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Abstract

We consider a single-index regression model, uniquely constrained to estimate interactions 

between a set of pretreatment covariates and a treatment variable on their effects on a response 

variable, in the context of analyzing data from randomized clinical trials. We represent interaction 

effect terms of the model through a set of treatment-specific flexible link functions on a linear 

combination of the covariates (a single index), subject to the constraint that the expected value 

given the covariates equals 0, while leaving the main effects of the covariates unspecified. We 

show that the proposed semiparametric estimator is consistent for the interaction term of the 

model, and that the efficiency of the estimator can be improved with an augmentation procedure. 

The proposed single-index regression provides a flexible and interpretable modeling approach to 

optimizing individualized treatment rules based on patients’ data measured at baseline, as 

illustrated by simulation examples and an application to data from a depression clinical trial.
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1 | INTRODUCTION

In precision medicine, a critical concern is to characterize individuals’ heterogeneity in 

treatment responses in order to enable individual-specific treatment decisions to be made 

(Murphy, 2003; Robins, 2004). Furthermore, estimating treatment and pretreatment 

covariate interactions in the setting of randomized clinical trials may provide valuable 
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information for understanding the factors involved in heterogeneous treatment responses. In 

this paper, we propose a simple and flexible regression method specifically focused on 

estimating the interaction effects between a treatment variable and pretreatment covariates 

on a treatment response.

Since the seminal papers of Murphy (2003) and Robins (2004), much research has been 

done on development of individualized treatment rules based on pretreatment covariates. 

Regression-based methodologies are intended to optimize the individualized treatment rules 

by estimating treatment-specific mean response functions (eg, Qian and Murphy, 2011; 

Zhang et al., 2012; Lu et al., 2011; Petkova et al., 2019) while attempting to maintain 

robustness with respect to model misspecification. Machine learning approaches for 

developing individualized treatment rules are often framed in the context of classification 

problems (Zhang et al., 2012; Zhao et al., 2019); for example, the outcome weighted 

learning (eg, Zhao et al., 2012, 2015; Song et al., 2015) based on support vector machines, 

tree-based classification (eg, Laber and Zhao, 2015), and the methods of Kang et al. (2014) 

based on adaptive boosting, among others. Although the classification approaches are 

appealing in many settings, here we focus on familiar regression approaches that are 

frequently utilized in practice, and allow for ready interpretation.

Qian and Murphy (2011) show that the optimal individualized treatment rules (in terms of 

maximizing the mean treatment response) depends only on the treatment and pretreatment 

covariates’ interaction effects, and not on the main effects of the pretreatment covariates 

present in the mean response function. However, if the model inadequately represents the 

interaction effects, the estimated individualized treatment rule may perform poorly (Murphy, 

2005; Qian and Murphy, 2011). The primary focus of this paper is to develop a 

semiparametric regression method for estimating the interaction effect term of the mean 

response function, which reduces concerns regarding misspecification of the interaction 

effects.

Qian and Murphy (2011) approximate the mean response function using a rich linear model 

with a penalized least squares criterion. However, this approach is generally not robust to 

misspecification of the main effect term of the model and is also restricted to a parametric 

regression. Also, if the main effect is responsible for a relatively large proportion of the 

variance in the outcome compared to the interaction effect, consistent estimation of the 

interaction effect is difficult. Addressing this issue, Tian et al. (2014) proposed an approach 

to consistently estimate the treatment-by-covariate interaction effect without having to 

specify the main effect. However, their approach is applicable only to the (generalized) 

linear model framework and only when there are exactly two treatments. In realistic 

situations, a linear model may be too restrictive to describe complex interactions. Zhang et 
al. (2012) proposed a robust approach to estimating an optimal individualized treatment rule, 

within a class of rules defined by a (possibly misspecified) regression model. However, their 

method is computationally feasible only in low-dimensional settings. Song et al. (2017) 

proposed a semiparametric regression model to estimate an optimal individualized treatment 

rule, but their approach is limited to a monotone interaction effect structure and to binary 

treatment conditions.
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A primary contribution of this paper is in generalizing the work of Tian et al. (2014) to allow 

for a semi-parametrically defined interaction effect and also for more than two treatments in 

the context of randomized clinical trials. We do this by extending a single-index model (eg, 

Stoker, 1986) to allow treatment-specific nonparametric link functions (Park et al., 2020) in 

order to capture the treatment-by-covariates interaction effects, while allowing for an 

unspecified main effect of the covariates. The result is a simple and flexible regression 

model for the interaction effects.

2 | CONSTRAINED SINGLE-INDEX MODELS

In the context of randomized clinical trials, we consider pretreatment covariates X ∈ ℝp and 

a categorical treatment variable T ∈ {1, … , L} (with L levels) that has associated 

randomization probabilities (π1, … , πL). We let Y (t) ∈ ℝ(t = 1, …, L) be the potential 

outcome if the patient received treatment T = t (t = 1, … , L); we only observe Y = Y(T), T, 

and X. Throughout the paper, we assume, without loss of generality, that E[Y|T = t] = 0 (t = 

1, … , L), that is, the main effect for T is centered at 0 (this is only to suppress the treatment-

specific intercepts in regression models in order to simplify the exposition, and can be 

achieved by removing the treatment level t-specific means from Y) and that X is centered at 

zero.

The focus of this paper is on modeling interactions between X and T on their effects on Y. 

We assume Y = E[Y|X, T] + ϵ, where ϵ is a zero-mean independent noise with finite 

variance. Let us assume that the nested mean model associated with the interaction effects 

has a single-index model structure with a set of treatment t-specific link functions, for a 

single-index coefficient α0 ∈ ℝp:

E[Y ∣ X, T = t] = μ(X)
main effect

+ ft α0
⊤X

interaction
(t = 1, …, L),

(1)

where μ(X) represents an unspecified main effect of X. In model (1), the treatment t-specific 

functions ft(·) are general smooth univariate functions. To obtain an identifiable 

representation, without loss of generality, the treatment t-specific functions (f1, … , fL) in 

model (1) are assumed to satisfy a condition: E fT α0
⊤X ∣ X = ∑t = 1

L πtft α0
⊤X = 0 (almost 

surely). This condition indicates that there are only L − 1 unrestricted functions ft among the 

L interaction functions (f1, … , fL); that is, the Lth function fL in (1) is identified by the 

other (L − 1) functions: fL α0
⊤X = − πL

−1∑t = 1
L − 1πtft α0

⊤X  (almost surely).

In model (1), the single-index coefficient α0 is identifiable only up to scale and sign due to 

the nonparametric nature of the link functions ft (t = 1, … , L) and therefore, without loss of 

generality, we assume α0 ∈ Θ, where

Θ: = α = α1, …, αp
⊤ ∈ ℝp:‖α‖ = 1, α1 > 0 .
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The semiparametric model (1) captures the variability in X related to the treatment effects 

via a single index α0
⊤X ∈ ℝ and its interactions with the treatment via treatment-specific link 

functions (f1, … , fL). Interaction effects are determined by the distinct shapes of the 

unspecified functions (f1, … , fL). There are several reasons we consider a single-index α0
⊤X

in (1) (as opposed to treatment-specific L indices). First, the common single index provides 

a parsimonious one-dimensional composite treatment effect modifier (defined as a linear 

combination of X) that allows an intuitive visualization for the interaction effect. Besides its 

parsimonious appeal, the single-dimensional reduction model (1) naturally and directly 

extends the linear model-based approach (eg, Tian et al., 2014) in the L = 2 setting. If L = 2 

and we restrict the unspecified interaction function ft(·) in model (1) to a prespecified linear 

form ft α0
⊤X = t + π1 − 2 α0

⊤X, then the semiparametric model (1) reduces to the modified 

covariates model assumed in Tian et al. (2014) (see also Murphy, 2003; Lu et al., 2011; Shi 

et al., 2016, 2018; Jeng et al., 2018):

E[Y ∣ X, T = t] = μ(X) + α0
⊤X t + π1 − 2 (t = 1, 2), (2)

for some α0 ∈ ℝp which assumes a linear form for the T-by-X interaction effects.

For model (1), to estimate the interaction effect terms ft α0
⊤X (t = 1, …, L) in the presence of 

the unspecified main effect μ(X), we propose to utilize a working model:

E[Y ∣ X, T = t] ≈ gt α⊤X (t = 1, …, L), (3)

for α ∈ Θ, subject to the constraint:

E gT α⊤X X = ∑
t = 1

L
πtgt α⊤X = 0 (4)

almost surely, for all α ∈ Θ. The constraint (4) is imposed on the treatment t-specific smooth 

link-functions (g1, … , gL) of the working model (3). Even if (3) does not generally provide 

a good approximation to the underlying model (1), in Section 3.3 we will show, through the 

consistency results (Theorem 1 and Corollary 1), that (3) is a useful model for estimating the 

interaction effect terms ft α0
⊤X (t = 1, …, L) of model (1).

In a least squares framework for model (3)

E Y − gT α⊤X 2/2
∝ E Y gT α⊤X − gT

2 α⊤X /2
= E μ(X) + fT α0

⊤X gT α⊤X − gT
2 α⊤X /2

= E E μ(X)gT α⊤X
+fT α0

⊤X gT α⊤X − gT
2 α⊤X /2 ∣ X ,

(5)

the condition (4) ensures that the cross-product term E[μ(X)gT(α⊤X)|X] vanishes to 0, and 

the part relevant to the estimation of the working model (3) is independent of the unspecified 
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main effect μ(X). This independence implies that optimization of the unspecified component 

μ(X) and the working model (3) can be performed separately. As model (3) does not require 

specification of μ(X), working with (3) sidesteps issues that would arise if μ(X) were to be 

misspecified.

We call model (3) a constrained single-index model with multiple (ie, treatment t-specific) 

link functions, which is the main working model of this paper.

3 | ESTIMATION

3.1 | A criterion for fitting themodel

To optimize the constrained working model (3), we consider a constrained least squares 

criterion:

minimize
α, g1, …, gL

E Y − gT α⊤X 2/2

subject to E gT α⊤X ∣ X = 0 almost surely ,
(6)

where α ∈ Θ and each function gt is in a suitable function space in L2(R).

Proposition 1.—For each fixed α, the minimizer (g1, … , gL) of the constrained 

minimization problem (6) satisfies

gt α⊤X = E Y ∣ α⊤X, T = t − E Y ∣ α⊤X (t = 1, …, L), (7)

almost surely.

The proof of Proposition 1 is in Section A.1 of the Supporting Information. Proposition 1 

suggests that solving (6) to optimize model (3) can be split into the following two iterative 

steps. First, for a fixed α, find the link-functions (g1, … , gL) from expression (7). Second, 

for a fixed (g1, … , gL), solve

argmin
α ∈ Θ

E Y − gT α⊤X 2/2 . (8)

These two steps can be iterated until convergence to obtain a solution of (6). To obtain a 

sample counterpart of this population solution, we can insert sample estimates into this 

population algorithm, as is done in Hastie and Tibshirani (1999). We will provide the details 

of this estimation procedure in Section 3.2, and establish the consistency of the estimator in 

Section 3.3.

3.2 | A cubic spline estimator of the model

To obtain a sample counterpart of the population solution of (6), we approximate the 

objective function of (6) based on sample {(Yi, Ti, Xi), i = 1, … , n} (assumed to be 

independently and identically distributed across i). In particular, we use a nonparametric 

regression technique to approximate the solution (g1, … , gL) in (7) for each fixed α ∈ Θ. 

Although other nonparametric regression methods can also be used, in this paper we focus 
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on a cubic B-spline (de Boor, 2001) representation of the solution (g1, … , gL) in (7) for 

each fixed α. Specifically, given each α, the functions gt is represented by

gt α⊤X = Bt α⊤X ⊤βt (t = 1, …, L), (9)

for some vector βt ∈ ℝdt + 4, where Bt( ⋅ ) ∈ ℝdt + 4 is a set of (dt + 4) cubic B-spline basis 

functions (de Boor (2001)) defined on the range of the candidate single-index {(α⊤Xi), i = 1, 

… , n}. We use dt to denote the number of interior knots (placed with equal distance 

between neighboring knots). The number dt depends on the treatment group sample size: 

nt = ∑i = 1
n 1 Ti = t . Furthermore, let us represent the conditional expectation E[Y|α⊤X] in 

expression (7) by E[Y|α⊤X] = B0(α⊤X)⊤β0 for some vector β0 ∈ ℝd0 + 4, where 

B0( ⋅ ) ∈ ℝd0 + 4 is a set of (d0 + 4) cubic B-spline basis functions defined on the range of the 

candidate single-index {(α⊤Xi), i = 1, … , n}. We use d0 number of interior knots (placed 

with equal distance between neighboring knots), and the number d0 depends on the sample 

size n.

Let Dα
(t)(t = 1, …, L) denote the treatment t-specific n × dt design matrix, where the ith row is 

the 1 × dt vector Bt(α⊤Xi)⊤ if Ti = t and is a row of zeros if Ti ≠ t (i = 1, … , n) (t = 1, … , 

L). Let Dα
(0) denote the n × d0 design matrix in which the ith row is the 1 × d0 vector 

B0(α⊤Xi)⊤ (i = 1, … , n). Then, for each fixed α ∈ Θ, we approximate the minimizer (g1, 

… , gL) in (7) by the method of least squares (see Section A.2 of the Supporting Information 

for a derivation):

gt( ⋅ ) = Bt( ⋅ )⊤ Dα
(t) ⊤ Dα

(t) −1Dα
(t) ⊤ In − Dα

(0) Dα
(0) ⊤ Dα

(0) −1Dα
(0) ⊤ Y (t = 1,

…, L),
(10)

where Y denotes the n × 1 vector of the observed responses. We define the estimator α0 for 

α0 of model (1) by

α0 = argmin 
α ∈ Θ

n−1 ∑
i = 1

n
Y i − gTi α⊤Xi

2/2, (11)

where (g1, … , gL) are given in (10). Let us define the associated estimators f1, …, fL  for 

the treatment-specific functions (f1, … , fL) of model (1) by

f1, …, fL = g1, …, gL  given in (10),  computed at α = α0 . (12)

We use iteratively re-weighted least squares to solve (11), repeating the following two steps:

1. Given a current estimate α ∈ Θ, compute the functions (g1, … , gL) in (10).

2. Given (g1, … , gL), approximately solve (11), based on a linear approximation to 

gTi α⊤Xi (i = 1, …, n) at the current estimate of α.
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The iteration between the two steps continues until convergence of α ∈ Θ. We next elaborate 

Step 2 of this iterative procedure. For each (the kth) iterative step, the objective function in 

(11) is approximated based on a linear approximation of gTi α⊤Xi  at the current (the kth) 

iterate, say α(k) ∈ Θ:

n−1 ∑
i = 1

n
Y i − gTi α⊤Xi

2/2

≈ n−1 ∑
i = 1

n
Y i − gTi α(k) ⊤ Xi

−ġTi α(k) ⊤ Xi α − α(k) ⊤Xi
2
/2

= n−1 ∑
i = 1

n
Y i

* (k) − α⊤Xi
* (k) 2/2,

(13)

where the modified responses Y i
* (k) and the modified regressors Xi

* (k):

Y i
* (k) = Y i − gTi α(k) ⊤ Xi + ġTi α(k) ⊤ Xi α(k) ⊤ Xi

Xi
* (k) = ġTi α(k) ⊤ Xi Xi

(14)

and we minimize the right-hand side of (13) over α ∈ ℝp. The minimizer α(k+1) is then 

scaled to satisfy α(k+1) ∈ Θ. The algorithm terminates, when ∥(α(k+1) − α(k))/α(k+1)∥ is less 

than a prespecified convergence tolerance.

Remark 1.—The objective function of the modified covariates model (2) (Tian et al., 2014) 

is

n−1 ∑
i = 1

n
Y i − α⊤Xi T i + π1 − 2 2/2, (15)

in which the terms Xi(Ti + π1 − 2) are called modified covariates. By comparing the right-

hand side of (13) to (15), the modified regressors, Xi
* (k) = ġTi α(k) ⊤ Xi Xi, take the role of 

the modified covariates of Tian et al. (2014) in updating α for each (the kth) iterative step. 

For any set of arbitrary functions (g1, … , gL) satisfying the constraint (4), we have 

E[ġT(α(k)⊤X)X|X] = 0 (almost surely) for any α(k) ∈ Θ, which is analogous to the condition: 

E[X(T + π1 − 2)|X] = 0 (almost surely) satisfied by the modified covariates model (2). These 

conditions, satisfied by the models, make the parts relevant to the optimization of α in (13) 

and (15) independent of the unspecified μ(X) of the underlying models (1) and (2), 

respectively, as in (5). This orthogonality is attractive, as the estimation of the unspecified 

function μ(X) and the single-index coefficient α0 can be performed separately, 

independently of each another. If we restrict the treatment t-specific functions gt to gt(u) := 

u(t + π1 − 2), the objective function of (11) reduces to (15).

Park et al. Page 7

Biometrics. Author manuscript; available in PMC 2021 June 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Remark 2.—As the weights ġTi α(k) ⊤ Xi  that define the modified regressors Xi
(k) *  in (14) 

depend on the values Xi and the shape of the link-functions gTi (through the first derivatives 

ġTi), the iterative procedure of optimizing α that utilizes the right-hand side of (13) accounts 

for the nonlinear interactions captured by the flexible link-functions (g1, … , gL). This is in 

contrast to the constant weights (Ti + π1 − 2) applied to Xi in defining the modified 

covariates of Tian et al. (2014).

3.3 | Consistency and asymptotic normality of the estimator

We establish the consistency of the estimator α0 in (11) for α0 and the estimators f t in (12) 

for ft, where α0 and ft are given in model (1). The theoretical results rely on those of Wang 

and Yang (2009), where cubic B-splines are used to approximate the link function of their 

single-index model. In Wang and Yang (2009), instead of imposing the true mean function to 

be a function only of a single-index θ0
⊤X ∈ ℝ, that is, E[Y ∣ X] = E Y ∣ θ0

⊤X  for some single-

index coefficient θ0 ∈ Θ, the authors develop a root-n consistent cubic spline estimator of 

the single-index coefficient of a single-index model that is robust against deviations from the 

exact single-index regression relationship. Specifically, their target single-index coefficient 

θ0 ∈ Θ is defined in terms of the optimal L2 (single-index based) approximation to the 

response Y :θ0: = argmin
θ ∈ Θ

E Y − E Y ∣ θ⊤X 2
, rather than in terms of an exact single-index 

relationship E[Y ∣ X] = E Y ∣ θ0
⊤X . In what follows, we adopt the results and assumptions of 

Wang and Yang (2009), and obtain uniformly consistent estimators of the conditional 

expectations E[Y|α⊤X, T = t] (t = 1, … , L) and E[Y|α⊤X] appearing on the right-hand side 

of (7) (uniformly over α ∈ Θ), and establish the root-n consistency of α0 in (11) for α0 of 

model (1); cubic spline smoothing of Y(= Y(t)) on α0
⊤X, T = t  results in uniformly 

consistent estimators f t in (12) for ft (t = 1, … , L). We state our assumptions.

Assumption 1.—The response Y i = μ Xi + fTi α0
⊤Xi + ϵi(i = 1, …, n), where E[ϵi|Xi, Ti] = 

0 and E ϵi2 ∣ Xi, Ti = σTi
2 Xi , in which the standard deviation functions σt(·) (t = 1, … , L) 

are bounded below and above by positive constants, defined on a bounded domain.

Assumption 2.—The function E[(Y − fT(α⊤X))2] is locally convex at α = α0.

Assumption 3.—The functions μ(·) and ft(·) in (1) have fourth-order continuous 

derivatives.

Assumption 4.—The covariate X is bounded, that is, ∥X∥ ≤ c, for some c > 0. The density 

function of X has a fourth-order continuous derivative, and is bounded above and below by 

positive constants, defined on a bounded domain.

Assumption 5.—The number of interior knots dt used in representing the function 

gα, t* * (u): = E Y ∣ α⊤X = u, T = t  satisfies nt1/6 ≪ dt ≪ nt1/5 log nt
−(2/5)(t = 1, …, L). The 
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number of interior knots d0 used in representing the function gα*(u): = E Y ∣ α⊤X = u
satisfies n1/6 ≪ d0 ≪ n1/5(log(n))−(2/5).

Assumption 1 on the standard deviation functions σt(·) and Assumption 3 on the underlying 

regression functions are typical in the nonparametric smoothing literature; see, for instance, 

Hardle et al. (1993); Xia et al. (2002). Assumption 4 on the distribution of X is also assumed 

in Wang and Yang (2009). Assumption 5 gives the requirement for the numbers of interior 

knots for the cubic spline spaces in approximating the conditional expectations specified on 

the right-hand side of (7), and is needed to ensure the uniform convergence of the 

approximated criterion function in (11) to its population counterpart in (8) over α ∈ Θ. The 

strong consistency of α0 in (11) to α0 and f t in (12) to ft are given below.

Theorem 1.—Under Assumptions 1–5, α0 α0, almost surely.

Corollary 1.—Under Assumptions 1–5,

sup
u ∈ [0, 1]

f t(u) − ft(u) 0, almost surely (t = 1, …, L) . (16)

In (16), without loss of generality, we take the domain of the functions f t and ft to be [0,1], 

as α⊤X (α ∈ Θ) is bounded under Assumption 4. We next consider the asymptotic normality 

of α0. In the working model (3), any vector α ∈ Θ ⊂ ℝp can be expressed as: 

α = c(ϕ): = 1, ϕ⊤ ⊤/ 1 + ϕ 2 1/2
, for some vector ϕ = ϕ1, …, ϕp − 1

⊤ ∈ ℝp − 1. Let J(ϕ) 

denote the p × (p − 1) Jacobian transformation matrix from ϕ ∈ ℝp − 1 to α ∈ Θ, whose (i, 
j)th element is given by ∂αi/∂ϕj = −αiϕj/K2, for (i = 1; j = 1, … , p − 1), and ∂αi/∂ϕj = −αiϕj/

K2 + 1/K, for (i = 2, … , p; j = 1, … , p − 1), where K = (1 + ∥ϕ∥2)1/2. As the relation α = 

c(ϕ) is one-to-one, the parameter vector ϕ0 ∈ ℝp − 1 corresponding to the coefficient α0 ∈ Θ 

of model (1) can be specified. Let us define the (p − 1) × (p − 1) covariance matrix 

Σ0 = var Ψ Y i, Ti, Xi ∣ ϕ0 , in which Ψ Y i, Ti, Xi ∣ ϕ0 : = J⊤ ϕ0 fTi α0
⊤Xi − Y i ḟTi α0

⊤Xi Xi, 

where α0 = c((ϕ0). Let A0 denote the (p − 1) × (p − 1) matrix of the first derivative of 

E[Ψ(Yi, Ti, Xi|ϕ)] with respect to ϕ ∈ ℝp − 1 evaluated at ϕ = ϕ0. The asymptotic normality 

of the estimator α0 is given below.

Theorem 2.—Under Assumptions 1–5, n1/2 α0 − α0 N 0, J0A0
−1Σ0 J0A0

−1 ⊤
 in 

distribution, where J0 is the Jacobian function J(ϕ) evaluated at ϕ = ϕ0.

The proofs of Theorem 1 and 2 and Corollary 1 are in Section A.3 of the Supporting 

Information. Although the convergence rate of the nonparametric component f t in (12) to ft 

(t = 1, … , L) is slower than root-n (see (A.11) of the Supporting Information Section A.3) 

under Assumption 5 on the numbers of interior knots dt and d0, the parametric component 

α0 can be estimated at a root-n rate by letting the numbers of interior knots of the spline 

smoothing to increase with the sample size at an appropriate rate (Assumption 5). This 
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indicates that the model can be estimated in two stages: estimation of α0 by the root-n 

consistent α0; spline smoothing of Y on α0
⊤X for each T = t (t = 1, … , L) to obtain an 

estimator f t (as given in (12)) of ft. Under Assumptions 1–5, Theorem 2 states that root-n 

rate asymptotic normality for α0 is achievable, and that the estimator is as efficient as if the 

true nonparametric functions ft (t = 1, … , L) in model (1) were known and used as the link 

functions gt (t = 1, … , L) of the working model (3). However, α0 is generally not the most 

efficient estimator (although a root-n consistent estimator). This is because α0 is based on a 

generally misspecified working model (3) that includes only the T-by-X interaction effect 

component and omits the main effect term. Analogous to the efficiency augmentation of 

Tian et al. (2014), the efficiency of the estimator can be improved by incorporating a main 

effect component of X to the estimation of α0 (see Section A.4 of the Supporting 

Information).

3.4 | An illustration of the consistency of α0

In this subsection, we illustrate the effect of the constraint (4) on the consistency of α0 for 

α0 using a simulation experiment. For the purpose of illustration, we consider a simple case 

of p = 2 and L = 2. We generate {(Yi, Ti, Xi), i = 1, … n}, where Ti takes a value in {1, 2} 

with equal probability, independently of Xi = Xi, 1, Xi, 2
⊤ ∈ ℝ2, where Xi,1,Xi,2 ~ 

independent unif[−π/2, π/2]. Given Ti and Xi, we generate Yi from model (1), that is, 

Y i = μ Xi + fTi α0
⊤Xi + ϵi, with additive Gaussian noise ϵi, where σTi Xi = 0.2 (see 

Assumption 1). We set n = 250. We consider two simulation settings. In setting “A,” the T-

by-X interaction effect specified in model (1) is nonlinear, and it is defined by

Setting A:  fTi α0
⊤Xi = ( − 1)Ti cos α0

⊤Xi − 0.5 (i = 1, …, n) .

In setting “B,” the interaction effect is linear, as defined by

Setting B:  fTi α0
⊤Xi = ( − 1)Tiα0

⊤Xi/2.25 (i = 1, …, n) .

In both settings “A” and “B,” we take the main effect component in model (1) to be μ(X; δ) 

= δ cos(η⊤X), where the parameter δ ∈ {1, 2, 4} regulates the contribution of the X main 

effect to the variance of Y. In both settings, the contribution of μ(X; δ) to the variance of Y is 

about 0.85, 3.5, and 14 times greater than that of the interaction effect fT α0
⊤X , for δ = 1, δ 

= 2, and δ = 4, respectively. In both settings, α0
⊤X corresponds to the index of interest (as it 

is associated with the T-by-X interaction effects) and η⊤X corresponds to a “nuisance” 

index (as it is associated only with the X main effects). We set α0: = (1, 1)⊤/ 2 and 

η: = (1, − 1)⊤/ 2. For the purpose of visualization, we parameterize vectors α ∈ Θ ⊆ ℝ2 in 

terms of an angle θ ∈ [−π/2, π/2) such that α = (cos(θ), sin(θ))⊤. We identify the vectors α0 

and η (in Cartesian coordinates) with the angles θ1 = π/4 and θ2 = −π/4 (in polar 

coordinates), respectively.
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In this simulation example, as a function of θ ∈ [−π/2, π/2), we illustrate the squared error 

criterion (ie, the objective function of (11)) (reparametrized with respect to θ) of the 

constrained working model (3). In addition, we illustrate the squared error criterion of the 

unconstrained working model, which is model (3) but without enforcing the constraint (4). 

For comparison, we also include the modified covariates squared error criterion (15) 

(reparametrized with respect to θ, by setting α = γ(cos(θ), sin(θ))⊤, in which γ ∈ ℝ is 

“profiled out” for each value of θ under the squared error criterion).

We simulate 200 data sets and average the values of these three criterion functions for each 

value of θ ∈ [−π/2, π/2) (evaluated on a dense grid). Then each of the averaged criterion 

functions is scaled to have height 1. In Figure 2, the resulting averaged criterion functions 

are displayed for setting “A” on the top row, and the setting “B” on the bottom row.

In Figure 1, for all three cases of δ = 1, δ = 2, and δ = 4, the constrained criterion (the red 

solid lines) has a “correct” global minimum at θ1 = π/4, implying that the minimization of 

this constrained criterion would lead to correctly identifying the T-by-X interaction effect 

coefficient α0. The unconstrained criterion (the green dotted lines) has a correct minimum at 

θ1 = π/4 for the case δ = 1 (ie, when the main effect is relatively small), however, as the 

main effect intensity parameter δ increases (from δ = 1 to δ = 2 and to δ = 4), the 

unconstrained criterion function takes its global minimum at the nuisance angle θ2 = −π/4, 

implying that the minimization of the unconstrained criterion would lead to an inconsistent 

estimate of α0. Under the linear interaction effect (setting “B”), the constrained single-index 

regression criterion takes the consistent global minimum at θ1 = π/4 for all three cases of δ 
= 1, δ = 2, and δ = 4. On the other hand, the unconstrained criterion has its global minimum 

at the nuisance angle θ2 = −π/4, for the cases δ = 2 and δ = 4 (ie, when the main effect 

dominates the interaction effect).

This example has illustrated that the proposed constrained single-index regression criterion 

consistently takes its global minimum near the “signal” direction α0 associated with the T-

by-X interaction effect, even when the interaction effect signal is weak, unlike the case of the 

unconstrained criterion. In the linear interaction scenario (setting “B”), the modified 

covariates model (2) also produces a consistent estimate of the “signal” direction α0 as, in 

this case, the modified covariates model is correctly specified and is a special case of the 

proposed constrained single-index model (1). However, when the interaction effect is 

nonlinear (scenario “A”), the modified covariates criterion does not provide relevant 

information for modeling the T-by-X interaction effects, as it takes its global minimum away 

from α0.

4 | SIMULATION STUDIES

In this section, we perform numerical studies to illustrate the performance of the proposed 

approach to optimizing individualized treatment rules, in comparison with alternative 

approaches including the modified covariates approach of Tian et al. (2014) and the outcome 

weighted learning method of Zhao et al. (2012).
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We consider p = 10 with n ∈ {250, 500}. We generate covariates Xi ∈ ℝp consisting of 

independent unif[−π/2, π/2] variates (a correlated covariate case is considered in Supporting 

Information Section B.5), and the treatment variable Ti takes a value in {1, 2} with equal 

probability, independently of Xi. We generate the treatment outcome 

Y i = μ Xi + fTi Xi + ϵi  from (1) the simulation setting “A”:

Y i = 0.8δcos η⊤Xi

+ −1 Ti e− α0
⊤Xi − 0.5 2 − α1

⊤Xi − 0.5 2ξ − 0.5 + ϵi
i = 1, …, n ,

(17)

where the first term μ(X; δ) : = 0.8δ cos(η⊤X) (δ = 1, 2) corresponds to the main effect of X, 

and the second term fT X; ξ : = −1 T e− α0
⊤X − 0.5 2 − α1

⊤X 2ξ − 0.5 (ξ  = 0, 0.5)

corresponds to the T-by-X interaction effect, determined by a bell-shaped (ie, Gaussian) 

surface over two one-dimensional indices, α0
⊤X and α1

⊤X if ξ ≠  0 , which nonlinearly 

modifies the effect of the variable T on the outcome Y. We also consider (2) the simulation 

setting “B”:

Y i = δcos η⊤Xi
+ −1 Ti cos α0 + α1I Ti = 2 ξ ⊤Xi − π/8 − 0.5 + ϵi
i = 1, …, n ,

(18)

where the first term μ(X; δ) := δ cos(η⊤X) (δ = 1, 2) determines the X main effect, and the 

second term fT(X; ξ) : = (−1)T{cos((α0 + α1I(T=2)ξ)⊤Xi − π/8) −0.5} (ξ = 0, 0.5) 

determines the T-by-X interaction effect, which is defined based on different single indices 

for each treatment, that is, α0
⊤X for T = 1 and (α0 + α1ξ)⊤X for T = 2, when ξ ≠ 0.

Both models (17) and (18) are indexed by a pair (ξ, δ): the parameter ξ ∈ {0, 0.5} 

determines whether the T-by-X interaction effect term fT(X; ξ) in models (17) and (18) has 

an intrinsic one-dimensional structure over the single index α0
⊤X ξ = 0  or whether it 

deviates from a single-index model structure (ξ = 0.5); the parameter δ ∈ {1, 2} in μ(X; δ) 

controls the contribution of the X main effect on the variance of Y, where δ = 1 represents a 

relatively moderate X main effect (contributing about the same variance as the interaction 

effect does) and δ = 2 a relatively large X main effect (about 4 times greater than the 

interaction effect), respectively. In both (17) and (18), we use additive noise ϵi (see 

Assumption 1) that follows the mean zero Gaussian distribution with standard deviation 0.5. 

In models (17) and (18), we set the vectors η = (−1, 1, −1, 1, −1, 1, 0, 0, 0, 0)⊤, α0 = (1, 0.5, 

0.25, 0.125, 0, 0, 0, 0, 0, 0)⊤, and α1 = (1, 1, 1, 1, 1, 1, 0, 0, 0)⊤, with each of these length 

p(= 10) vectors normalized to have unit norm. Without loss of generality, we assume that a 

larger value of Y is preferred.

For the case of a single decision time point, an individualized treatment rule, which we 

denote as D X : ℝp 1, …, L , is a rule that maps an individual with (baseline) 

characteristics X to one of the L available treatment options. One natural measure for the 
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effectiveness of D is called the value (V) of D (Qian and Murphy (2011)) defined as the 

expected mean response when everyone in the population receives treatment according to 

the rule D, that is, V D = E E Y ∣ X, T = D X . The optimal individualized treatment rule, 

which we denote as Dopt, resulting in the largest value of V is: 

Dopt X = argmaxt ∈ 1, …, L E Y ∣ X, T = t . Accordingly, the estimators Dopt 
 for Dopt  are: 

Dopt X = argmaxt ∈ 1, …, L f t α0
⊤X  and Dopt X = argmaxt ∈ 1, …, L α0

⊤X t + π1 − 2 , for 

models (1) and (2), respectively. Here, the estimators α0 and f t for model (1) correspond to 

the proposed estimators (11) and (12), and the estimator α0 for model (2) corresponds to the 

minimizer of (15).

The methods for estimating Dopt under comparison include:

1. The proposed method of using model (3), estimated through the procedure 

described in Section 3.2. We use the numbers of interior knots 

dt = nt1/5.5 t = 1, 2  and d0 = [n1/5.5], which satisfy Assumption 5. Here, [u] 

denotes the integer part of u.

2. The modified covariates method of Tian et al. (2014) of using model (2), 

estimated by minimizing (15).

3. The outcome weighted learning method (Zhao et al., 2012) based on a linear 

kernel, implemented in the R-package DTRlearn. To improve its efficiency, we 

employ the augmented outcome weighted learning approach of Liu et al. (2018). 

The tuning parameter κ in Zhao et al. (2012) is chosen from the grid of (0.25, 

0.5, 1, 2, 4) (the default setting of DTRlearn) based on a fivefold cross-

validation.

4. The same approach as in (3) but based on a Gaussian radial basis function kernel 

instead of a linear kernel. The inverse bandwidth parameter σn2 in Zhao et al. 

(2012) is chosen from the grid of (0.01, 0.02, 0.04, … , 0.64, 1.28) and κ is 

chosen from the grid of (0.25, 0.5, 1, 2, 4), based on a fivefold cross-validation.

5. A penalized additive cubic spline least squares (PLS) approach. We implement 

this method by estimating E[Y|X, T = t] via an additive regression for each 

treatment separately. The implementational detail is given in Section B.4 of 

Supporting Information.

For each simulation run, we estimate Dopt from each of the five methods based on a training 

set (of size n), and for evaluation of these methods, we evaluate the value 

V Dopt = E E Y ∣ X, T = Dopt X  for each estimate Dopt
, using a Monte Carlo 

approximation based on a random sample of size 103, denoted as V Dopt
. As we know the 

true data-generating model in simulation studies, the optimal Dopt can be determined for 

each simulation run. Given each estimate Dopt
 of Dopt, we report V Dopt − V Dopt , as the 

performance measure of Dopt
. A larger value of the measure indicates better performance.
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In Figure 2, we present the boxplots, obtained from 100 simulation runs, of the normalized 

values V Dopt
 (normalized by the optimal values V Dopt ) of the decision rules Dopt

estimated from the five approaches, for each combination of n ∈ {250, 500}, ξ ∈ {0, 0.5} 

(corresponding to correctly specified or misspecified single-index interaction effect models, 

respectively) and δ ∈ {1, 2} (corresponding to moderate or large main effects, respectively), 

for the simulation setting “A” in the top panels and the setting “B” in the bottom panels.

The results in Figure 2 indicate that the proposed constrained single-index model 

outperforms all other approaches in estimating Dopt. With substantial nonlinearity in the 

interaction effect term of the models (17) and (18), the modified covariates method, which 

assumes a restricted linear model on the interaction term, is clearly outperformed by the 

proposed model that utilizes a set of flexible link functions to accommodate the nonlinear 

treatment effect modification. The estimated values of the outcome weighted learning with a 

linear kernel and a Gaussian kernel, respectively, are similar to each other, but both are 

outperformed by the constrained single-index regression, even when the true interaction 

model deviates from a single-index model (when ξ = 0.5). When n = 500 (ie, with a 

relatively large sample size) and ξ = 0.5 (ie, when the underlying model deviates from the 

exact single-index structure), the penalized additive spline approach (PLS), due to its large 

model space, outperforms the modified covariates method slightly; however, the approach is 

clearly outperformed by the proposed single-index method that is robust to the main effect 

model misspecification and also allows nonlinear interactions. When the X main effect 

dominates the T-by-X interaction effect (ie, when δ = 2), although the increased magnitude 

of the main effect dampens the performance of all approaches to optimizing treatment 

decisions, the constrained single-index regression consistently targets to model the 

interaction effect-related variability, and its performance is near optimal when n = 500.

5 | APPLICATION TO DATA FROM A DEPRESSION RANDOMIZED 

CLINICAL TRIAL

The development of the constrained single-index model method was motivated by a 

randomized clinical trial comparing an antidepressant (T = 2) and placebo (T = 1) for 

treating major depressive disorder. The primary purpose of the study is the development of a 

biosignature, called a differential treatment response index, defined as a combination of 

multiple biomarkers that can be used for optimization of an individualized treatment rule for 

patients with major depressive disorder (Trivedi et al., 2016). In major depressive disorder, 

each patient characteristic often has at most a weak modifying effect. Therefore, the 

proposed single-index modeling approach that creates a differential treatment response 

single-index that collectively exhibits a stronger, and possibly nonlinear, interaction with the 

treatment is a very clinically significant endeavor.

Of the 166 subjects, 88 were randomized to placebo and 78 to drug. Pretreatment clinical 

characteristics X = (X1, … , X5)⊤ include: X1 = age at evaluation; X2 = severity of 

depressive symptoms measured by the Hamilton rating scale at baseline; X3 = logarithm of 

duration (in month) of the current major depressive episode. In addition, patients underwent 

neuropsychiatric testing at baseline to assess reaction time, X4 = median choice reaction 

Park et al. Page 14

Biometrics. Author manuscript; available in PMC 2021 June 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



time and cognitive control, X5 = Flanker accuracy, as these behavioral characteristics are 

believed to correspond to biological phenotypes related to response to antidepressants 

(Trivedi et al., 2016). For the purposes of regularization, all pretreatment covariates are 

centered and scaled to have mean 0 and unit variance. The outcome Y is the improvement in 

symptoms severity (assessed by the Hamilton rating scale for depression) from baseline to 

week 8 taken as the difference (week 0 to week 8), and thus larger values of the outcome are 

considered desirable.

The estimated single-index coefficients α = α1, …, α5
⊤ of the proposed model (1) and their 

95% normal approximation bootstrap confidence intervals based on 500 bootstrap 

replications (see Supporting Information Section B.6 for the coverage proportions of the 

bootstrap confidence intervals assessed by simulations) are given by α1 = 0.69 0.31, 1.06 , 

α2 = 0.23 −0.10, 0.57 , α3 = 0.33 0.03, 0.64 , α4 = − 0.22 −0.51, 0.08 , and 

α5 = − 0.55 −0.85, − 0.25 , respectively. The estimated treatment t-specific functions 

f t ⋅ t = 1, 2  (with 95% confidence bands, given α) are illustrated in the first two panels of 

Figure 3.

The right panel of Figure 3 displays the contrast between the two estimated treatment effects 

(drug - placebo) versus the estimated single-index. This indicates that the superiority of the 

drug over placebo does not linearly increase with z = α⊤X, but rather, it appears to plateau 

out with some nonlinear patterns to the right of the zero crossing point near z = −0.7, and it 

has another zero crossing point near z = 2.4. As implied by the contrast plot in Figure 3, an 

individualized treatment rule based on the single-index z = α⊤X can be constructed by 

assigning patients with the index −0.7 < z < 2.4 to the active drug.

To evaluate the performance of the individualized treatment rules Dopt
 estimated from five 

different approaches described in Section 4, we randomly split the data set at a ratio of 5 to 1 

into a training set and a testing set (of size ñ), replicated 500 times, each time obtaining Dopt

based on the training set and estimating the value of Dopt
, 

V Dopt = E E Y ∣ X, T = Dopt X , by an inverse probability weighted estimator (Murphy, 

2005) V Dopt = ∑i = 1
n Y i1 Ti = Dopt Xi /∑i = 1

n 1 Ti = Dopt Xi  based on the testing set (of 

size ñ). For the modified covariates method, we use a linear model with covariates X for 

efficiency augmentation. For comparison, we also include two naïve rules: treating all 

patients with placebo; and treating all patients with the active drug, each regardless of the 

individual patient’s characteristics X.

As Figure 4 shows, the proposed constrained single-index regression for estimating Dopt

outperforms all other alternatives in terms of the average estimated values. In particular, the 

approach outperforms the modified covariates method and the outcome weighted learning 

with a linear kernel, illustrating the utility of the flexible treatment-specific link functions in 

approximating the nonlinear interactions. The method also outperforms the penalized 

additive spline least squares approach, suggesting that estimating and utilizing an optimal 

linear combination (a single-index α⊤X) of biomarkers that collectively exhibits a stronger 
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(and possibly nonlinear) interaction with the treatment is practically an appealing approach 

to optimizing treatment decision rules. In this example, the outcome weighted learning with 

a Gaussian kernel does not perform well.

The proposed single-index regression provides a visualization of the estimated single-index 

as shown in the panels of Figure 3, and the relative importance of each pretreatment 

covariate in terms of characterizing the heterogeneous treatment responses can be indicated 

by the coefficients (α1, … α5)⊤. The practical utility of the proposed methodology is 

highlighted here by noting that the difference between the values of the treatment decision 

rule based on the new method and the values of the naïve rule that treats everyone with the 

drug is almost twice as large as the difference between the efficacies of the drug and 

placebo.

6 | DISCUSSION

The proposed method is primarily designed to analyze data from randomized clinical trials. 

A limitation of the proposed method can occur when applying it to an observational study, 

where the covariates and treatment assignment can be correlated, in which case the estimator 

Dopt X = argmaxt ∈ 1, …, L f t α0
⊤X  might not yield the optimal decision rule. However, 

the working model (3), with the link functions (g1, … , gL) as defined in (7), can still be 

useful in fitting the T-by-X interaction effect term of model (1). If there are estimators (g1, 

… , gL), for each fixed α, that asymptotically satisfy (7), then, in the objective function (6), 

the part relevant to the estimation of the coefficient α0 of model (1) is asymptotically 

separated from the X main effect term μ(X) of model (1), as in (5), resulting in robustness 

against misspecification of the X main effects in estimating the T-by-X interactions. We can 

utilize an iterative optimization procedure to optimize both α and (g1, … , gL). For each 

fixed α, estimators of (g1, … , gL) that asymptotically satisfy (7) are relatively easy to 

obtain. For example, we can first compute unconstrained estimators, denoted as 

gt* * α⊤X t = 1, …, L , of the conditional expectations 

gt* * α⊤X = E Y ∣ α⊤X, T = t t = 1, …, L , based on a one-dimensional (along the axis 

α⊤X) nonparametric smoother for each treatment T = t (t = 1, … , L), and then remove the 

component in the fitted gT* * α⊤X  corresponding to the main effect of α⊤X, by fitting a 

one-dimensional nonparametric smoother (along the axis α⊤X), denoted as g* α⊤X , to the 

fitted gT* * α⊤X . Then, for each fixed α, we can take 

gt α⊤X = gt* * α⊤X − g* α⊤X (t = 1, …, L) as such estimators (g1, … , gL), which 

approximately satisfy (7). See Supporting Information Section A.6 for a justification for the 

robustness of this procedure against misspecification of μ(·). However, when T depends on 

X, the fitted T-by-X interaction effect term might result in biased causal effect estimates, as 

described in Supporting Information Section A.7.

In many applications, only a subset of measurements may be useful in determining an 

optimal treatment decision rule. Also, high-dimensional settings can lead to instabilities and 

issues of overfitting. Forthcoming work will introduce a regularization method that can both 

avoid overfitting and choose among multiple potential covariates by obtaining a sparse 
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estimate of the single-index coefficient α0. In this paper, the theoretical results are developed 

with a B-spline basis approximation, with the number of knots used as the tuning 

parameters. In finite samples, the choice of the number of knots can be crucial and delicate. 

At present an ad hoc choice of dt = nt1/5.5  and d0 = [n1/55] is used for the number of knots, 

which is likely to be sub-optimal in practice (note that one can set dt = C nt1/5.5  or d0 = 

C[n1/55] with an arbitrary C > 0 while still achieving the requirements in Assumption 5). In 

practice, a penalized spline approximation, for example, P-splines (Eilers and Marx, 1996), 

can be considered, which is relatively robust to the choice of the number of knots. Although 

in Section 3.3, Assumption 4 does not allow discrete-valued covariates, our simulation 

experiment (see Supporting Information Section B.2) where the covariates X include a 

binary variable suggests that estimation in practice is rather insensitive to departure from this 

assumption. Generally, multiple local optima exist in the squared error criterion in (11) (and 

also its population counterpart in (6) with respect to α, where gt is defined in (7)), and in 

such cases the estimates can be sensitive to the choice of initialization. We assume (in 

Assumption 1) the local convexity of the criterion function near α = α0, and this implies that 

the algorithm will converge if the initial estimate is close to α0. Otherwise, the estimate α0
can be sub-optimal. One way to mitigate this problem is to consider multiple initial points 

for α0 in estimation (as in Supporting Information Section B.2 and B.3). In this paper, we 

use a linear estimate based on the modified covariates linear model (2) (scaled to be in Θ) as 

an initial estimate, and the estimate α0, optimized to incorporate possibly nonlinear 

interactions, provides a significant improvement over the modified covariate initial estimate, 

as illustrated by the simulations in Section 4.

Future directions of this work also include an extension of the proposed regression to a 

multiple-index regression for modeling interactions. For example, when L = 2, model (1) 

can be extended to a partially linear single-index model (eg, Lian and Liang, 2016; Xia et 
al., 1999) by adding a modified covariate (Tian et al., 2014) linear component to the single-

index interaction component. We will also investigate the incorporation of functional 

covariates and longitudinal outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
The averaged criterion functions of θ ∈ [−π/2, π/2) averaged over 200 simulated data sets. 

The vector α0 corresponds to the angle θ1 = π/4 that is indicated by the gray dashed vertical 

line, and the “nuisance” vector η corresponds to the angle θ2 = −π/4 indicated by the gray 

dotted vertical line. The criteria and their corresponding line styles: (1) the constrained 

single-index criterion (the red solid curves); (2) the unconstrained single-index criterion (the 

green dotted curves); (3) the modified covariates criterion (the blue dashed curves).
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FIGURE 2. 

Boxplots comparing five approaches to estimating Dopt, given each scenario indexed by ξ ∈ 
{0, 0.5} and δ ∈ {1, 2}, for the simulation setting “A” in the top panels and the setting “B” 

in the bottom panels. For each scenario, from left to right, estimation approaches for Dopt: 
(1) the constrained single-index model (red); (2) the modified covariates model (green); (3) 

the outcome weighted learning with a linear kernel (violet); (4) the outcome weighted 

learning with a Gaussian kernel (purple); (5) the penalized spline least squares approach 

(dark purple). The case with ξ = 0 (or ξ = 0.5) corresponds to the correctly specified (or 

misspecified) single-index interaction model scenario; δ = 1 (or δ = 2) corresponds to the 

moderate (or large) main effect scenario. The dotted horizontal line represents the optimal 

value corresponding to Dopt.
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FIGURE 3. 
Depression randomized clinical trial: scatter plots of the outcome against the estimated 

single index z = α⊤X, for the placebo group (T = 1, in the left panel) and the drug group (T 
= 2, in the middle panel); the estimated treatment-specific curve (with 95% confidence 

bands) for each group is overlaid (the red solid curve). In the right panel, the contrast 

between the estimated two treatment effects (drug - placebo) as a function of the estimated 

single-index is displayed.
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FIGURE 4. 
Depression randomized clinical trial: boxplots of the estimated values of the individualized 

treatment rules estimated from seven approaches, obtained from 500 randomly split testing 

sets. From left to right, estimation approaches to Dopt: (1) the constrained single-index 

model; (2) the modified covariates model; (3) outcome weighted learning with a linear 

kernel; (4) outcome weighted learning with a Gaussian kernel; (5) the penalized spline least 

squares approach; (6) treating all patients with placebo; (7) treating all patients with the 

active drug.
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