammatory bowel diseases (IBD), which involves CD and ulcerative colitis (UC), is the 

result of the breakdown of the symbiotic relationship between the commensal microbial/host 

intestinal immunity [58]. IEC death is a prevalent pathological characteristic of IBD causing 

inflammation by altering the integrity of the intestinal barrier. Despite this, in response to 

intestinal inflammation, little is known about the molecular mechanisms of IEC apoptosis. 

Increased apoptosis of IECs was identified in patients with UC and CD at the involved 
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inflammatory sites/tissues as well as in colitis animal models with the disruption of intestinal 

mucosal integrity and barrier function [59]. Stimulation of TNF-α, TLR and platelet-

activating factor (PAF) can lead to a stable or transient rise in IECs shedding with loss of 

epithelial barrier function. TRAIL is significantly up-regulated during intestinal 

inflammation in IECs and LP lymphocytes to detect molecular events causing IEC 

destruction during inflammatory processes such as IBD. The increase in TRAIL-induced 

IEC apoptosis is mediated via increasing the levels of proinflammatory cytokines such as 

TNF-α and interferon (IFN)-γ, the expression of the pro-apoptotic receptor TRAIL-R2 and 

the functional levels of caspase-3 [60]. Intestinal epithelial-specific deletion of transforming 

growth factor (TGF)-b-activated kinase 1 (TAK1) leads to enhanced apoptosis (cleaved 

caspase-3) and disturbance of tight junctions (claudin-3) and reduced antioxidant-responsive 

genes through transcription factor Nrf2, resulting in ROS accumulation. These observed 

pathological scenarios are very similar to the IBD pathology. Targeting TAK1-Nrf2 pathway 

could, therefore, control the ROS levels and enhance the survival and integrity of enterocytes 
[61].

A key apoptotic molecule p53-upregulated modulator of apoptosis (PUMA) is significantly 

increased in colonic epithelial cells in colitis induced by either dextran sulfate sodium salt 

(DSS; 5%) or 2,4,6-trinitrobenzene sulfonic acid (TNBS; 100 mg/kg). At the same time, 

PUMA KO relieved DSS- and TNBS-induced colitis and inhibited IEC apoptosis in mice. 

These findings indicate that by promoting IEC apoptosis, PUMA induction contributes to 

colitis pathogenesis [59]. In both mice and human, colon inflammation induces IEC 

apoptosis through p53-dependent and -independent mechanisms and PUMA mediated 

intrinsic apoptosis pathway [62]. A latest study demonstrates that enhanced expression of the 

TNFAIP3 gene encoding A20 is expressed in IECs from patients with IBD in the areas of 

apoptosis. TNF-induced cell death is extremely prone in transgenic mice that overexpress 

A20 in IECs. In these mice, by activation of Ripoptosome/RIPK1, A20 potentiates TNF-

induced mucosal erosion and IEC apoptosis. Whereas, RIPK1 inhibitors can prevent A20-

enhanced IEC damage and intestinal inflammation, suggesting a new strategy for IBD 

therapy [63]. Wang et al., [64] showed that villin, an actin regulatory protein, acts as an anti-

apoptotic function. The overexpression of villin in the Madin-Darby canine kidney Tet-Off 

epithelial cell line protects the cells from apoptosis by inhibiting the activation of caspase-9 

and -3 and activating the pro-survival proteins such as phosphatidylinositol 3-kinase and 

phosphorylated Akt, thereby maintaining IEC mitochondrial integrity. Increased apoptosis in 

DSS induced villin KO mice, suggesting the possible anti-apoptotic role in the development 

and progression of IBD [64].

As stated previously, TNF and TLRs can trigger caspase-dependent apoptosis through the 

FADD and procaspase 8. TLR4-deficient mice exhibit significantly lower IEC proliferation 

and increase apoptosis with reduced Cox-2 and PGE-2 levels in DSS-induced injury. 

Although short term TLR4 signaling is useful, persistent TLR4 signaling may lead to colitis-

associated cancers [65]. TLR’s stimulation in IECs are highly associated with activated 

caspase-8 and increased shedding of IECs. Epithelial cell-specific deletion of caspase-8 

triggered Rip3-dependent epithelial necroptosis that resulted in serious tissue damage and 

death instead of apoptosis [66]. Furthermore, this study emphasized that the release of TNF-

α from non-epithelial cells is responsible for TLR4-mediated epithelial necroptosis [66]. In 
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another study, IEC-specific FADD knockout spontaneously developed epithelial cell 

necrosis, loss of Paneth cells, enteritis and severe erosive colitis. Prevention of these changes 

by RIP3 inhibitor suggests that intestinal epithelial permeability and inflammation is caused 

by RIP3-dependent death of FADD-deficient IECs [27]. Recently the increase in TUNEL-

positive, caspase-3 negative cells along with p-RIPK3 is found in TNBS-induced colitis 

mice. At the same time, the increasing levels of p-RIPK3 and p-MLKL on IECs Caco-2 cells 

under the stimulation of TNF-α and Z-VAD-fmk, a novel in vitro necroptosis model that 

mimics IBD, confirmed the regulated necroptosis cell death; these effects are reversed by 

necroptosis inhibitor necrosulfonamide [11]. Therefore, RIP3-mediated IECs are critical for 

maintaining intestinal homeostasis and indicate that programmed IECs necrosis may be 

involved in the pathogenesis of IBD.

In a recent study demonstrates that IEC pyroptosis is crucial to the development of mucosal 

barrier dysfunction and intestinal inflammation using cell culture, animal model (IL10 and 

casp-1 KO mice) and patients with IBD. Specific caspase-1 inhibitor YVAD and IBD 

therapeutic agents, such as mesalamine and dexamethasone, considerably inhibit IEC 

pyroptosis cell pathway, the pyroptosis cell mechanism in IECs [67]. To fully investigate the 

pathogenic impact of IECs pyroptosis in IBD, more studies are warranted. Recently, the 

reduced levels of GPx4, a key mediator of ferroptosis, were showed in the colon tissue of 

patients with CD, suggesting the role of IEC ferroptosis in the pathogenesis of IBD [37]. 

Still, it is essential to bring more scientific evidence to confirm the ferroptosis cell death in 

IBD. It is urgent to develop the pharmacological target for apoptosis as a therapy due to 

increasing rate of apoptosis in intestinal pathologies like IBD. Mostly, in patients with IBD, 

anti-TNF therapy have been found to inhibit IEC apoptosis. Treating mice with infliximab 

suppressed DSS- and TNBS-induced colitis and IEC apoptosis via suppressing PUMA 

expression [59]. Overall, a better understanding of the role of cell death machinery in the 

epithelial cell might aid the design of better therapeutic or preventive strategies for IBDs.

3.4 IEC cell death in necrotizing enterocolitis (NEC)

NEC is a devastating and life-threatening inflammatory GI disease in 2%–5% of all 

premature infants, characterized by intestinal inflammation, ischemia, apoptosis and 

necrosis [68]. Although evidence shows that various risk factors have been involved in the 

pathogenesis of NEC, including prematurity, hypoxemia, formula feeding, bacterial 

exposure, and intestinal ischemia, the provocative events leading to NEC remains unclear 
[69].

IEC apoptosis is considered as one of the prominent pathological features in NEC. It has 

been shown that elevated levels of NO by enterocytes of infants with NEC, leading to 

apoptosis in IECs through peroxynitrite formation at apical villi [70]. Indeed, it remains 

unclear whether the observation of epithelial apoptosis is due primarily to gross tissue 

necrosis or corresponds only with extensive tissue destruction in NEC. IEC apoptosis and 

tissue morphology were assessed to test the hypothesis that enhanced epithelial apoptosis is 

a preliminary event that underlies the gross histologic modifications in formula feeding and 

cold/asphyxia stress (FFCAS) induced neonatal rat model of NEC. In this model, the 

increased coincidence of morphologic damage and apoptosis in the respective tissue sections 
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along with caspase-3 and DNA fragmentation levels in FFCAS compared to mother-fed 

(MF), suggested that IEC apoptosis preceded gross morphologic changes for subsequent 

gross tissue necrosis [71]. ROS-mediated IECs apoptosis plays a significant role in the 

pathogenesis of NEC in premature infants. Induction of H2O2 in rat IECs (RIE)-1 led in 

enhanced IEC apoptosis with intracellular ROS generation and depolarization of the 

mitochondrial membrane [72]. As we discussed earlier, the pathogenic microbial invasion is 

also one of the risk factors in the pathogenesis of NEC. Enterobacter sakazakii (ES), a 

prevalent contaminant in milk-based powdered infant formula, was found to bind to 

enterocytes in rat pups at the tips of villi, and exposure to ES resulted in apoptosis and 

enhanced IL-6 levels in IEC-6 cells and the animal model [73]. Cronobacter sakazakii (CS), a 

major pathogen, relates to NEC, induce dual pyroptosis and apoptosis cell death mechanism 

including NLRP3 inflammasome, caspase-3 and -1 levels in HT-29 IECs and neonatal rat 

model, resulting in increased intestinal permeability [74].

Interestingly, the findings of this study [74] have shown the probiotic, Bacteroides fragilis 
ZY-312f suppresses CS-induced NEC by modulating apoptosis and pyroptosis dual cell 

death. Bifidobacterium bifidum can reduce apoptosis in both in vivo and in vitro (IEC-6) 

NEC models by a COX-2-dependent matter, which suggests a molecular mechanism by 

which this probiotic preserve intestinal integrity [75]. Whereas, EGF reduces the incidence of 

NEC in a formula milk fed-neonatal rat model by controlling the presence of caspase-3-

positive epithelial cells and altering the balance between pro-apoptotic BAX and anti-

apoptotic Bcl-2 proteins in the site of NEC injury to maintain intestinal integrity and 

protects intestinal epithelium [76]. Insulin-like growth factor (IGF)-1 activates PI3-K 

pathway to promote IECs survival in H2O2 induced in vitro NEC model [72]. In meanwhile, 

with the administration of heparin-binding EGF (HB-EGF), the median TUNEL and active 

caspase 3 scores are significantly decreased in the incidence of NEC in the group of 

hypoxia, hypothermia, hypertonic formula feeding plus enteral administration of LPS [77]. 

Erythropoietin (Epo), a breast milk component is shown to reduce the incidence of NEC and 

maintain the function of intestinal barriers. Yu et al., [78] demonstrated that Epo protects the 

intestinal epithelium from excessive apoptosis by decreasing the number of total cleaved 

caspase-3 positive ileal epithelial cells and upregulating Bcl-2 expression through 

MAPK/ERK pathway in both in vitro TNF-α-induced IEC-6 cells and in vivo traditional rat 

neonatal NEC model. Lactoferrin, a milk supplement, administration modulates intestinal 

injury by reducing inflammatory cytokines such as IL-6 secretion and upregulating cell 

proliferation through the Wnt/β-catenin pathway in H2O2-induced IEC-18 and Caco-2 IECs 

NEC in vitro model [79]. In this regard, focusing on both programmed and non-programmed 

cell death pathways of IECs may shed light on novel therapeutic approach for the NEC. 

Overall, these findings highlight the pathological features of IECs cell death and 

pharmacological intervention for the prevention and recovery of IECs injury in NEC.

4 Future Directions and concluding remarks

Here remain several questions regarding how pathological IECs cell death mechanism 

interconnects and induces intestinal permeability? Is targeting one of the cell death 

mechanisms as a therapeutic approach provides promising treatment to patients with chronic 

intestinal diseases? Thus, understanding the mechanism of IECs cell death brings new 
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insights to explore a novel therapeutic approach for the disease. In this review, we highlight 

the vital role of IECs death mechanisms in the acute and chronic intestinal disorders such as 

sepsis, I/R, NEC, IBD, and RIGS, and address the potential therapeutic approach to such 

intestinal diseases by preventing the IECs cell death mechanism.

Several studies have revealed that the extended IEC apoptosis progresses intestinal injury 

and permeability via caspase mediated inhibition of the epithelial survival NF-κB pathways, 

provoke epithelial apoptosis and reduce proliferation, which results in pathological IEC 

shedding and chronic GI disorders. Simultaneously, deficient in caspase-8 or FADD leads to 

Ripk1-Ripk3-MLKL mediated IEC necroptosis cell death [27, 66] which has more 

pathological features than apoptosis. Few studies showed that the pyroptosis cell death 

mechanism is highly associated with mucosal barrier dysfunction and intestinal 

inflammation in intestinal diseases such as NEC and IBD [67, 74]. But still, the IECs 

pyroptosis cell death mechanism to induce intestinal permeability remains unclear. Another 

rapidly expanding cell-death mechanism in IECs is ferroptosis. The findings of the reduction 

of GPx4 activity in CD patients [37], iron supplementation influenced bacterial dysbiosis to 

NEC [80], and iron overload worsened the sepsis pathogenesis [48], suggest us the 

contribution of the IECs ferroptosis cell-death mechanism in the development and 

progression of chronic intestinal diseases. But more scientific evidence is warranted to fill 

this gap.

A recent study shows that blocking both apoptotic and necroptotic mechanism using Z-VAD 

and necrostatin-1 deliver better protection than any one of these inhibitors [19]. This result 

suggesting that pathogenic events may switch over the cell-death mechanism and escape 

from the therapeutic inhibitors in the chronic state of the intestinal diseases. Therefore, it is 

important to understand what the exact cell-death mechanisms are underlying chronic 

intestinal diseases to develop emerging novel promising therapeutic approaches. This review 

enlightens the need for new therapeutic activators or inhibitors in a disease-specific and 

IECs cell-death mechanism-specific manner. However, further investigations are wanted to 

explore a novel therapeutic approach for the development and clinical testing in patients 

with intestinal diseases.
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Fig. 1. 
Intestinal epithelial cells (IECs) apoptosis in an acute and chronic state of intestinal diseases. 

Apoptosis is a crucial factor for preserving gut homeostasis. The apoptotic pathway is 

mediated by the stimulation of TNFR1 and FAS receptor with receptive ligands TNF and 

FASL or TRAIL that leading to the activation of NFκB, which turns in the regulation of cell 

survival, apoptosis, and pro-inflammatory genes expression. A: During the acute intestinal 

disease state, there is an increase in the activation of NFκB1 survival pathways and it’s 

mediated pro-inflammatory mediators, which plays a host defensive mechanism in 
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regulating the caspase activity and apoptotic program to remove infected and damaged IECs. 

B: In meanwhile, during the chronic intestinal disease state, there is an increase in the 

activation of NFκB2 pro-apoptotic pathways and Caspase-3, -8 and -9 that inhibit the 

epithelial survival NF-kB1 pathways, provoke strikingly rapid epithelial apoptosis, reduce 

epithelial proliferation and result in the pathological IECs shedding. This event results in 

increased intestinal barrier dysfunction and intestine permeability, leading to several acute 

and chronic intestinal diseases, including sepsis, inflammatory bowel diseases, necrotizing 

enterocolitis, etc. TNF, tumor necrosis factor; FASL, Fas ligand; TNFR1, tumor necrosis 

factor receptor 1; TRAIL, TNF-related apoptosis-inducing ligand; TRAILR, TRAIL 

receptor; RIPK1, receptor-interacting serine/threonine-protein kinase 1; FADD, Fas-

associated death domain; TRADD, TNFR1-associated death domain protein; cIAPs, cellular 

inhibitor of apoptosis proteins; LUBAC, linear ubiquitin chain assembly complex; IKK, the 

inhibitor of I-κB kinase; NFκB, nuclear factor kappa B; DISC, Death-induced signaling 

complex; Apaf-1, activating factor 1; Casp, Caspase.
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Fig. 2. 
Lytic cell death pathways of intestinal epithelial cells (IECs) during the intestinal diseases. 

A: The inadequate release of TNF-α not only mediates IECs apoptosis, but also triggers 

necrotic cell death by inducing ROS, which acts as secondary messengers to regulate 

inflammation and its mediated signaling pathways during the presence of multiple 

pathological stimuli and stress condition. B: The binding of death ligands with their 

corresponding receptors (as shown in the figure) together with adapter proteins, but under 

caspase-8 or cIAP depletion, promotes the cell death pathways of necroptosis through the 

formation of necrosome RIPK1/RIPK3/MLKL, which leads to the phosphorylation of 

MLKL (p-MLKL). This event reduces the cell survival and anti-apoptotic pathways and 

increases the pro-inflammatory mediators along with intestinal barrier dysfunction and 

intestine permeability. C: Sensing of DAMPs or PAMPs by NLRs promotes the formation of 

inflammasome complex that involves NLRP3, ASC, and caspase-1 in the canonical pathway. 

In the non-canonical pathway, LPS leads to the activation of caspase-11 and results in 

cytoplasmic swelling and cytosolic content leakage along with DAMPs. Although pyroptosis 

occurs in inflammatory cells, it seems that pyroptosis in IECs plays an important role in the 

pathogenesis of chronic intestinal diseases, but several scientific pieces of evidences are 

needed to fill this gap. D: The increase in iron-dependent lipid peroxidation and lipid ROS 

accumulation and decrease in GPX4 activation through system Xc− inhibition lead to the 

destruction of IECs and intestinal hyperpermeability. However, the evidence for supporting 

ferroptosis in IECs is very less. DAMPS, Damage-associated molecular patterns; PAMPs, 

Pathogen-associated molecular pattern molecules; DAI, DNA-dependent activator of IFN-

regulatory factors; MLKL, Mixed lineage kinase domain-like pseudokinase; NLRs, 

Nucleotide-binding oligomerization domain-like receptors; ASC, an apoptosis-associated 

speck-like protein containing a CARD domain; NLRP3, Nucleotide-binding oligomerization 
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domain-, leucine-rich repeat-, and pyrin domain-containing protein 3; GPX4, glutathione 

peroxidase 4; LPS, lipo-polysaccharides; TLR4, Toll-like receptor 4; IL-1β, interleukin-1β; 

ROS, reactive oxygen species; GSDMD, gasdermin-D.
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Table1.

Intestinal epithelial cell death in the acute and chronic intestinal diseases

Model Subjects Cell death Findings

A) Sepsis

Clinical Patients with sepsis Apoptosis Increase in active caspase 3 [39]

Clinical Patients with trauma injuries Apoptosis Increase in cytokeratin 18 and active 
caspase 3 [40]

Clinical Patients with sepsis Apoptosis Increase in I-FABP [41]

In vivo CLP induced 
sepsis

Transgenic mice that overexpress Bcl-2 
(Fabpl-Bcl-2)

Apoptosis Decrease in apoptosis and active caspase 3 
[44]

In vivo pneumonia-
induced sepsis

Fabpl-Bcl-2 mice Apoptosis Decrease in apoptosis and active caspase 3 
[42]

In vivo pneumonia-
induced sepsis

Fabpl-Bcl-2 mice Apoptosis Decrease in apoptosis and active caspase 3 
associate with increase in S-phase cells 
proliferation [43]

In vivo MRSA 
pneumonia-induced sepsis 
model

Wild-type FVB/N mice Apoptosis Increase in Bid and Bax and Bcl-xL in the 
mitochondrial pathway [45]

In vivo MRSA 
pneumonia-induced sepsis 
model

Bid−/− mice
Fabpl-Bcl-2 mice

Apoptosis Regulate the mitochondrial apoptotic 
pathway [45]

In vivo CLP induced 
sepsis model

Lacking functional NF-kB in IECs (Vil-Cre/
Ikkβf/Δ)

Apoptosis Increase in mortality, apoptosis with pro-
inflammatory cytokines [46]

In vivo CLP induced 
sepsis model

STING-KO mice Apoptosis Decrease in apoptosis, inflammation, 
intestinal permeability and bacterial 
translocation [47]

In vivo LPS induced 
sepsis model

Tnfr1−/−, Tnfr2−/−, Nfκb1−/−, Nfκb2−/−, mice Apoptosis Dependent on NFκB signaling, via NFκB1 
favoring cell survival or via NFκB2 
favoring apoptosis [8]

In vivo LPS induced 
sepsis model

Co-expressed both Bcl-2 and TAg to Fabpl Apoptosis Bi-transgenic animals had reduced crypt 
apoptosis but had a paradoxical increase in 
the markers of apoptosis such as caspase 3, 
BAX and cytochrome c in villus [38]

B) Intestinal ischemia/reperfuson (I/R)

Clinical Jejunum from patients undergoing 
pancreaticoduodenectomy

Apoptosis Increase in apoptosis and I-FABP during 
ischemia and gradually decrease during 
reperfusion [51]

Clinical Jejunum from patients undergoing 
pancreaticoduodenectomy

Apoptosis Increase in apoptosis and I-FABP associate 
with inflammatory markers such as C3c 
complement activation, IL-6, IL-8, and 
TNFα [52]

In vivo I/R rat model Ischaemia (15–90 min) and ischaemia/
reperfusion (15 minutes ischaemia followed 
by 15–75 min of reperfusion)

Apoptosis, 
Necrosis

Death cells exhibit apoptosis (80%) and 
necrosis (20%) characteristics; increase in 
DNA fragmentation [53]

In vivo I/R rat model Ischemia clamping the SMA (30 or 60 min), 
after reperfusion various time points up to 4 
days.

Apoptosis Increase in apoptosis and decrease in 
intestinal ALP and lactase after ischemia, 
and returned normal with reperfusion [54]

In vitro model of ischemia 2-deoxyglucose and oligomycin-A treated 
HT-29 and Caco-2 cells

Apoptosis Greater apoptotic in differentiated cells than 
undifferentiated cells [54]

In vivo I/R rat model Underwent occlusion of both SMA and PV for 
20 minutes followed by 48h of reperfusion

Apoptosis Increase in apoptosis along with 
inflammatory markers upregulation of 
TLR-4, MyD88, and TRAF6 [49]
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Model Subjects Cell death Findings

In vivo I/R rat model Underwent occlusion of both SMA and PV for 
20 minutes followed by 24h or 48h of 
reperfusion

Apoptosis Increase in apoptosis inversely associate 
with SHh signaling pathways [50]

In vivo I/R rat model 1hr of ischemia followed by reperfusion Necroptosis, 
Necrosis

Increase in necroptotic markers such as 
RIP-1, -3 and MLKL [19]

In vitro model of ischemia Oxygen and glucose deprivation model in 
IEC-6

Necroptosis, 
Necrosis

Increase in RIP-1, -3 and MLKL together 
with HMGB1 - TLR4/RAGE signaling [19]

In vivo I/R rat model SMA occlusion (1.5h) of ischemia and 6 h of 
reperfusion

Necroptosis RIP1/3 mediated necrosome formation [55]

In vivo I/R murine model IkbkbF/ΔVil-Cre; SMA occlusion for 30 mins 
followed by reper 】 fusion

Apoptosis Increase in apoptosis and pro-inflammatory 
markers such as TNF, IL-1, IL-6 and ICAM. 
Probably dual function of NFκB signaling 
[56]

In vivo I/R murine model Fabpl-Bcl-2 mice; SMAO for 20 mins 
followed by reperfusion

Apoptosis Decrease in p53-dependent death [57]

C) Inflammatory bowel diseases (IBD)

Clinical patients with UC Apoptosis Increase in apoptosis, active caspase 3 and 
PUMA expression [59, 62]

Clinical;
In vivo TNBS induced 
colitis murine model

Patients with CD and UC; Wild type balb/c 
mice

Apoptosis up-regulation of TRAIL in IEC [60]

In vitro model TRAIL, TNF-α and IFN-γ treatment in HIEC, 
HT-29 or Caco-2 cells

Apoptosis NFκB-dependent (TNF-α) or NFκB-
independent (IFN-γ) pathway to induce 
TRAIL mediated apoptosis [60]

In vivo DSS or TNBS 
induced colitis murine 
model

Wildtype, PUMA−/−, Bid−/−, p53−/− Apoptosis PUMA inhibition can provide an efficient 
way of protecting IEC apoptosis and serve 
as a new anti-IBD approach [59]

In vivo model TAK1IE-KO mice Apoptosis Enhance in cleaved caspase-3 and reduction 
in claudin-3 and antioxidant- genes and 
transcription factor Nrf2, and ROS 
accumulation, like the IBD pathology [61]

In vivo anti-CD3 or DSS 
induced colitis murine 
model

wild-type, p53−/−, Bid−/−, Bim−/−, Bax3−/−, 
Bak−/−, PUMA−/−, and Noxa−/− mice

Apoptosis p53-dependent and - independent 
mechanisms; PUMA mediated intrinsic 
apoptosis pathway [62]

Clinical;
In vivo TNF induced 
apoptosis model

Patients with CD and UC; transgenic mice that 
overexpress A20 in IECs A20-Tg mice

Apoptosis RIPK1-Dependent IEC Death [63]

In vivo DSS induced 
colitis murine model

Villin kO mice Apoptosis Anti-apoptotic function of villin is regulated 
by PI3-kinase and Akt [64]

In vivo DSS induced 
colitis murine model

TLR4−/−mice Apoptosis Increase in apoptosis with reduced Cox-2 
and PGE-2 levels [65]

In vivo LPS induced 
injury model

Epithelial cell-specific deletion of Casp8ΔIEC 

mice TLR stimulation
Necrosis, 
Necroptosis

Rip3-dependent epithelial necroptosis [66]

In vivo spontaneous model Epithelial cell-specific deletion of FADDΔIEC Necrosis, 
Necroptosis

Rip3-dependent epithelial necroptosis [27]

In vivo TNBS induced 
colitis murine model;
In vitro necroptosis model

Wildtype mice; TNF-α and Z-VAD-fmk 
induced Caco-2 cells

Necrosis, 
Necroptosis

Increase in TUNEL-positive, caspase-3 
negative cells along with p-RIPK3 [11]

Clinical;
In vivo model;
In vitro model

Patients with CD; caspase-1/IL-10 double 
knockout; T84 monolayers

Pyroptosis Increase in the activated caspase-1[67]

Clinical Patients with CD Ferroptosis Reduction in GPx4 levels [37]

D) Necrotizing enterocolitis (NEC)
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Model Subjects Cell death Findings

Clinical Infants with NEC Apoptosis Increase in NO and apoptosis through 
peroxynitrite formation [70]

In vivo NEC model formula feeding, and cold/asphyxia stress 
induced neonatal rat

Apoptosis Increase in caspase 3 and DNA 
fragmentation [71]

In vitro NEC model H2O2 induced rat IECs (RIE)-1 Apoptosis Increase in intracellular ROS generation 
activates PI3-k pathway [72]

In vivo;
In vitro NEC model

formula feeding/hypoxia followed by 
Enterobacter sakazakii (ES) mediated NEC; 
ES administration to IEC-6 in vitro

Apoptosis Increase in active caspase-3 and pro-
inflammatory cytokines such as IL-6 [73]

In vivo;
In vitro NEC model

formula feeding/hypoxia followed by 
Cronobacter sakazakii (CS) mediated NEC; 
CS administration to HT-29 in vitro

Pyroptosis, 
Apoptosis

Increase in NLRP3 inflammasome, 
caspase-3 and caspase-1 levels [74]

In vivo;
In vitro NEC model

Rat pups collected by caesarian section, 
followed by hand fed; TNF-α and IFN-γ 
induced IEC-6 cells

Apoptosis Increase in Bax/Bcl-w ratio, cleaved 
caspase-3 and COX-2 levels; these events 
were reverted by Bifidobacterium bifidum 
[75]

In vivo NEC model NEC induced by asphyxia and cold stress, and 
followed by hand fed milk

Apoptosis Increase in pro-apoptotic Bax, cleaved 
caspase-3, and decrease in anti-apoptotic 
Bcl-2; this effect was attenuated by EGF 
administration [76]

In vivo NEC model NEC induced by hypoxia, hypothermia, 
hypertonic formula feeding plus enteral 
administration of LPS

Apoptosis Increase in TUNEL and active caspase 3 
levels; these changes were inhibited by HB-
EGF [77]

I-FABP, Intestinal fatty acid-binding protein; CLP, Cecal ligation and puncture; MRSA, Methicillin-resistant Staphylococcus aureus; Bcl-2, B-cell 
lymphoma 2; Bid, BH3 Interacting Domain Death Agonist; Bax, BCL2 Associated X, Apoptosis Regulator; Bcl-xL, B-cell lymphoma-extra-large; 
IKK, the inhibitor of I-κB kinase; NFκB, nuclear factor kappa B; STING, Stimulator of interferon genes; LPS, lipo-polysaccharides; TAg, viral 
protein large T-antigen; TNF, tumor necrosis factor; IL, interleukin; IR, ischaemia/reperfusion; SMA, superior mesenteric artery; PV, portal vein; 
SHh, sonic hedgehog; TLR, Toll-like receptor; TRAF6, Tumor necrosis factor receptor (TNFR)-associated factor 6; MyD88, Myeloid 
differentiation factor 88; RIPK, receptor-interacting serine/threonine-protein kinase; MLKL, Mixed lineage kinase domain-like pseudokinase; 
RAGE, Receptor for advanced glycosylation end product; ICAM, Intercellular Adhesion Molecule; UC, Ulcerative colitis; CD, Crohn’s disease; 
PUMA, p53 upregulated modulator of apoptosis; TRAIL, TNF-related apoptosis-inducing ligand; TNBS, 2,4,6-trinitrobenzene sulfonic acid; IFN, 
Interferon; HIEC, human intestinal epithelial cells; IBD, Inflammatory bowel disease; DSS, Dextran sodium sulfate; TAG1, TGF-β activated kinase 
1; COX-2, cyclooxygenase-2; PGE2, prostaglandin E2; FADD, Fas-associated death domain; TUNEL, Terminal deoxynucleotidyl transferase 
dUTP nick end labeling; NEC, Necrotizing enterocolitis; ROS, reactive oxygen species; NO, Nitric oxide; NLRs, Nucleotide-binding 
oligomerization domain-like receptors; NLRP3, NLR Family Pyrin Domain Containing 3; EGF, epidermal growth factor; HB-EGF, Heparin 
Binding EGF Like Growth Factor.
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