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Abstract

Objectives To simulate clinical deployment, evaluate performance, and establish quality assurance of a deep learning algorithm

(U-Net) for detection, localization, and segmentation of clinically significant prostate cancer (SPC), ISUP grade group > 2, using

bi-parametric MRI.

Methods In 2017, 284 consecutive men in active surveillance, biopsy-naive or pre-biopsied, received targeted and extended

systematic MRI/transrectal US-fusion biopsy, after examination on a single MRI scanner (3 T). A prospective adjustment scheme

was evaluated comparing the performance of the Prostate Imaging Reporting and Data System (PI-RADS) and U-Net using

sensitivity, specificity, predictive values, and the Dice coefficient.

Results In the 259 eligible men (median 64 [IQR 61-72] years), PI-RADS had a sensitivity of 98% [106/108]/84% [91/108] with a

specificity of 17% [25/151]/58% [88/151], for thresholds at > 3/> 4 respectively. U-Net using dynamic threshold adjustment had a

sensitivity of 99% [107/108]/83% [90/108] (p > 0.99/> 0.99) with a specificity of 24% [36/151]/55% [83/151] (p > 0.99/> 0.99) for

probability thresholds d3 and d4 emulating PI-RADS > 3 and > 4 decisions respectively, not statistically different from PI-RADS.

Co-occurrence of a radiological PI-RADS > 4 examination and U-Net > d3 assessment significantly improved the positive predic-

tive value from 59 to 63% (p = 0.03), on a per-patient basis.

Conclusions U-Net has similar performance to PI-RADS in simulated continued clinical use. Regular quality assurance should be

implemented to ensure desired performance.

Key Points

» U-Net maintained similar diagnostic performance compared to radiological assessment of PI-RADS > 4 when applied in a
simulated clinical deployment.

* Application of our proposed prospective dynamic calibration method successfully adjusted U-Net performance within accept-
able limits of the PI-RADS reference over time, while not being limited to PI-RADS as a reference.

* Simultaneous detection by U-Net and radiological assessment significantly improved the positive predictive value on a per-
patient and per-lesion basis, while the negative predictive value remained unchanged.
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Abbreviations

ADC Apparent diffusion coefficient
DCE-MRI Dynamic contrast-enhanced (DCE) MRI
ISUP International Society of Urological Pathology

nPT Normal-appearing prostate tissue

NPV Negative predictive value

PI-RADS  Prostate Imaging Reporting and Data System
PPV Positive predictive value

PSA Prostate-specific antigen

ROC Receiver operating characteristics
RP Radical prostatectomy

sPC Clinically significant prostate cancer
T2w T2-weighted

UPT U-Net probability thresholds

VOI Volume of interest

Introduction

In recent years, there is highest evidence that prostate MRI
improves the detection of clinically significant prostate cancer
(sPC) by identifying targets for subsequent biopsy, while re-
ducing the number of biopsy cores required for appropriate
sPC diagnosis [1-5]. Prostate MRI is becoming increasingly
integrated into the diagnostic pathway [5] and increasingly
standardized, most recently by the Prostate Imaging
Reporting and Data System (PI-RADS) version 2.1 [6].
There is continued need to improve work efficiency and min-
imize inter-reader variability [7-9]. Artificial intelligence (AI)
has the potential to make the radiological workflow more
efficient, thereby reducing cost and by providing diagnostic
support as well as a safety net, e.g., in the form of a virtual
second reader. We have recently developed and validated a
deep learning model based on the U-Net [10] architecture that
demonstrated comparable performance to clinical radiological
assessment [11]. The algorithm was trained using data from
250 men and validated on data from 62 men for use at our
main institutional MRI scanner. After establishing the system,
its clinical utility should be evaluated by continued clinical
application in consecutive patients, to gain further insights
into important aspects of Al deployment into clinical practice.

We hypothesized that the validated system should maintain
its performance in the clinical environment for which it was
developed. The purpose of the present study was to simulate
continued clinical use and regular quality assurance cycles in
the deployment of the previously developed U-Net for fully
automatic assessment of prostate MRI images.

Materials and methods

This retrospective analysis was performed in a previously unre-
ported cohort of men undergoing MRI-transrectal US (MR/
TRUS) fusion biopsy. The institutional ethics committee ap-
proved the study and waived written informed consent (S-156/
2018) to allow analysis of a complete consecutive cohort. All
men had clinical indication for biopsy based on prostate-specific
antigen (PSA) elevation, clinical examination, or participation
in our active surveillance program; were biopsied between
January 2017 and December 2017; and were included if they
met the following criteria: (a) imaging performed at our main
institutional 3-T MRI system and (b) MRI/TRUS-fusion biopsy
performed at our institution. Exclusion criteria were (a) history
of treatment for prostate cancer (antihormonal therapy, radiation
therapy, focal therapy, prostatectomy); (b) biopsy within
6 months prior to MRI; and (c) incomplete sequences or severe
MRI artifacts. sSPC was defined as International Society of
Urological Pathology (ISUP) grade >2 [12]. Details on image
preprocessing are given in Supplement S1.

MRI protocol

T2-weighted, diffusion-weighted (DWI), and dynamic
contrast-enhanced MRI were acquired on a single 3-T MRI
system (Prisma, Siemens Healthineers) in accordance with
European Society of Urogenital Radiology guidelines, by
using the standard multichannel body coil and integrated spine
phased-array coil. The institutional prostate MRI protocol is
given in Supplementary Table 1.

PI-RADS assessment

PI-RADS interpretation of mpMRI was performed by 8
board-certified radiologists during clinical routine (using PI-
RADS version 2) [13], with 85% of the studies being
interpreted by radiologists with at least 3 years of experience
in prostate MRI. For quality assurance, prior to biopsy, all
examinations were reviewed in an interdisciplinary confer-
ence and radiologists participated in regular retrospective re-
view of MRI reports and biopsy results.

MRI/TRUS-fusion biopsies

All men underwent grid-directed transperineal biopsy under
general anesthesia using rigid or elastic software registration
(BiopSee, MEDCOM and UroNav, Philips Invivo, respective-
ly). First, MRI-suspicious lesions received fusion-targeted bi-
opsy (FTB) (inter-quartile range (IQR) 3—5 cores, median 4 per
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lesion), followed by systematic saturation biopsy (22—27 cores,
median 24 cores), as previously described [14, 15]. This com-
bined biopsy approach of FTBs and transperineal systematic
saturation biopsies (SBs) has been validated against and its
concordance with radical prostatectomy (RP) specimen has
been confirmed [15]. A median of 32 biopsies (IQR 28-37)
were taken per patient, with the number of biopsies adjusted
to prostate volume [16]. Histopathological analyses were per-
formed under supervision of one dedicated uropathologist
(A.S., 17 years of experience) according to the International
Society of Urological Pathology standards.

Lesion segmentation

Lesion segmentation was retrospectively performed based on
clinical reports and their accompanying sector map diagrams
by one investigator (X.W.), a board-certified radiologist with
5 years of experience in body imaging and 6 months of fo-
cused expertise in prostate MRI under supervision and in con-
sensus with a board-certified radiologist (D.B.) with 11 years
of experience in prostate MRI interpretation, using the poly-
gon tool from open-source MITK software (www.mitk.org,
version 2018.04) to draw the three-dimensional volumes of
interest (VOI) separately on axial T2-weighted and apparent
diffusion coefficient (ADC)/DWI images.

Application of deep learning algorithm

The previously trained and validated two-dimensional 16-mem-
ber U-Net ensemble [10] utilizes T2-weighted, b-value 1500 s/
mm” and ADC maps to classify each voxel as either tumor,
normal-appearing prostate, or background. For each U-Net in
the ensemble, output probabilities for the three classes sum up to
one per voxel. The ensemble probability map is the mean of the
ensemble member U-Net probability maps. For each examina-
tion, the ensemble was applied to each of the rigid, affine, and b-
spline registration schemes and the map with the highest tumor
probability used for further processing. Deep learning was im-
plemented in PyTorch (version 1.2.0; https://pytorch.org) [17].

Combined histopathological mapping

To utilize all available histopathological information including
that of sPC outside of PI-RADS lesions, sextant-specific sys-
tematic and targeted lesion histopathology were fused into a
combined histological reference (Supplementary Material S-2).

Threshold adjustment and statistical analysis
Receiver operating characteristic (ROC) curves were calculated
from U-Net probability predictions. U-Net probability thresh-

olds yielding patient-based working points most closely
matching PI-RADS > 3 and > 4 performance were obtained

@ Springer

as outlined in Supplementary Material S-3. For application to
the current cohort, three U-Net thresholds were determined:
fixed, dynamic, and limit. Fixed thresholds represent the most
straightforward application of the published U-Net to new ex-
aminations and are determined from the 300 most recent exam-
inations of the published cohort. Dynamic thresholds are
readjusted in regular intervals to keep U-Net and PI-RADS
closely matched on the most recent examinations. These are
initially set to the values of the fixed thresholds, applied to the
50 following examinations, then repeatedly readjusted using
the most recent 300 examinations. Each patient is evaluated in
a simulated prospective manner using only the dynamic thresh-
old resulting from the most recent adjustment. Limit thresholds
represent the theoretical limit of best dynamic threshold perfor-
mance by producing the closest possible match between U-Net
and PI-RADS performance and are determined from the current
cohort. Only fixed and dynamic thresholds can be applied pro-
spectively to new patients, while limit thresholds are an a
posteriori reference to judge the success of threshold selection.

Sensitivity, specificity, and positive and negative predictive
value were calculated and compared using the McNemar test
[18]. We examined the effect of co-occurrent detection of sPC-
positive men, biopsy sextants, and PI-RADS lesions by U-Net
and radiologists on the positive (PPV) and negative predictive
value (NPV) using a test based on relative predictive values
implemented in the R package DTComPair [19, 20].
Statistical analyses were implemented in Python (Python
Software Foundation, version 3.7.3, http://www.python.org)
and R (R version 3.6.0, R Foundation for Statistical
Computing) with details given in Supplementary Material S-4.
A p value of 0.05 or less was considered statistically significant.
All p values were adjusted for multiple comparisons using
Holm’s method [21]. We used the Dice coefficient [22], a
commonly used spatial overlap index, to compare manual and
U-Net-derived lesion segmentations separately for DWI, T2w,
and their combination. The mean Dice coefficient was calculat-
ed from all biopsy sPC—positive clinical lesions and U-Net-
derived lesions (Supplementary Material S-5).

Results
Study sample characteristics

Of 604 men who presented to our institution during the inclu-
sion period, 259 men (median age 64 [IQR61-72]) met the
inclusion and exclusion criteria (Fig. 1). Demographic data
and patient characteristics are shown in Table 1.

Two hundred fifty-nine men harbored 420 lesions, 299 of
420 (71%) lesions were localized in the peripheral zone and 121
of 420 (29%) lesions were localized in the transition zone.
Seventeen of 420 (4%) lesions were of PI-RADS category 2,
180 of 420 (43%) of PI-RADS category 3, 170 of 420 (40%) of
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n=604 consecutive patients with
elevated PSA, suspicious DRE or
undergoing repeat biopsy
between January 2017 and
December 2017

n=288 patients excluded
without mpMRI at
German Cancer
Research Center
(DKFZ)

n=316 patients underwent mpMRI
at German Cancer Research
Center (DKFZ)

n=32 patients excluded
due to mpMRI not
performed on 3T MRI
system

n=284 patients underwent mpMRI
on 3T scanner at German Cancer
Research Center (DKFZ)

n=25 patients excluded
due to
prior therapy (HIFU,
galvanic therapy, laser
therapy, antihormonal
treatment, radiation
therapy)

n=0 patients excluded
due to biopsy within the
g past 6 months prior to
MRI

n=0 patients excluded
due to incomplete
sequences or severe
MRI artifacts

n=259 patients underwent mpMRI
at German Cancer Research
Center (DKF2)

Fig. 1 Diagram shows inclusion of patients into the study. PSA =
prostate-specific antigen, mpMRI = multiparametric MRI, HIFU = high-
intensity focused ultrasound

PI-RADS category 4, and 53 of 420 (13%) of PI-RADS cate-
gory 5. In total, 112 of 420 (27%) lesions were found positive
for sPC at fusion biopsy, 93 of 112 (83%) sPC-positive lesions
were localized in the peripheral zone, and 19 of 112 (17%) sPC-
positive lesions were localized in the transition zone. One hun-
dred forty-five of 259 (56%) patients were biopsy-naive, 55 of
259 (21%) patients were previously biopsied, and 59 of 259
(23%) patients participated in the active surveillance program.

Comparison of U-Net performance using fixed and dynamic
thresholds

We denote U-Net performance according to fixed (f), dynamic
(d), and limit (l) thresholds emulating PI-RADS > 3 or > 4
decisions in the form U-Net> f3/d3/13 and >f4/d4/14
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Table 1 Demographic and clinical characteristics of 259 included men
Cohort n =259
Age (years)
Median (IQR) 67 (61-72)
PSA (ng/ml) median (IQR) 7.2 (5.2-10.0)

PSA density median (IQR)
Highest ISUP grade group (n (%))

0.14 (0.10-0.22)

No PC 105 (40%)
1 46 (18%)
1 66 (25%)
I 18 (7%)
v 7 (3%)
v 17 (7%)
MRI index lesion per patient (n (%))
No lesion 20 (8%)
PI-RADS 2 7 (3%)
PI-RADS 3 78 (30%)
PI-RADS 4 104 (40%)
PI-RADS 5 50 (19%)
MRI assessment per lesion (1 (%))
Total 420 (100%)
PI-RADS 2 17 (4%)
PI-RADS 3 180 (43%)
PI-RADS 4 170 (40%)
PI-RADS 5 53 (13%)

Abbreviations: PSA prostate-specific antigen, /QR interquartile range,
ISUP International Society of Urological Pathology, PC prostate cancer,
MRI magnetic resonance imaging, PI-RADS Prostate Imaging Reporting
and Data System

respectively. The set of temporally distinct dynamic thresh-
olds and the resulting performance metrics show small undu-
lating fluctuations for d4 and a slow decrease for d3 over time
as given in Fig. 2 and Table 2. A comparison of performance
of PI-RADS and U-Net in new patients at different thresholds
is given in Table 2. The distribution of biopsy results and
referral indications in examinations influencing calculation
of new dynamic thresholds d3 and d4 is given in Table 3,
indicating no unexpected changes in referral indication or bi-
opsy distribution. A direct comparison of stability and com-
parability of PI-RADS and dynamic threshold—adjusted U-
Net performance in the look-back of 300 examinations is
shown in Table 4. Using fixed thresholds, the patient-based
working point U-Net > 4 lies close to the PI-RADS > 4 oper-
ating point (red diamond and triangle in Fig. 3a, respectively)
with the corresponding fixed threshold (f4) of 0.31 being near-
ly equal to the limit threshold (14) of 0.30 (Table 5), suggest-
ing stability of the model. PI-RADS > 3 and corresponding
fixed threshold U-Net working point U-Net > {3 are more dis-
tant from each other (green diamond and triangle in Fig. 3a,
respectively) with the corresponding fixed threshold (f3) of
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Table 3  Distribution of biopsy results and referral indication for look-back cohorts of 300 examinations utilized for the recalculating of dynamic
thresholds at threshold readjustment steps occurring every 50 patients. For distribution of patients, see the 2nd and 3rd columns in Table 4
Threshold »n  NoPC ISUP ISUP grade ISUP grade ISUP grade ISUP Number of Biopsy- Active Previously
adjustment (%) grade group 11 group I group IV~ grade patients with ~ naive surveillance biopsied
step group I (%) (%) (%) group V sPC (%) (%) (%) (%)

(%) (%)
0 300 120 (40) 65 (22) 76 (25) 16 (5) 114) 12 (4) 115 (38) 140 (47) 79 (26) 81 (27)
1 300 118 (40) 69 (23) 76 (25) 15 (5) 903 13(4) 113 (38) 146 (49) 78 (26) 76 (25)
2 300 121 (40) 66 (22) 73 (24) 14 (5) 12 (4) 14 (5) 113 (38) 155 (52) 76 (25) 69 (23)
3 300 118 (39) 57 (19) 77 (25) 17 (6) 14 (5) 17 (6) 125 (42) 156 (52) 73 (24) 71 (24)
4 300 121 (41) 57(19) 73 (24) 18 (6) 13 (4) 18 (6) 122 (41) 157 (52) 74 (25) 69 (23)
5 300 118 (40) 58 (20) 76 (25) 19 (6) 10 3) 19 (6) 124 (41) 160 (53) 72 (24) 68 (23)

Abbreviations: PC prostate cancer, I[SUP International Society of Urological Pathology, sPC significant PC, n number of examinations

Sextant-based performance Clinical assessment had a sensi-
tivity of 71% (177 of 251) and specificity of 62% (814 of
1303) for the PI-RADS > 3, and a sensitivity of 63% (158 of
251) and specificity of 80% (1045 of 1303) for PI-RADS > 4.
U-Net had a sensitivity of 70% (175 of 251; p >0.99) and
specificity of 66% (860 of 1303; p =0.34) for U-Net>d3 and
a sensitivity of 51% (129 of 251; significantly lower than PI-
RADS; p =0.01) and specificity of 84% (1096 of 1303; sig-
nificantly higher than PI-RADS; p =0.02) for U-Net>d4
(Table 5 and Fig. 3b).

Co-occurrence of U-Net and PI-RADS assessment Co-occur-
rent detection of men, sextants, and lesions by both U-Net
and PI-RADS assessment at various thresholds is shown in
Table 6. In individual men, with co-occurrent detection of PI-
RADS > 4 and U-Net>d3, the positive predictive value
(PPV) increased from 59% (91 of 154) to 63% (91 of 145;
p=0.03) with an insignificant increase of negative predictive
value (NPV) from 84% (88 of 105) to 85% (97 of 114, p=

0.15). With co-occurrent detection of PI-RADS > 4 and U-
Net>d3 sextants, the PPV increased from 38% (158 of 416)
to 47% (135 of 287; p=< 0.001) with an insignificant de-
crease of NPV from 92% (1045 of 1138) to 91% (1151 of
1267; p=0.07). Co-occurrent detection of PI-RADS > 4 and
U-Net > d3 lesions increased the PPV from 43% (96 of 223) to
60% (87 of 145; p =< 0.001) with an insignificant decrease of
NPV from 92% (181 of 197) to 91% (250 of 275, p>0.99).

Spatial congruence of segmentations

Dice coefficient of targeted sPC-positive PI-RADS lesion seg-
mentations and U-Net-derived lesion segmentations was 0.34,
0.34, and 0.29 for DWI, T2w, and the combination, respec-
tively. Dice coefficient distributions are shown in
Supplementary Fig. 1 for overlapping lesion segmentations.
Figures 4 and 5 demonstrate representative examples of U-Net
output compared with manual segmentations.

Table 4 Comparison of clinically achievable prediction agreement between dynamically adjusted U-Net and PI-RADS over time, reported on the
sliding-window look-back of 300 examinations in 50 examination increments

Threshold N, N, n d3 PI-RADS>3  U-Net>d3 d4 PI-RADS>4  U-Net>d4
adjustment step  (prior cohort)  (current cohort) Sensitivity | Sensitivity | Sensitivity | Sensitivity |
specificity specificity specificity specificity
0 300 0 300 0196  97%|27% 97% | 26% 0.308  86% | 56% 84% | 56%
1 250 50 300 0168  97%|23% 97% | 23% 0.298  87% | 56% 84% | 56%
2 200 100 300 0151  99%|17% 98% | 17% 0282  89% | 54% 88% | 53%
3 150 150 300 0141  98%|12% 99% | 12% 0282  88%|53% 86% | 53%
4 100 200 300 0.140  98% | 13% 99% | 13% 0282  87%|55% 85% | 54%
5 41 259 300  0.140  98% | 15% 99% | 15% 0297  86% | 56% 83% | 56%

Abbreviations: N, (prior cohort) number of most recent examinations from the original U-Net training cohort considered for each threshold adjustment
step; N, (current cohort) number of consecutive examinations from the current study cohort considered for each threshold adjustment step; at each step,
N, + N, =300 examinations were used to determine the new threshold; » number of men considered for sensitivity and specificity analysis; d3 dynamic
threshold adjusted to match clinical performance at PI-RADS greater than or equal to 3; d4 dynamic threshold adjusted to match clinical performance at
PI-RADS greater than or equal to 4; PI-RADS Prostate Imaging Reporting and Data System
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Fig. 3 Graphs show receiver operating characteristics (ROC) curves on a
per-patient (a) and on a per-sextant (b) basis for U-net performance (blue
curves). Radiologist performance at Prostate Imaging Reporting and Data
System (PI-RADS) cut-offs is indicated by triangles (green > 3, red > 4).
On a patient basis, PI-RADS operating points lie very close to the blue
ROC curve, indicating absence of deterioration of the U-Net model when
applied to the new cohort. Three sets of U-Net probability thresholds were
determined by matching PI-RADS and U-Net performance on different
sets of examinations and applied to obtain working points on the ROC
curves. Fixed thresholds determined using the 300 most recent examina-
tions of the previously published model building cohort (diamonds); dy-
namic thresholds (crosses) are initially equal to the fixed thresholds, with
each threshold derived from the previous 300 examinations and applied to
the subsequent 50 examinations, until the entire current cohort is

Discussion

Prostate MRI is increasingly incorporated into the stan-
dard diagnostic pathway. Deep learning carries potential
to disseminate high-quality prostate MRI assessment and
support image interpretation while demand for prostate
MRI increases. This study represents the first simulation
of clinical deployment of a validated deep learning system
for fully automatic prostate MRI assessment within the
clinical environment for which it was optimized. Clinical
deployment is simulated as it is still too early to actually
deploy this system into prospective clinical practice affect-
ing clinical decisions, while the simulated analysis pro-
vides important information on what performance can be
expected. Comparable performance to clinical MRI as-
sessment was confirmed, i.e., sensitivity 84% [91/108]
vs. 83% [90/108], p >0.99; specificity 58% [88/151] vs.
55% [83/151], p > 0.99, respectively, for PI-RADS >4 vs.
dynamic U-Net threshold. By simulating continued clini-
cal application of deep learning in consecutive patients,
the stability over defined periods of operation and the
effect of readjustment of the system with respect to PI-
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predicted; /imit thresholds determined using all examinations of the cur-
rent cohort (circles). Fixed, dynamic, and limit thresholds yield very
similar working points for the PI-RADS > 4 decision on the patient-
based ROC curves (a), confirming stability of U-Net at this decision
threshold. Dynamic threshold adjustment is advantageous for perfor-
mance comparison at PI-RADS > 3, as the resulting working point closely
approximates the PI-RADS > 3 performance compared to fixed threshold
adjustment, while the limit threshold-derived U-Net working point for PI-
RADS >3 is nearly the same as for PI-RADS > 3. See text for details. {3/
d3/13 = fixed/dynamic/limit threshold to match clinical performance at PI-
RADS greater than or equal to 3; f4/d4/14 = fixed/dynamic/limit threshold
adjusted to match clinical performance at PI-RADS greater than or equal
to 4. PI-RADS = Prostate Imaging Reporting and Data System

RADS could be closely evaluated. The achieved degree
of assessment of model fitness for clinical application thus
is much advanced in comparison to explorative studies of
deep learning performance [23-25]. Using a quality assur-
ance cycle of 50 patients or approximately two months,
we find that fluctuations between PI-RADS and U-Net
performance can be reduced by a recalibration scheme
which, when used prospectively, assures similar perfor-
mance of both assessment methods. These fluctuations
were minor for PI-RADS > 4 decisions and the diagnostic
performance stable over the 300 examination look-back
period. However, a slow decrease of d3 and the specificity
of PI-RADS > 3 decisions in the look-back period with
otherwise congruence of the U-Net ROC curve and the PI-
RADS operating points in the new cohort suggests that the
difference is neither caused by a deterioration of the sys-
tem (as the U-Net ROC curve is very close to the PI-
RADS working points) nor a drift in the composition of
tumors in the cohort (cf. Table 3) or the image quality
(scanner and image protocol remained the same), but rath-
er related to a shift in PI-RADS interpretation. While the
composition of the team of radiologists changed slightly
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Table 5 Diagnostic performance of clinical and U-Net assessment compared with combined targeted and systematic sextant biopsy histopathologic
mapping on a per-patient and per-sextant basis, given for fixed, dynamic, and limit U-Net probability thresholds

U-Net probability Sensitivity 95% C1  Specificity 95% C1 PPV NPV P p
threshold Sensitivity Specificity value value
Sens  Spec

Patient-based
PI-RADS >3  98% (106/108) 94.100 17% (25/151) 11.24 46% (106/232)  93% (25/27) Ref  Ref
PI-RADS>4  84% (91/108) 76.91 58% (88/151) 50.66 59% (91/154)  84% (88/105) Ref  Ref

Fixed UPT >13 95% (103/108) 90.99 35% (53/151) 28.43 51% (103/201)  91% (53/58) - -
UPT>14 79% (85/108)  70.86 59% (89/151) 51.67 58% (85/147)  79% (89/112) - -

Dynamic UPT >d3 99% (107/108) 95.100 24% (36/151) 17.31 48% (107/222)  97% (36/37) >0.99 >0.99
UPT >d4 83% (90/108)  75.90 55% (83/151) 47.63 57% (90/158)  82% (83/101) >0.99 >0.99

Limit UPT>13 100% (108/108) 97.100 17% (25/151) 11.24 46% (108/234) 100% (25/25) - -
UPT>14 83% (90/108)  75.90 58% (88/151) 50.66 59% (90/153)  83% (88/106) - -

Sextant-based
PI-RADS >3 71% (177/251) 65.76 62% (814/1303) 60.65 27% (177/666) 92% (814/888)  Ref  Ref
PI-RADS >4  63% (158/251) 57.69 80% (1045/1303) 78.82 38% (158/416)  92% (1045/1138) Ref  Ref

Fixed UPT>13 62% (155/251) 55.68 74% (967/1303)  72.77 32% (155/491)  91% (967/1063) — -
UPT >4 47% (119/251) 41.54 85% (1113/1303) 83.87 39% (119/309)  89% (1113/1245) — -

Dynamic UPT>d3 70% (175/251) 64.75 66% (860/1303)  63.69 28% (175/618)  92% (860/936)  >0.99 0.34
UPT>d4 51% (129/251) 45.58 84% (1096/1303) 82.86 38% (129/336)  90% (1096/1218) 0.01* 0.02*

Limit UPT>13 73% (183/251) 67.78 62% (807/1303)  59.65 27% (183/679)  92% (807/875)  — -
UPT>14 49% (123/251) 43.55 85% (1105/1303) 83.87 38% (123/321)  90% (1105/1233) — -

Abbreviations: UPT U-Net probability thresholds; f3/d3/[3 fixed/dynamic/limit threshold to match clinical performance at PI-RADS greater than or
equal to 3; 3 =0.20, d3 is dynamically adjusted (see text), 13 = 0.14; f4/d4/14 fixed/dynamic/limit threshold adjusted to match clinical performance at PI-
RADS greater than or equal to 4; f4 = 0.31, d4 is dynamically adjusted (see text), 14 = 0.30; PI-RADS Prostate Imaging Reporting and Data System; PPV
positive predictive value; NPV negative predictive value, p values (McNemar test) adjusted for multiple comparisons using Holm’s method

*Statistically significant

since the previous cohort, the isolated change at PI-  category being the least clearly defined (the “indetermi-
RADS > 3 suggests that this is of minor importance, such ~ nate”) category of the system. It is subject to ongoing re-
that this finding may be explained by the PI-RADS 3  definition and by nature includes subtle and nonspecific

Table 6  Simultaneous detection of sPC in men, sextants, and lesions by PI-RADS and U-Net at given thresholds

PI-RADS >3 PI-RADS >4
PPV NPV PPV NPV PPV NPV

Patient-based

46% (106/232) 93% (25/27) 59% (91/154) 84% (88/105)
UPT>d3 48% (107/222) 97% (36/37) 53% (105/199) [<0.001]  95% (57/60) [>0.99] 63% (91/145) [0.03] 85% (97/114) [0.15]
UPT>d4 57% (90/158)  82% (83/101) 60% (89/148) 83% (92/111) 69% (81/118) 81% (114/141)
Sextant-based

27% (177/666) 92% (814/888) 38% (158/416) 92% (1045/1138)
UPT>d3 28% (175/618) 92% (860/936) 39% (147/379) [<0.001]  91% (1071/1175) [>0.99] 47% (135/287) [<0.001] 91% (1151/1267) [0.07]
UPT>d4 38% (129/336) 90% (1096/1218) 46% (116/251) 90% (1168/1303) 51% (109/214) 89% (1198/1340)
Lesion-based

28% (112/403) 100% (17/17) 43% (96/223) 92% (181/197)
UPT>d3 - - 49% (92/188) [<0.001]  91% (212/232) [<0.001]  60% (87/145) [<0.001]  91% (250/275) [>0.99]
UPT>d4 - - 57% (73/128) 87% (253/292) 64% (69/107) 86% (270/313)

Abbreviations: UPT U-Net probability thresholds; PI-RADS Prostate Imaging Reporting and Data System; d3 dynamic threshold adjusted to match
clinical performance at PI-RADS greater than or equal to 3; d4 dynamic threshold adjusted to match clinical performance at PI-RADS greater than or
equal to 4; PPV positive predictive value; NPV negative predictive value, p values in brackets (DTComPair R package) adjusted for multiple compar-
isons using Holm’s method
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Fig. 4 Images show examples of U-Net ensemble segmentation in a 59-
year-old man with PSA of 4.4 ng/ml and Prostate Imaging Reporting and
Data System category 4 lesion (Gleason grade group 2) in right posterior
peripheral zone on three consecutive MRI slices (rows). a T2w, (b) ap-
parent diffusion coefficient, and (c) b-value 1500 s/mm? images (apparent
diffusion coefficient and b-value 1500 s/mm” images registered using
rigid followed by b-spline registration). d T2w image (grayscale) overlaid
with U-Net ensemble output probability map for the tumor class (color

lesions which may be evaluated differently by a team of
radiologists over time. In a sense, U-Net at fixed thresh-
olds can be compared to an isolated radiologist or team of
radiologists performing assessments without being inte-
grated into any ongoing case reviews and communication
with the team of radiologists that contributed to its initial
training. It may be the case that radiologists make joint
decisions resulting from clinical feedback and case confer-
ences that adjust PI-RADS 3 reading patterns slightly to-
ward more specific or sensitive reporting style, depending
on the agreed-upon direction of continued quality im-
provement. The same may be observed for a team of ra-
diologists that splits in two and ceases communication. To
decide which of either a) the rigid performance of fixed U-
Net thresholds (which still provide clinically reasonable
working points and may represent the advantage of artifi-
cial intelligence to reduce inter-rater variability) or b) the
dynamic response of the radiologists (which represents
continuous situation-aware learning) is better requires
more investigation in the future. At the moment, we ob-
serve one system (U-Net) which has ceased learning (fixed
thresholds) compared to one that continues to learn from
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scale). e T2w image with overlaid segmentations: U-Net-derived prostate
segmentation in red, hand-drawn clinical T2w lesion segmentation in
white, and U-Net ensemble-derived tumor lesion segmentation in yellow.
The tumor dice score was 0.12, 0.12, and 0.08 for DWI, T2w, and com-
bined, respectively. The maximum tumor probability predicted by the U-
Net ensemble was 0.61. PI-RADS = Prostate Imaging Reporting and
Data System

clinical practice (radiologists). Still, with radiologists be-
ing certified for clinical practice while U-Net is not, PI-
RADS lends itself to be used as standard, with dynamic
threshold adjustment being identified as the method to
effectively impose the same adjustments onto U-Net that
the radiologists are making. The proposed threshold ad-
justment scheme gives flexibility for comparison and clin-
ical implementation. When PI-RADS is used as “manual”
input for calibration, the result is a semi-automatic calibra-
tion. One could, however, also use acceptable sensitivity
ranges for calibration which would lead to an entirely da-
ta-driven, fully self-calibrating system.

A specific advantage of the cohort in our study is the
analysis of consecutive at-risk patients, allowing a direct
and clinically meaningful comparison of performance. In
addition, the used extended systematic and targeted biop-
sies provide a much better assessment than standard sam-
pling schemes having a sensitivity of up to 97% for sPC
compared with radical prostatectomy (RP) [15]. In com-
parison, pure RP cohorts would introduce bias excluding
many men that received MRI-guided biopsies but did not
undergo RP; thus, the selected reference standard of
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a

Fig. 5 Images show example of U-Net ensemble segmentation in a 71-
year-old man with PSA of 9.4 ng/ml and Prostate Imaging Reporting and
Data System category 5 lesion (Gleason grade group 2) extensively in the
anterior transition zone bilaterally on three consecutive MRI slices (rows).
a T2w, (b) apparent diffusion coefficient, and (¢) b-value 1500 s/mm?>
images (apparent diffusion coefficient and b-value 1500 s/mm?® images
registered using rigid followed by b-spline registration). d T2w image
overlaid with U-Net ensemble output probability map for the tumor class.

extended systematic and targeted biopsies is of high qual-
ity for complete assessment of the population.

There are limitations to our study. The developed U-Net in
its current form is applicable only to data from our main in-
stitutional MRI system. While it is desirable to develop more
general Al systems in the future, the current system is expect-
ed to maximize the utility of deep learning at current still
limited cohort sizes by avoiding added heterogeneity of
multi-scanner cohorts which would require more data for
equally successful machine learning. In the future, we plan
to apply the developed U-Net in a prospective setting at our
institution and to perform transfer learning on multi-centric
data to expand its domain.

In conclusion, this study provides the first simulated clini-
cal deployment of a previously validated Al system for fully
automatic prostate MRI assessment. By simulating regular
quality assurance cycles, we find that the system performance
is stable for PI-RADS > 4 decisions, while slowly changing
clinical PI-RADS > 3 assessment can be addressed by a newly
proposed threshold adjustment scheme. Observed fluctuations
may be an indication that deep learning can address inter-

=4 N

= —
030 045 060 0.75 0.90

e T2w image with overlaid segmentations: U-Net-derived prostate seg-
mentation in red, hand-drawn clinical T2w lesion segmentation in white,
U-Net ensemble-derived tumor lesion segmentation in yellow. The tumor
dice score was 0.72, 0.55, and 0.58 for DWI, T2w, and combined, re-
spectively. The maximum tumor probability predicted by the U-Net en-
semble was 0.96. PI-RADS = Prostate Imaging Reporting and Data
System

observer variability of PI-RADS or indicate the detachment
of U-Net from the ongoing clinical quality assurance cycle
with U-Net being re-attached by the proposed dynamic adjust-
ment scheme. Co-occurrent detection by U-Net and radiolo-
gists increased the probability of finding sPC. U-Net confirms
itself as a powerful tool to extract a diagnostic assessment
from prostate MRI and its performance motivates evaluation
in a prospective setting.
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