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Abstract
Recent advances in fluorescence microscopy have made it possible to measure the
fluctuations of nascent (actively transcribed) RNA. These closely reflect transcription
kinetics, as opposed to conventional measurements of mature (cellular) RNA, whose
kinetics is affected by additional processes downstream of transcription. Here, we for-
mulate a stochastic model which describes promoter switching, initiation, elongation,
premature detachment, pausing, and termination while being analytically tractable.
We derive exact closed-form expressions for the mean and variance of nascent RNA
fluctuations on gene segments, as well as of total nascent RNA on a gene. We also
obtain exact expressions for the first two moments of mature RNA fluctuations and
approximate distributions for total numbers of nascent and mature RNA. Our results,
which are verified by stochastic simulation, uncover the explicit dependence of the
statistics of both types of RNA on transcriptional parameters and potentially provide
a means to estimate parameter values from experimental data.

Keywords Stochastic gene expression · Master equation · RNA fluctuations ·
Singular perturbation theory · Distributions of RNA molecules · Stochastic
simulations

1 Introduction

Transcription, the production of RNA from a gene, is an inherently stochastic pro-
cess. Specifically, the interval of time between two successive transcription events is
a random variable whose statistics depend on multiple single-molecule events behind
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transcription (Sanchez and Golding 2013). When the distribution of this random vari-
able is exponential, we say that expression is constitutive; in that case, the number of
transcripts produced in a certain interval of time follows a Poisson distribution. On the
other hand, when the distribution of times between two successive transcripts is non-
exponential, then the number of transcripts is non-Poissonian. A special case of such
non-constitutive behaviour is bursty expression, whereby transcripts are produced in
short bursts that are separated by long silent intervals (Suter et al. 2011; Halpern et al.
2015). In yeast, genes whose expression is constitutive include MDN1, KAP104, and
DOA1, whereas PDR5 is an example of a gene whose expression is bursty (Zenklusen
et al. 2008).

For two decades, mathematical models of gene expression have been developed to
predict the distribution of RNA abundance. By matching the theoretical distribution
with experimental measurements from microscopy-based methods (Raj et al. 2008),
one hopes to obtain insight into the underlying kinetics of transcription and to estimate
transcriptional parameters. The standard model of gene expression which has been
used for these analyses is the telegraph model (Peccoud and Ycart 1995), whereby
a gene can be in two states. Transcription occurs in one of the states, whereupon
RNA degrades; first-order kinetics is assumed for all processes. While the distribution
obtained from the telegraph model can typically fit cellular RNA abundance data,
there are innate difficulties with the interpretation of that fit: fluctuations in cellular
RNA numbers and, hence, the shape of the experimental RNA distribution do not only
reflect transcription, but also many processes downstream thereof, such as splicing,
RNA degradation, and partitioning during cell division.

To counteract these difficulties, in the past few years, mathematical models
(Choubey et al. 2015; Choubey 2018; Heng et al. 2016; Cao and Grima 2020) have
been developed to predict the statistics of nascent RNA, i.e. of RNA in the process of
being synthesised by the RNA polymerase molecule (RNAP), which can be visualised
and quantified due to recent advances in fluorescence microscopy (Lenstra et al. 2016;
Skinner et al. 2016; Larson et al. 2011; Antoine et al. 2014; Brouwer and Lenstra
2019). In contrast to cellular RNA, the statistics of nascent RNA is a direct reflection
of the transcription process; hence, these models can potentially give more insight
than the simpler, but cruder telegraph model. Choubey and collaborators (Choubey
et al. 2015; Choubey 2018) have developed a stochastic model with the following
properties: (i) a gene can be in two states (active or inactive); (ii) from the active
state, transcription initiation occurs in two sequential steps: the pre-initiation complex
is formed, after which the RNA polymerase escapes the promoter; (iii) once on the
gene, the polymerase moves from one base pair to the next (with some probability)
until the end of the gene is reached, when transcription is terminated and polymerase
detaches. Queuing theory is used to derive analytical expressions for the transient and
steady-state means and variances of numbers of RNAP that are attached to the gene in
the long-gene limit when the elongation time is practically deterministic. Heng et al.
(2016) have considered a coarse-grained version of that model, whereby the move-
ment of RNAP from one base pair to the next is not explicitly modelled, obtaining an
analytical expression for the total RNAP distribution in steady-state conditions. More
recently, Cao and Grima (2020) have studied a model of eukaryotic gene expression
that yields approximate time-dependent distributions of both nascent and cellular RNA
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abundance as a function of the parameters controlling gene switching, DNA duplica-
tion, partitioning at cell division, gene dosage compensation, and RNA degradation; in
their coarse-grained model, the movement of RNAP is not explicitly modelled, while
the elongation time is assumed to be exponentially distributed, which simplifies the
requisite analysis.

The complexity of nascent RNA models has thus far not allowed the same detailed
level of analysis as has been possible with the much simpler telegraph model. A few
shortcomings of current models can be summarised as follows: (i) distributions of
nascent RNA have been derived from models that do not explicitly model the move-
ment of RNAP along a gene (Heng et al. 2016; Cao and Grima 2020), resulting in
a disconnect between theoretical description and the microscopic processes underly-
ing transcription; (ii) while the analysis of single-cell sequencing data and electron
micrograph data yields the positions of individual polymerases along the gene, allow-
ing for the calculation of statistics (means and variances) of the numbers of RNAP on
gene segments that are obtained after binning, detailed models of RNAP elongation
(Choubey et al. 2015; Choubey 2018) provide analytical results only for total RNAP
on a gene and hence cannot be used to understand gene segment data; (iii) analytical
calculations of the statistics of nascent RNA ignore important details of the transcrip-
tion process such as pausing, traffic jams, backtracking, and premature termination,
some of which have to date been explored via stochastic simulation (Klumpp and Hwa
2008; Rajala et al. 2010; Choubey et al. 2015; Rodriguez et al. 2019; Md Zulfikar et al.
2020).

In this paper,weovercome someof the aforementioned shortcomings of analytically
tractable models for the transcription process. In Sect. 2, we study a stochastic model
for promoter switching and the stochastic movement of RNAP along a gene, allowing
for premature termination. We derive exact closed-form expressions for the first and
second moments (means and variances) of local RNAP fluctuations on gene segments
of arbitrary length, which allows us to study how these statistics vary along a gene as
a function of transcriptional parameters; we also obtain expressions for the mean and
variance of the total RNAP on the gene which generalise previous work by Choubey
et al. (2015). In Sect. 3, we investigate approximations for the distributions of total
RNAP and mature RNA, showing in particular that Negative Binomial distributions
can provide an accurate approximation in certain biologically meaningful limits. In
Sect. 4, we illustrate the difference between the statistics of local and total RNAP
fluctuations and those of light fluorescence due to tagged nascent RNA. In Sect. 5,
we extend our model to include pausing by deriving approximate expressions for the
mean, variance, and distribution of observables. We conclude with a discussion of our
results in Sect. 6.

2 Detailed Stochastic Model of Transcription: Set-up and Analysis

In this section, we specify the stochastic model studied here; then, we derive closed-
form expressions for the moments of mature RNA and of local and total RNAP
fluctuations in various parameter regimes.
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2.1 Set-up of Model

Weconsider a stochasticmodel of transcription that includes the processes of initiation,
elongation, and termination, as illustrated in Fig. 1. For simplicity, we divide the gene
into L segments; the RNAP on gene segment i is then denoted by Pi . The promoter
can be either in the inactive state (Goff ) or the active state (Gon), switching from the
inactive state to the active one with rate su and from the active state to the inactive
one with rate sb. When the promoter is active, initiation commences via the binding
of an RNAP with rate r , denoted by P1. Subsequently, the RNAP either moves from a
gene segment to the neighbouring segment with rate k, or it prematurely detaches with
rate d. Note that here we have made two assumptions: (i) the movement of RNAP is
unidirectional, away from the promoter site and hence left to right, with no pausing or
backtracking allowed; (ii) the detachment and elongation rates are independent of the
position of RNAP on the gene. Each RNAP has associated with it a nascent RNA tail
that grows longer as the RNAP transcribes more of the gene. When the RNAP reaches
the last gene segment, termination occurs, i.e. the RNAP–nascent RNA complex gets
dissociated from the gene leading to a mature RNA (M) which degrades with rate dm .
Note that for simplicity, we have not considered excluded-volume interaction between
adjacent RNAPs here; hence, we make the implicit assumption of low ‘traffic’, which
is plausible when the initiation rate is sufficiently low. (We test the validity of this
assumption through simulations below.)

Note that, while the choice of L is arbitrary, it should be kept in mind that L needs
to be sufficiently large for the dynamics to be described at a fine spatial resolution.
However, L also has to be small enough for the length of each gene segment to bemuch

(a) (b)

(c)

Fig. 1 (Color Figure Online) Model of transcription. a The gene is arbitrarily divided into L segments, with
RNAP (blue) on gene segment i denoted by Pi . The promoter switches from the active state Gon to the
inactive stateGoff with rate sb , while the reverse switching occurs with rate su . When the promoter is active,
initiation of RNAP occurs with rate r . Initiation is followed by elongation, which is modelled as RNAP
‘hopping’ from gene segment i to the neighbouring segment i + 1 with rate k, i.e. as the transformation
of species Pi to Pi+1. RNAP prematurely detaches from the gene with rate d. A nascent RNA tail (red),
attached to theRNAP, grows as elongation proceeds. Termination ismodelled by the change of PL with rate k
to mature RNA (M), which subsequently degrades with rate dm . In b, we show the probability distribution
P(T ) of the total elongation time T—the time between initiation and termination—as predicted by the
stochastic simulation algorithm (SSA; histogram) and our theory (Erlang distribution with shape parameter
L and rate k+d; solid line). The parameter values used are L = 50, k = 10/min, and d = 1.5/min. In c, we
show the dependence of the mean of the distribution P(T ) on the RNAP detachment rate (d), as predicted
by SSA (dots) and our theory (〈T 〉 = L/(k + d); solid line). The relevant parameter values are L = 50 and
k = 10/min (Color figure online)
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larger than the footprint of an RNAP; the latter is needed to ensure the validity of the
low-traffic assumption. The elongation time which is the total time T from initiation
to termination, that is, conditioning on those realisations for which the RNAP does
not prematurely detach, is Erlang distributed with mean L/(k + d) and coefficient
of variation 1/

√
L; see ‘Appendix A’ for a derivation and Fig. 1b, c for verification

through stochastic simulation (SSA).
Note that the total number of RNAPs transcribing the gene is equal to the number

of nascent RNA molecules present, irrespective of their lengths; to shed light on the
fluctuations of nascent RNA, in this section we therefore focus on the calculation
of statistics of local and total RNAP fluctuations. We define the vector of molecule
numbers �m = (n0, n1, . . . , nL , n), and we write 〈n0〉, 〈ni 〉 (i = 1, 2, . . . , L), and
〈n〉 for the average numbers of molecules of active gene, RNAP, and mature RNA,
respectively. The above model can then be conveniently described by L + 2 species
interacting via a set of 2L + 4 reactions with the following rate functions:

Species Molecule numbers Position (in �m)

Gon n0 1
Pi , i ∈ {1, . . . , L} ni i + 1
M n L + 2

Reaction Rate function f j

Gon
sb−→ Goff f1 = sb〈n0〉

Goff
su−→ Gon f2 = su(1 − 〈n0〉)

Gon
r−→ Gon + P1 f3 = r〈n0〉

Pi
k−→ Pi+1, i ∈ {1, . . . , L − 1} fi+3 = k〈ni 〉

PL
k−→ M fL+3 = k〈nL 〉

Pi
d−→ ∅, i ∈ {1, . . . , L} fi+L+3 = d〈ni 〉

M
dm−→ ∅ f2L+4 = dm 〈n〉

Note thatGoff is not an independent species; the reason is that the binary state of the
gene implies a conservation law,with the sumof the numbers ofGon andGoff equalling
1.Hence, the number of independent species in themodel is L+2. The rate functions f j
are the averaged propensities from the underlying chemical master equation (CME);
note that, because our reaction network is composed of first-order reactions, these
rate functions also equal the reaction rates in the corresponding deterministic rate
equations. The description of our model is completed by the (L + 2) × (2L + 4)-
dimensional stoichiometric matrix S; the element Si j of S gives the net change in
the number of molecules of the i th species when the j th reaction occurs. Given the
ordering of species and reactions as described in the tables above, it follows that the
matrix S has the simple form
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S11 = −1, S12 = 1,

Si,i+1 = 1, Si,i+2 = −1, Si,i+L+2 = −1,

SL+2,L+3 = 1, SL+2,2L+4 = −1,

(1)

where i = 2, . . . , L + 1.

2.2 Closed-Form Expressions for Moments of Mature RNA and Local RNAP

In this subsection, we outline the derivation of the steady-state means and variances
of local RNAP fluctuations (on each gene segment), as well as of mature RNA. Our
results are summarised in the following two propositions.

Proposition 1 Let η = su/(su + sb) be the fraction of time the gene spends in the
active state, let ρk = r/k be the mean number of RNAPs binding to the promoter site
in the time it takes for a single RNAP to move from one gene segment to the next, let
ρ = r/dm be the mean number of RNAPs binding to the promoter site in the time it
takes for a mature RNA to decay, and let μ = k/(k + d) be the probability that an
RNAP molecule moves to the next gene segment rather than detaching prematurely.
Then, the steady-state mean numbers of molecules of active gene, RNAP, and mature
RNA are given by

〈n0〉 = η, (2a)

〈ni 〉 = ηρkμ
i for i = 1, . . . , L, (2b)

〈n〉 = ηρμL , (2c)

respectively.

Proposition 1 can be proved in a straightforward fashion, as follows. Using the under-
lying CME, one can show from the corresponding moment equations (Warren et al.
2006) that the time evolution of the vector �〈m〉 of mean molecule numbers in a sys-
tem of zeroth-order or first-order reactions, i.e. with propensities that are linear in the
number of molecules, is given by the time derivative d �〈m〉/dt = S · �f . Given the form
of the stoichiometric matrix S and of the rate functions f j , as described in Sect. 2.1, it
follows that the mean numbers of all species in steady state can be obtained by solving
the following system of L + 2 algebraic equations:

0 = su(1 − 〈n0〉) − sb〈n0〉,
0 = r〈n0〉 − (k + d)〈n1〉,
0 = k〈ni−1〉 − (k + d)〈ni 〉 for i = 2, . . . , L,

0 = k〈nL〉 − dm〈n〉.
(3)

These equations can easily be solved simultaneously to yield the steady-state value of
�〈m〉, as given in Eq. (2).
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Proposition 2 Let τp = 1/(d+k), τg = 1/(su+sb), and τm = 1/dm be the timescales
of fluctuations of RNAP, gene, and mature RNA, respectively, and define the three new
parameters

α = 1

1 + τp/τg
, γ = 1

1 + τp/τm
, and θ = 1

1 + τm/τg
.

Furthermore, let β = sb/su denote the ratio of gene inactivation and activation rates.
Then, the variances and covariances of molecule number fluctuations of active gene,
RNAP, and mature RNA are given by

Var(n0) = 〈n0〉2β, (4a)

Cov(n0, ni ) = 〈n0〉〈ni 〉αβ · f1i , where f1i = αi−1; (4b)

Cov(n0, n) = 〈n0〉〈n〉αβ · f1M , where f1M = θαL−1, (4c)
Cov(ni , n j ) = δi j 〈ni 〉 + 〈ni 〉〈n j 〉αβ · fi j , where fi j = f (i, j) + f ( j, i), (4d)

Cov(ni , n) = 〈ni 〉〈n〉αβ · fiM , where fiM = γ iθαL−1 + (1 − γ )

i∑

q=1

γ i−q fqL ,

(4e)

Var(n, n) = 〈n〉 + 〈n〉2αβ · fMM , where fMM = fLM , (4f)

and where i, j = 1, . . . , L. Here, δi j is the Kronecker delta; moreover,

f (i, j) = αi+ j−1

(2α − 1)i
+ 1

2i+ j−1

(
i + j − 1

i

)[
1 − 2α − 1

2α
2F1

(
1, i + j; j; 1

2α

)]
,

where 2F1 denotes the generalised hypergeometric function of the second kind (Digital
Library of Mathematical Functions 2020a), which is defined as

2F1(a1, a2; b1; z) =
∞∑

s=0

(a1)s(a2)s
(b1)s

zs

s! ,

with (a)s = 
(a + s)/
(a) the Pochhammer symbol.

Here, we note that an alternative representation of the functions fi j in Eq. (4d), in
terms of finite sums, is given in Eq. (B.33) of ‘Appendix B’.

As above, since the underlying propensities are linear in the number of molecules,
theCME implies (Warren et al. 2006) that the corresponding secondmoments in steady
state are exactly given by a Lyapunov equation. That equation, which is precisely the
same as the one that is obtained from the linear-noise approximation (LNA) (Elf and
Ehrenberg 2003), takes the form

J · C + C · JT + D = 0. (5)

Here, C, J, and D are (L + 2) × (L + 2)-dimensional matrices; C is a variance–
covariance matrix that is symmetric (Ci j = C j i ), J is the Jacobian matrix with
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elements Ji j = ∂(S · �f )i/∂〈n j 〉, and D = S · Diag( �f ) · ST is a diffusion matrix,
whereDiag( �f ) is a diagonal matrix whose elements are the entries in the rate function
vector �f . The nonzero elements of J are given by

J11 = −(su + sb),

J21 = r , J22 = −(k + d),

Ji,i−1 = k, Ji i = −(k + d) for i = 3, . . . , L + 1,

JL+2,L+1 = k, JL+2,L+2 = −dm,

(6)

while the nonzero elements Di read

D11 = sb〈n0〉 + su(1 − 〈n0〉),
D22 = r〈n0〉 + (k + d)〈n1〉, D23 = −k〈n1〉,

Di,i−1 = −k〈ni−2〉, Di i = k〈ni−1〉 + (k + d)〈ni 〉 for i = 3, . . . , L + 1,

Di,i+1 = −k〈ni−1〉 for i = 3, . . . , L,

DL+2,L+1 = −k〈nL 〉, DL+2,L+2 = k〈nL 〉 + dm〈n〉.
(7)

Given the structure of the matrices J and D above, the Lyapunov Eq. (5) can be
solved explicitly for the covariance matrix C whose elements are given by Eq. (4).
The solution by induction is involved and can be found in ‘Appendix B’, which proves
Proposition 2.

2.2.1 Simplification in Bursty and Constitutive Limits

Bursty limit: We now consider a particular parameter regime—the limit of large
initiation rate r and large gene inactivation rate sb such that b = r/sb is constant.
Since the fraction of time spent in the active state is η, it follows that the gene is
mostly in the inactive state in that limit. During the short periods of time when it
transitions to the active state, a burst of initiation events occur; in particular, a mean
number b of RNAPs bind to the promoter during activation. Hence, such genes are
often termed bursty, since transcription proceeds via sporadic bursts of activity and b
is called the mean transcriptional burst size. For r and sb large with b constant, the
expressions for the first two moments of RNAP at every gene segment and of mature
RNA from Eqs. (2) and (4), respectively, simplify to

〈ni 〉b = bυkμ
i , (8a)

〈n〉b = bυmμL , (8b)

Cov(ni , n j )b = δi j 〈ni 〉b + 〈ni 〉b〈n j 〉b(υkμ)−1 · hi j , where hi j = 1

2i+ j−2

(i + j − 1)


(i)
( j)
,

(8c)

Cov(ni , n)b = 〈ni 〉b〈n〉b(υkμ)−1 · hiM , where hiM = (1 − γ )

i∑

q=1

γ i−q · hqL

(8d)
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Var(n)b = 〈n〉b + 〈n〉2b(υkμ)−1 · hMM , where hMM = hLM ; (8e)

here, the subscript b denotes the moments in the bursty limit. Moreover, υk = su/k,
υm = su/dm , and hi j = fi j |α→0 denotes the simplified function fi j in the limit of
α−→ 0, which is achieved when sb → ∞. We note that the above expressions for
the functions hi j are derived from the expressions for fi j that are given in Eq. (B.33),
rather than from those in Eq. (4d). The reason is that, in the bursty limit, we have that
1
2α → ∞, in which case the identity in Eq. (B.36) does not hold. The bursty limit
in Eq. (B.33) is simply taken by collecting terms that are not dependent on α, since
α −→ 0 in that limit.

To test the accuracy of our theory, in Fig. 2 we compare our analytical expressions
for the mean of local RNAP numbers, as well as for various measures of local RNAP
fluctuations—the coefficient of variation CV, the Fano factor FF, and the Pearson
correlation coefficient CC—with those calculated from stochastic simulation using
Gillespie’s algorithm (SSA) (Gillespie 1977). Simulations are performed for two dif-
ferent scenarios: (i) without volume exclusion, where the footprint of RNAPs is not
taken into account; and (ii) with volume exclusion, where RNAPs are treated as solid
objects with a footprint of 35 bp, which is the value reported in Md Zulfikar et al.
(2020). For our simulations in Fig. 2, we use parameter values characteristic for the
gene PDR5 of length 3070 bp, as reported in Zenklusen et al. (2008). Our choice of
L = 30 implies that the length of each gene segment is about 100 bp and, hence,
that at most 3 RNAPs can fit in each segment when volume exclusion is taken into
account. In this case, Gillespie’s algorithm is modified such that the initiation and
RNAP ‘hopping’ rates are proportional to the available volume in the gene segment
which the RNAP ismoving to. That is achieved by rescaling the transcription initiation
rate as r 	→ r(1−n1/3) and the RNAP hopping rate from the i th to the (i +1)th gene
segment as k 	→ k(1 − ni+1/3). Since we use parameters measured for a gene that
demonstrates bursty expression (PDR5) (Zenklusen et al. 2008), we test the accuracy
of both the exact theory from Eqs. (2) and (4) and the approximate expressions given
in Eq. (8).

The perfect agreement between our exact theory (solid lines) and simulationwithout
volume exclusion (dots) provides a numerical validation of that theory. Our approxi-
mate theory (dashed lines) also yields a reasonably good approximation; the mismatch
can be decreased if the degree of burstiness is increased, i.e. by increasing the param-
eters r and sb relative to the other rates in the model. We also note that the theory is in
good agreement with simulation with volume exclusion (open circles), which shows
that the ‘low traffic’ assumption upon which our theory is based is valid.

The following interesting observations can bemade from these figures: (i) if the rate
of premature detachment is greater than zero, then the mean of local RNAP decreases
monotonicallywith the distance i from the promoter according to a power law,whereas
that mean is constant along the gene if there is no premature detachment, as expected;
(ii) the size of RNAP fluctuations, as measured by CV, decreases with i for small
premature detachment rates, but increases with i for sufficiently large values of the
detachment rate; (iii) the Fano factor approaches 1—the value of FF for a Poissonian
distribution—as i increases, which is due to the dispersal of the burst as stochastic
elongation proceeds; (iv) the correlation coefficient between the local RNAP on two
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neighbouring gene segments decreases monotonically with i , which is exacerbated
by premature detachment and is a direct result of the stochasticity inherent in the
elongation process.

The observation in (iii) can be explained in detail as follows. When the detachment
rate is zero, a burst of RNAPs rapidly bind to the promoter, leading to large fluctuations
near that site; however, thereafter each RNAP moves distinctly from all others due to
stochastic elongation. Hence, the burst is gradually dispersed as elongation proceeds,
which implies a decrease in the variance of fluctuations with increasing i . When the
detachment rate is nonzero, then the same effect is at play; however, the increase in the
variance of fluctuations along the gene is now counteracted by the decrease in mean
RNAP numbers, which leads to two types of behaviour: for small i , CV decreases with
i , since the variance dominates over the mean, while for large i , the opposite occurs
and CV increases with i .

Constitutive limit: The other common parameter regime is that of constitutive gene
expression, where the gene spends most of its time in the active state and transcrip-
tion is continuous, which corresponds to the limit of very small sb. In that limit, the
expressions from Eqs. (2) and (4) simplify to

〈ni 〉c = Var(ni )c = ρkμ
i and 〈n〉c = Var(n)c = bρμL , (9)

while the covariances Cov(ni , n j )c and Cov(ni , n)c between the species are zero;
here, the subscript c denotes the constitutive limit. This drastic simplification reflects
the fact that, in the constitutive limit, the distributions of mature RNA and local RNAP
are Poissonian: as the regulatory network is effectively given by ∅ → P1 → P2 →
... → PL → M → ∅ then, the result follows directly from the exact solution provided
in Jahnke and Huisinga (2007).

To further test the accuracy of our theory, in Fig. 3we compare our analytical expres-
sions for the mean of local RNAP numbers, as well as for various measures of local
RNAP fluctuations, with those calculated from stochastic simulation using Gillespie’s
algorithm, where we use parameters measured for a gene that demonstrates constitu-
tive expression (DOA1) (Zenklusen et al. 2008). As before, we test the accuracy of
both the exact theory given by Eqs. (2) and (4) and the approximate expressions from
Eq. (9). Unsurprisingly, we observe agreement between exact theory (solid lines) and
simulation (dots); themismatch between our approximate theory and simulation is due
to the fact that the gene does not spend 100% of its time in the active state—the true
constitutive limit—but, rather, su/(su + sb) ≈ 85%. The local mean RNAP number
decreases with distance from the promoter, as was the case for bursty expression in the
previous subsubsection, which is to be expected. The various measures which depend
on the second moments are, however, considerably different: CV increases monoton-
ically with i , independently of the rate of premature detachment, while FF and CC are
very close to 1 and zero, respectively; moreover, the latter two measures practically
show very little variation along the gene. The lack of transcriptional bursting explains
all these effects in a straightforward fashion.

Finally, we remark that the accuracy of our expressions for the mean and variance
of mature RNA, as given in Eq. (2) and (4), is verified by simulation (SSA) in Fig. 4a,
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(a) (b)

(c) (d)

Fig. 2 (Color Figure Online) First and secondmoments of the distribution of local RNAP for the PDR5 gene
in yeast, which demonstrates bursty expression. In a–d, we show the dependence of the mean, coefficient of
variation squared, Fano factor, and Pearson correlation coefficient, respectively, of local RNAP fluctuations
on gene segment i , as predicted by our exact theory (Eqs. (2), (4); solid lines), the approximate theory in the
bursty limit (Eq. (8); dashed lines), and simulation via Gillespie’s stochastic simulation algorithm (SSA),
respectively. We performed simulations for two different cases: without volume exclusion (dots) and with
volume exclusion (open circles). The parameters are fixed to su=0.44/min, sb=4.7/min, and r=6.7/min,
which are characteristic of the PDR5 gene in yeast, as reported in Supplemental Table 2 of Zenklusen
et al. (2008). The number of gene segments is arbitrarily chosen to be L = 30. The total elongation time
〈T 〉 = 4.5 min is also reported for PDR5, described as the synthesis time and denoted by τ in Zenklusen
et al. (2008). The elongation rate by definition takes the value of the ratio k = L/〈T 〉 − d ≈ L/〈T 〉, since
d � k. The detachment rate d is arbitrarily chosen to be d = 0.01/min (red lines and dots) or d = 0.2/min
(black lines and dots). Note that, for the SSA, moments are calculated from one long trajectory with a few
million time points, sampled at unit intervals (Color figure online)

b for parameters typical of the bursty PDR5 gene. The meaning of the dependence of
descriptive statistics on L is discussed in the next section.

2.3 Closed-Form Expressions for Moments of Total RNAP

While local RNAP fluctuations are measurable in experiment, as discussed in the
Introduction, measurements of total RNAP on a gene are typically reported. Hence,
in this section, we briefly discuss descriptive statistics of total RNAP fluctuations.

Recalling that ni is the number of RNAP molecules on the i th gene segment, the
total number of RNAPs on the gene—arbitrarily divided into L segments—is given
by ntot = ∑L

i=1 ni . Given Eq. (2) and (4), the steady-state mean 〈ntot〉 = ∑L
i=1〈ni 〉
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(a) (b)

(c) (d)

Fig. 3 (Color Figure Online) First and second moments of the distribution of local RNAP for the DOA1
gene in yeast, which demonstrates constitutive expression. In a–d, we show the dependence of the mean,
coefficient of variation squared, Fano factor, and Pearson correlation coefficient, respectively, of local
RNAP fluctuations on gene segment i , as predicted by our exact theory (Eqs. (2) and (4); solid lines), the
approximate theory in the constitutive limit (Eq. (9); dashed lines), and simulation via Gillespie’s stochastic
simulation algorithm (SSA; dots), respectively. The parameters are fixed to su = 0.7/min, sb = 0.12/min
and r = 0.14/min, which are characteristic of the DOA1 gene in yeast, as reported in Supplemental
Table 2 of Zenklusen et al. (2008). The number of gene segments is arbitrarily chosen to be L = 30.
The total elongation time 〈T 〉 = 2.9 min is also reported for DOA1, described as the synthesis time and
denoted by τ in Zenklusen et al. (2008). The elongation rate by definition takes the value of the ratio
k = L/〈T 〉 − d ≈ L/〈T 〉, since d � k. The detachment rate d is arbitrarily chosen to be d = 0.01/min
(red lines and dots) or d = 0.2/min (black lines and dots). Note that, for the SSA, moments are calculated
from one long trajectory with a few billion time points, sampled at unit intervals (Color figure online)

and the steady-state variance Var(ntot) = ∑L
i, j=1 Cov(ni , n j ) of the total RNAP

distribution are given by

〈ntot〉 = ηρkμ
μL − 1

μ − 1
and Var(ntot) = 〈ntot〉 + αβ(ηρk)

2
L∑

i, j=1

μi+ j · fi j .

(10)

For a detailed derivation of the variance in Eq. (10), we refer to ‘Appendix C’.
These expressions for the mean and variance of the total RNAP distribution simplify
in the bursty and constitutive limits, as can be seen in ‘Appendix D’. The accuracy
of Eq. (10) is tested by comparing against stochastic simulation with SSA in Fig. 4c,
d. Both mean and variance are seen to increase monotonically with the number of
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(a) (b)

(c) (d)

Fig. 4 Mean and variance of the distributions of mature RNA and total RNAP for the PDR5 gene in yeast. In
a, b, we show the dependence of the moments of mature RNA fluctuations on the number of gene segments
L , as predicted by our theory (Eqs. (2) and (4); solid lines) and SSA (dots). In c, d, we show the dependence
of the moments of total RNAP on L , as predicted by our exact theory (Eq. (10); solid lines) and SSA (dots).
The parameters su , sb , r , and 〈T 〉 are characteristic of the PDR5 gene and are the same as in Fig. 2. The
premature detachment rate is chosen to be d = 0.01/min; the elongation rate is then given by k ≈ L/〈T 〉.
The degradation rate of mature RNA is dm = 0.04/min, which is chosen such that the mean mature RNA
is roughly consistent with that reported in Fig. 6(b) of Zenklusen et al. (2008). Note that, for the SSA,
moments are calculated from one long trajectory with a few billion time points, sampled at unit intervals

gene segments L , as we keep the mean elongation time constant; the mean shows very
little dependence on L , while the dependence of the variance is more pronounced. We
recall that, while the parameter L is arbitrary in principle, it actually determines the
size of fluctuations in the elongation time. Since that time is the sum of L independent
exponential variables with mean 1/(k + d) each, it follows that the distribution of the
elongation time T is Erlang with mean 〈T 〉 = L/(k + d) and coefficient of variation
squared equal to 1/L . Hence, the larger L is, the narrower is the distribution of T and
the more deterministic is elongation itself. Thus, Fig. 4c, d predicts that the mean and
variance of total RNAP increase rapidly with decreasing fluctuations in the elongation
time T . It hence follows that models in which the elongation rate is assumed to be
exponentially distributed (Cao and Grima 2020), which correspond to the case where
L = 1 in our model, underestimate the size of nascent RNA fluctuations.

2.4 Special Case of Deterministic Elongation

Next, we derive expressions for the descriptive statistics of total RNAP and mature
RNA in the limit of large L taken at constant mean elongation time, which corresponds
to deterministic elongation. As is shown in Fig. 4, these statistics converge quickly to
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the ones obtained in the large-L limit; hence, the resulting limiting expressions are
likely to be useful across a variety of genes.

Moments of total RNAP distribution: We define the non-dimensional parameters
δg = τg/τd , Tg = 〈T 〉/τg , and Td = 〈T 〉/τd , which correspond to the ratio of
the gene timescale and the polymerase detachment timescale, the ratio of the mean
elongation time and the gene timescale, and the ratio of the mean elongation time
and the polymerase detachment timescale, respectively; here, τd = 1/d, as before.
Substituting k 	→ L/〈T 〉 − d into Eq. (10) and taking the limit of deterministic
elongation, i.e. letting L → ∞ at constant 〈T 〉, we obtain the following expressions
for the mean, variance, and CV2 of total RNAP:

〈ntot〉∞ = η
r

d
(1 − e−Td ),

Var(ntot)∞ = 〈ntot〉∞ + 〈ntot〉2∞ · βδg
(δg − 1) + (δg + 1)e−2Td − 2δge−Tge−Td

(δg − 1)(δg + 1)(1 − e−Td )2
,

CV2(ntot)∞ = 〈ntot〉−1∞ + βδg
(δg − 1) + (δg + 1)e−2Td − 2δge−Tge−Td

(δg − 1)(δg + 1)(1 − e−Td )2
.

(11)

Here, the subscript ∞ denotes the limit of L → ∞. A detailed derivation of the
variance in Eq. (11) can be found in Lemma C.1 of ‘Appendix C’.

In the special case when RNAP does not prematurely detach from the gene, i.e. for
d = 0, the expressions in Eq. (11) simplify to

〈ntot〉(∞;0) = ηr〈T 〉,
Var(ntot)(∞;0) = 〈ntot〉(∞;0) + 〈ntot〉2(∞;0) · 2βT−1

g

(
1 − T−1

g + T−1
g e−Tg

)
,

CV2
(∞;0) = 〈ntot〉−1

(∞;0) + 2βT−1
g

(
1 − T−1

g + T−1
g e−Tg

)
,

(12)

where the subscript (∞; 0) denotes the limit of (L, d) → (∞, 0). The expressions
in Eq. (12) have been previously reported in Choubey et al. (2015), where they were
derived using queuing theory. Hence, our expressions in Eq. (11) constitute a gener-
alisation of known results, by further taking into account premature detachment of
RNAP from the gene.

Equation (12) shows that the coefficient of variation squared of total RNAP, denoted
by CV2

(∞;0), can be written as the sum of two terms: (i) the inverse of the mean which
is expected if the distribution of total RNAP is Poissonian, and (ii) a term that increases
with increasing β and decreasing Tg . Hence, the latter term provides a measure for
the deviation of the total RNAP distribution from a Poissonian. In particular, it shows
that the deviation is significant in genes for which (i) the fraction of time spent in the
inactive state is large (large β), and (ii) the elongation time is much shorter than the
switching time between the active and inactive states (small Tg).

Moments of mature RNA distribution: Similarly, in the limit of deterministic elon-
gation, it is straightforward to show that the expressions for the mean and variance of
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the distribution of mature RNA given by Eqs. (2) and (4) reduce to

〈n〉∞ = ηρe−Td and Var(n)∞ = 〈n〉∞ + 〈n〉2∞ · βθ. (13)

These expressions can be further simplified in the special case of no premature detach-
ment to read

〈n〉(∞;0) = ηρ and Var(n)(∞;0) = 〈n〉(∞;0) + 〈n〉2(∞;0) · βθ. (14)

Note that the mean and variance are precisely the same as would be obtained from the
telegraph model, for which the corresponding Fano factor in the bursty limit is given
by Eq. (16) below. Hence, we anticipate that, in the limit of no premature detachment
and deterministic elongation, the distribution of mature RNA from our transcription
model is the same as the distribution obtained from the coarser telegraph model. A
formal proof of that claim will be given in Sect. 3.

Relationship between Fano factors of total RNAP and mature RNA: Specifying
to the case of no premature detachment, it is interesting to note that in the bursty limit,
i.e. for r , sb → ∞ at constant mean burst size b = r/sb in Eq. (12), the Fano factor
of total RNAP is given by

FFn(b;∞;0) = 1 + 2b; (15)

see also Eq. (D.3) in ‘Appendix D’. Here, the subscript n denotes nascent RNA (total
RNAP). Eq. (15) is in contrast to the Fano factor of mature RNA in the same bursty
limit:

FFm (b;∞;0) = 1 + b, (16)

see Eq. (D.8) in ‘Appendix D’, where the subscript m denotes mature RNA. (Note
that FFm (b;∞;0) also equals the Fano factor of the telegraph model in the same bursty
limit (Raj et al. 2006).) Hence, by comparing Eqs. (15) and (16), we can deduce the
following for bursty expression: (i) if the telegraph model is used to estimate the mean
transcriptional burst size from total RNAP data where the elongation time is deter-
ministic, then the mean burst size will be overestimated by a factor of two—in other
words, the implicit assumption that the elongation time is exponentially distributed is
inadequate; (ii) fluctuations in total RNAP (nascent RNA) deviate more from Poisson
statistics, for which the Fano factor equals one, than fluctuations in mature RNA.

More generally, if we do not enforce the bursty limit, then we find the following
relationship between the Fano factors of total RNAP and mature RNA, which are
calculated from Eqs. (12) and (14), respectively:

FFn(∞;0)
FFm(∞;0)

= 1 + e−Tg Tr Tsb


T 2
g

[
Tr Tsb + Tg(Tg + Tm)

] . (17)
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Fig. 5 Comparison between the Fano factors of nascent andmatureRNA.Contour plot showing the variation
of 
—a measure of the difference between the two Fano factors which is defined in Eq. (18)—with the
non-dimensional parameters Tg and Tm which denote the ratio of themean elongation time to the timescales
of promoter switching and decay of mature RNA, respectively. As can be appreciated from Eq. (17), 
 is
positive if the Fano factor of nascent RNA is larger than that of mature RNA and negative if the reverse is
true. The line Tm ≈ 1 − 5

8 Tg , where 
 = 0, shows where the two Fano factors are identical

Here,


 = 2(Tg + Tm) + eTg [2(Tg − 1)Tm + (Tg − 2)Tg], (18)

while Tg = (su + sb)〈T 〉, Tr = r〈T 〉, Tm = dm〈T 〉, and Tsb = sb〈T 〉 are non-
dimensional parameters representing the ratio of the mean elongation time to the
timescales of promoter switching, initiation, decay of mature RNA, and gene deacti-
vation, respectively. From Eq. (17), we deduce that FFn(∞;0) > FFm(∞;0) if and only
if 
 > 0. From the contour plot of 
 in Fig. 5, one can deduce that


 > 0 if and only if Tm � 1 − 5

8
Tg. (19)

Hence, the Fano factor of nascent RNA is larger than that of mature RNA if and only
if the above (approximate) condition is satisfied. In the bursty limit, Tg → ∞ due to
sb → ∞ which, together with Tm > 0, implies that Eq. (19) holds; the condition is
also satisfied if promoter switching is very fast compared to elongation. By contrast,
if Tm < 1 and Tg < 1, then it is possible to have the opposite scenario where the Fano
factor of mature RNA is larger than that of nascent RNA, which occurs, for example,
if promoter switching and mature RNA decay are very slow compared to elongation.
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Sensitivity of coefficient of variation of total RNAP and mature RNA: Since we
have found explicit expressions for the first two moments of the distributions of
total RNAP and of mature RNA, we can now estimate the sensitivity of the noise
in each of those to small perturbations in the transcriptional parameters. Specifically,
we calculate the logarithmic sensitivity (LS), which is also known as the relativity
sensitivity, of the coefficient of variation (CV) to a parameter s, which is defined as
�s = (s/CV)(∂CV/∂s). (That definition implies that a 1% change in the value of the
parameter s results in a change of �s% in CV.)

In Table 1b, we report the logarithmic sensitivity of the coefficient of variation
of total RNAP fluctuations, which is obtained from Eq. (12), to perturbations in the
parameters su , sb, r , and 〈T 〉. Similarly, in Table 1c, we report the logarithmic sen-
sitivity of the coefficient of variation of mature RNA fluctuations from Eq. (14) to
perturbations in the parameters su , sb, r , and dm . In both cases, these sensitivities
are calculated for parameter values estimated for five genes in yeast, as reported in
Zenklusen et al. (2008); see Table 1a.

The following observations can be made regarding the sensitivity of the noise in
total RNAP fluctuations: (i) for the two genes PDR5 and POL1 which spend most of
their time in the inactive state due to sb 
 su , CV is most sensitive to changes in the
parameters su and 〈T 〉; (ii) for the genes DOA1, MDN1, and KAP104 which spend
most of their time in the active state due to su 
 sb, CV is most sensitive to changes
in the parameters r and 〈T 〉; (iii) the size of mature RNA fluctuations is found to be
most sensitive to perturbations in su and dm for PDR5 and POL1, and to perturbations
in r and dm for the other three genes. We furthermore note that for both total RNAP
and mature RNA, r is the least sensitive parameter for the genes which are mostly
inactive, whereas it is among the most sensitive parameters for genes that are mostly
active.

3 Approximate Distributions of Total RNAP andMature RNA

Thus far, we have derived expressions for the first two moments of the distributions of
total RNAP and mature RNA. Naturally, it would also be useful to derive closed-form
expressions for the distributions themselves; such a derivation is, however, analytically
intractable in general (Jahnke and Huisinga 2007) due to the presence of the catalytic
reaction Gon → Gon + P1, which models initiation of the transcription process. Still,
there are two special cases where analytical distributions are known: (i) when the elon-
gation time is considered to be fixed, which corresponds to our model with L → ∞
at constant 〈T 〉 (Heng et al. 2016); (ii) when the elongation time is exponentially dis-
tributed, corresponding to our model with L = 1, in which case the distribution of
total RNAP is identical to the one which is derived from the telegraph model (Peccoud
and Ycart 1995; Raj et al. 2006). While one may argue that the analytical distribu-
tion of RNAP for deterministic elongation times may well approximate the stochastic
(finite-L) case, the issue remains that the exact solution is not given in terms of simple
functions unless promoter switching is slow compared to initiation, elongation, and
termination, in which case the solution reduces to a weighted sum of two Poisson dis-
tributions (Heng et al. 2016). Hence, it is generally very difficult to apply in practice,
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Table 1 Logarithmic sensitivity (LS) of the coefficient of variation CV of total RNAP and mature RNA
fluctuations for five genes in yeast; see Sect. 2.4 for a discussion. (a) Parameter values from Supplemental
Tables 2 and 4 in Zenklusen et al. (2008). The degradation rate dm of mature mRNA is estimated from the
reported mean number of mature RNA, the parameters su , sb , r , and Eq. (14) for the mean. (b) Logarithmic
sensitivity ofCVof totalRNAPfluctuations. (c)Logarithmic sensitivity ofCVofmaturemRNAfluctuations.
Themost sensitive parameter and the next most sensitive one are marked in dark bold and italic, respectively

PDR5 POL1 DOA1 MDN1 KAP104

(a)

Mean mature RNA # 13.40 3.13 2.59 6.12 4.93

〈T 〉(min) 4.50 3.75 2.90 16.75 3.50

su (min−1) 0.44 0.07 0.70 0.70 0.70

sb(min−1) 4.70 0.68 0.12 0.12 0.12

r (min−1) 6.70 2.00 0.14 0.19 0.27

dm (min−1) 0.04 0.06 0.05 0.03 0.05

LS PDR5 POL1 DOA1 MDN1 KAP104

(b)

�su − 0.52 − 0.51 − 0.09 − 0.12 − 0.11

�sb 0.18 0.29 0.09 0.09 0.10

�r − 0.15 − 0.12 − 0.49 − 0.47 − 0.47

�〈T 〉 − 0.48 − 0.34 − 0.49 − 0.50 − 0.49

LS PDR5 POL1 DOA1 MDN1 KAP104

(c)

�su − 0.50 − 0.52 − 0.09 − 0.10 − 0.11

�sb 0.23 0.20 0.08 0.08 0.09

�r − 0.23 − 0.15 − 0.49 − 0.48 − 0.48

�dm 0.50 0.47 0.50 0.50 0.50

such as to infer parameters from data using a Bayesian approach. Moreover, to our
knowledge, no exact solutions are known for the distribution of mature RNA in our
model. In this section, we aim to devise a simple approximation for the distribution of
total RNAP numbers in terms of the Negative Binomial (NB) distribution; these sim-
ple distributions have shown great flexibility in describing complex gene expression
models with a large number of parameters (Cao and Grima 2020). Finally, by means
of singular perturbation theory, we will obtain the distribution of mature RNA under
the assumption that RNA polymerase elongation is faster than degradation of mature
RNA.

3.1 Approximation of Total RNAP Distribution

We approximate the distribution of total RNAP transcribing the gene via a Negative
Binomial distribution, as follows. The mean and variance of the Negative Binomial
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distribution NB(q, p) are given by pq/(1 − p) and pq/(1 − p)2, respectively. By
assuming that these are equal to the exact mean and variance, respectively, of the total
RNAP distribution, see Eq. (10), we obtain effective values for the parameters p and
q:

ntot ∼ NB(q, p) ≡ NB

( 〈ntot〉2
Var(ntot) − 〈ntot〉 ,

Var(ntot) − 〈ntot〉
Var(ntot)

)
. (20)

In Fig. 6, we show a comparison between the distributions of total RNAP obtained
from SSA (dots) and the Negative Binomial approximation in Eq. (20) (solid lines).
Our results are presented for two different values of the number of gene segments:
L = 1 (exponentially distributed elongation time; left column) and L = 50 (quasi-
deterministic elongation time; right column). Additionally, we rescale our gene
inactivation rate as sb 	→ sbε, and we present results for three different values of
the parameter ε: 10−3, the constitutive limit of the gene being mostly in the active
state (top row); 10−1, where the gene spends almost equal amounts of time in the
active and inactive states, with sb ≈ su (middle row); and 1, the bursty limit, where
the gene spends most of its time in the inactive state (bottom row).

We can make several observations, as follows. For both L = 1 and L = 50, the
Negative Binomial approximation performs well for bursting and constitutive expres-
sion (top and bottom rows), whereas it is appreciably poor when expression is in
between those two limits (middle row). Intuitively, this observation can be explained
via the following reasoning. In the limits of the gene being mostly in the active state
(constitutive expression) or the inactive state (bursty expression), the distribution of
total RNAP is necessarily unimodal. However, when the gene spends a considerable
amount of time in each state, the distribution is the sum of two conditional distri-
butions which can manifest either as bimodality or as a wide unimodal distribution,
neither ofwhich can be captured by aNegativeBinomial distribution.Assuming bursty
expression, the Negative Binomial distribution is a more accurate approximation to
the distribution obtained from SSA for L = 1 than it is for L = 50; the reason is that
L = 1 corresponds to the telegraph model (Raj et al. 2006), in which case it can be
proven analytically that the distribution reduces to a Negative Binomial in the limit of
bursty expression. For constitutive expression, the Negative Binomial approximation
is equally good for L = 1 and L = 50, as the distribution is necessarily Poissonian
then and as it is well known that a Negative Binomial distribution can approximate a
Poissonian to a high degree of accuracy. In summary, our results hence indicate that
Eq. (20) yields a good approximation for the total RNAP distribution of bursty and
constitutively expressed genes.

We also note from Fig. 6 that the comparison between the SSA distributions for
L = 1 and L = 50, with equal mean elongation times, highlights the importance
of modelling elongation with the correct distribution of elongation times for genes
that are non-constitutive, i.e. for ε = 10−1 or ε = 1. In particular, if the elongation
time is quasi-deterministic (L = 50), there appears to be a significant increase in the
probability of observing zero total RNAP transcribing the gene compared to models
with an exponentially distributed elongation time (L = 1).
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Fig. 6 (Color Figure Online) Steady-state distribution of total RNAP and its approximation by a Negative
Binomial distribution.We compare the approximation fromEq. (20) (blue lines) with the distribution of total
RNAP obtained from stochastic simulation (SSA; red dots). With the exception of sb , the parameters are for
the PDR5 gene in yeast and are hence the same as in Fig. 2, with d = 0.01/min. Results are presented for two
different values of L , corresponding to an exponentially distributed elongation time (L = 1) and a quasi-
deterministic elongation time (L = 50); k is rescaled such that the two have the samemean elongation time.
Additionally, we rescale the gene inactivation rate via sb 	→ sbε, where ε = 10−3, 10−1, 1, corresponding
to constitutive, general, and bursty expression, respectively. (Here, general expression is neither clearly
constitutive nor bursty, since the gene spends roughly equal amounts of time in the inactive and active
states.) Note that ε = 1 results in a distribution of nascent RNA that is consistent with that measured for
PDR5; the experimental data from Fig. 6(b) of Zenklusen et al. (2008) are plotted for comparison. The
Negative Binomial approximation is found to be accurate in the limits of constitutive and bursty expression
(top and bottom rows), independently of L

3.2 Approximation of Mature RNA Distribution

Next, we apply singular perturbation theory to formally derive the distribution of
mature RNA when the elongation rate is much larger than the degradation rate of
mature RNA.
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We start by defining Pj (�n; t) ( j = 0, 1) as the probability of the state �n =
(n1, . . . , nL , n) at time t while the gene is either active (0) or inactive (1). Note that ni
is the number of RNAPs on gene segment i for i = 1, . . . , L , while n is the number
of mature RNAs. The time evolution of the probabilities Pj (�n; t) can be described by
a system of coupled CMEs:

∂ t P0 = su P1 − sb P0 + r(E−1
n1 − 1)P0 + k

L−1∑

i=1

(
Eni E

−1
ni+1

− 1
)
ni P0

+k
(
EnLE

−1
n − 1

)
nL P0 + d

L∑

i=1

(Eni − 1)ni P0 + dm(En − 1)nP0,

∂ t P1 = sb P0 − su P1 + k
L−1∑

i=1

(
Eni E

−1
ni+1

− 1
)
ni P1 + k

(
EnLE

−1
n − 1

)
nL P1

+d
L∑

i=1

(Eni − 1)ni P1 + dm(En − 1)nP1, (21)

whereE
c
ni [ f (�n)] = f (n1, n2, . . . , ni+c, . . . , nL , n),with c ∈ Z, denotes the standard

step operator. We assume that the elongation rate k is faster than the degradation rate
dm of mature RNA, i.e. that k/dm 
 1. Since k = L/〈T 〉 − d, it follows that in
the limit of deterministic elongation (k → ∞), i.e. for L → ∞ at constant mean
elongation time 〈T 〉, the condition k/dm 
 1 is naturally satisfied.

In order to find an analytical expression for the propagator probabilities P(�n; t)
which satisfies the system of CMEs in Eq. (21), we define the probability-generating
function as F = ∑

j Fj , with Fj (�z; t) = ∑∞
�n=�0 Pj (�n; t)�z�n ; here, �z = (z1, . . . , zL , z)

is a vector of variables corresponding to the state �n. Given the equations for Pj (�n; t)
from Eq. (21), we obtain the following systems of PDEs for the corresponding gener-
ating functions Fj (�z; t):

L[F0] = su F1 − sbF0 + r(z1 − 1)F0,

L[F1] = sbF0 − su F1,
(22)

where

L = ∂ t + k
L−1∑

i=1

(zi − zi+1)∂ zi + k(zL − z)∂ zL + d
L∑

i=1

(zi − 1)∂ zi + dm(z − 1)∂ z

(23)

is a differential operator acting on the generating functions F0 and F1. Eq. (22) rep-
resents a system of coupled, linear, first-order partial differential equations (PDEs).
Now, we introduce the new variables ui = zi − 1 (i = 1, . . . , L) and u = z − 1 to
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rewrite Eq. (22) as

L[F0] = su F1 − sbF0 + ru1F0,

L[F1] = sbF0 − su F1; (24)

here, the operator in Eq. (23) now takes the form

L = ∂ t + k
L−1∑

i=1

(ui − ui+1)∂ui + k(uL − u)∂uL + d
L∑

i=1

ui∂ui + dmu∂u . (25)

In order to find an analytical solution to Eq. (24), we rescale all rates and the time
variable by the decay rate of mature RNA; then, we apply the method of character-
istics, with s being the characteristic variable. The first characteristic equation gives
dm(dt/ds) = 1, with solution s ≡ t ′ = dmt ; hence, we can use the variable t ′ as the
independent variable and thus convert the system of PDEs in Eq. (24) into a charac-
teristic system of ordinary differential equations (ODEs),

u̇i = (k/dm)[ui − ui+1 + (d/k)ui ] for i = 1, . . . , L − 1, (26a)

u̇L = (k/dm)[uL − u + (d/k)uL ], (26b)

u̇ = u, (26c)

Ḟ0 = (su/dm)F1 − (sb/dm)F0 + (r/dm)u1F0, (26d)

Ḟ1 = (sb/dm)F0 − (su/dm)F1, (26e)

where the overdot denotes differentiation with respect to t ′. The existence of an
integral-form solution to Eq. (26) follows from the fact that the reaction scheme in
Fig. 1 contains first-order reactions only. Under the assumption that k 
 dm , we define
ε = dm/k; then, we apply Geometric Singular Perturbation Theory (GSPT) (Fenichel
1979; Jones 1995), with 0 < ε � 1 as the (small) singular perturbation parameter.
We hence separate the system in Eq. (26) into fast and slow dynamics, which will
allow us to find an asymptotic approximation for F0 and F1 in steady state. A brief
introduction to GSPT can be found in ‘Appendix E’. Given the above definition of ε,
Eqs. (26a) and (26b), the governing equations for ui in the ‘slow system’, become

εu̇i = ui − ui+1 + (d/k)ui for i = 1, . . . , L − 1,

εu̇L = uL − u + (d/k)uL ,
(27)

where ui (i, . . . , L) are the fast variables and u, F0, and F1 are the slow ones. Setting
ε = 0 in Eq. (27), we can express the variables ui as ui = μ ·ui+1, withμ = k/(k+d)

for i = 1, . . . , L . Finally,wewrite the variable u1 as u1 = μL ·u. Next, givenEq. (26c),
we apply the chain rule, with dt ′ ≡ du · u, to rewrite Eqs. (26d) and (26e) as

F ′
0dmu = su F1 − sbF0 + rμLuF0, (28a)

F ′
1dmu = sbF0 − su F1, (28b)
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where the prime now denotes differentiation with respect to u. Solving Eq. (28a) for
F1 and substituting the result into Eq. (28b), we obtain the second-order ODE

d2muF
′′
0 + dm(dm + sb + su − rμLu)F ′

0 − rμL(dm + su)F0 = 0 (29)

for F0(u). Eq. (29) is a confluent hypergeometric differential equation (Kummer’s
equation) (Digital Library of Mathematical Functions 2020b) which admits the solu-
tion

F0(u) = C · 1F1
(dm + su

dm
; dm + sb + su

dm
; r

dm
μLu

)
, (30)

where 1F1 denotes the confluent hypergeometric function; here, we consider only one
of two independent fundamental solutions of Kummer’s differential equation, as we
are seeking a solution in steady state where the variable u is bounded. The constant
C in Eq. (30) is a constant of integration that is determined from the normalisation
condition on the full generating function: F = F0 + F1. From Eq. (28), one finds that
F satisfies

F ′ = r

dm
μL F0. (31)

Making use of Eq. (31) and applying the normalisation condition F |u=0 = 1, we find
that the generating function in steady state reads

F(z) = 1F1
( su
dm

; sb + su
dm

; r

dm
μL(z − 1)

)
. (32)

The probability distribution P(n) of mature RNA can be found from the formula

P(n) = 1

n!
dn

dzn
F(z)|z=0,

which yields the analytical expression

P(n) = 1

n!
(su)n

(sb + su)n

( r

dm

)n
(μL)n1F1

( su
dm

+ n; sb+su
dm

+ n;− r
dm

μL)
, (33)

where (·)n is the Pochhammer symbol, as before. Note that the mean and variance
of mature mRNA, as calculated from the distribution in Eq. (33), agree exactly with
Eqs. (2c) and (4f) in the limit of fast elongation (k → ∞). Note also that the solution
in Eq. (33) depends on the parameter μL , which represents the survival probability of
an RNAP molecule, i.e. the probability that RNAP will not prematurely detach from
the gene. Finally, we take the limit of deterministic elongation, letting L → ∞ at
constant 〈T 〉, which leads to

P(n) = 1

n!
(su)n

(sb + su)n

( r

dm

)n
e−nd〈T 〉

1F1
( su
dm

+ n; sb+su
dm

+ n;− r
dm

e−d〈T 〉). (34)
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(a) (b)

Fig. 7 Steady-state distribution ofmature RNA for two different genes in yeast.We compare the distribution
obtained from SSA (dots) to the perturbative approximation in Eq. (33) (solid lines) for two different genes.
In a, we consider the PDR5 gene, fixing the parameters as in Fig. 2: su = 0.44/min, sb = 4.7/min,
r = 6.7/min, d = 0.01/min, and 〈T 〉 = 4.5 min. The degradation rate of mature RNA takes the values
dm = 0.04, 0.10, 0.40/min; note that the experimental value is dm = 0.04/min. In b, we consider the DOA1
gene, fixing the parameters as in Fig. 3: su = 0.7/min, sb = 0.12/min, r = 0.14/min, d = 0.01/min, and
〈T 〉 = 2.9 min. The degradation rate of mature RNA again takes the values dm = 0.04, 0.10, 0.40/min; the
experimental value is dm = 0.05/min. For both genes, the agreement between SSA and our perturbative
approximation increaseswith k/dm , as expected, sinceEq. (33) is derived under the assumption that k 
 dm .
Note that the distribution is practically independent of L , since Eq. (33) depends on L only through μL ,
which for small premature detachment rates d implies μL ≈ 1 for any L (Color figure online)

Note that in the limit of no premature detachment (d = 0), Eq. (34) is precisely equal
to the distribution of mature RNA predicted by the telegraph model, which is in wide
use in the literature (Raj et al. 2006). Hence, our perturbative approach can be seen
as a means to formally derive the conventional telegraph model of gene expression
starting from a more fundamental and microscopic model. In Fig. 7, we verify our
analytical solution with stochastic simulation for two different genes in yeast. We also
note that, for nonzero premature detachment rates (d �= 0), Eq. (34) is the steady-state
solution predicted by the telegraph model, with parameter r renormalised to re−d〈T 〉;
that is to be expected, as the latter is the rate at which RNAPs undergo termination,
leading to mature RNAs.

4 Statistics of Fluorescent Nascent RNA Signal

Thus far,wehavedetermined the statistics of the total number ofRNAP transcribing the
given gene; these are also the statistics of the number of nascent RNAmolecules. How-
ever, in experiments using single-molecule fluorescence in situ hybridisation [smFISH
(Heng et al. 2016)], molecule numbers of nascent RNA cannot be directly determined.
Rather, the experimentally measured RNA ‘abundance’ is the fluorescent signal emit-
ted by oligonucleotide probes bound to the RNA. Since the length of the nascent RNA
grows as RNAP moves away from the promoter, it follows that we must account for
the increase in the fluorescent signal as elongation proceeds.

In this section, we take into account these experimental details to obtain closed-
form expressions for the mean and variance of the fluorescent signal of local and total
nascent RNA. We assume that the signal from nascent RNA on the i th gene segment
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is given by ri = (ν/L)ini for i = 1, . . . , L , where ν is some experimental constant;
the value of the parameter (ν/L)i is increasing with i , which models the fact that the
fluorescent signal becomes stronger as RNAP moves along the gene. The formula for
the mean fluorescent signal at gene segment i is then given by 〈ri 〉 = (ν/L)i〈ni 〉,
where 〈ni 〉 follows from Eq. (2b); the covariance of two fluorescent signals along the
gene, ri and r j (i, j = 1, . . . , L), is given by Cov(ri , r j ) = (ν/L)2i jCov(ni , n j ),
where Cov(ni , n j ) is obtained from Eq. (4d). In Fig. 8a, b, we plot the mean and
Fano factor of the local signal as a function of the gene segment i ; note the contrast
between the statistics of the fluorescent signal and the corresponding statistics of local
RNAP—which is the statistics of nascent RNA—shown in Fig. 2a, c.

Similarly, denoting by rtot = ∑L
i=1 ri the total fluorescent signal across the gene,

we find the following expressions for the steady-state mean 〈rtot〉 = ∑L
i=1〈ri 〉 and the

steady-state variance Var(rtot) = ∑L
i, j=1 Cov(ri , r j ):

〈rtot〉 = νηρkμ
μL [Lμ − (L + 1)] + 1

L(μ − 1)2
,

Var(rtot) =
( ν

L

)2
ηρk

L∑

i=1

i2μi +
( ν

L

)2
αβ(ηρk)

2
L∑

i, j=1

i j · μi+ j · fi j .

(35)

For a detailed derivation of the variance in Eq. (35), see Eq. (F.1) in ‘Appendix F’;
see also ‘Appendix G’ for the corresponding expressions in the bursty, constitutive,
and deterministic elongation limits. In Fig. 8c, d, we show the mean and Fano factor
of the total signal as a function of the number of gene segments (L); as above, we
note the contrasting difference between the statistics of the fluorescent signal and
the corresponding statistics of total RNAP—which is the statistics of total nascent
RNA—shown in Fig. 4c, d.

Hence, the calculation of the statistics of the number of nascent RNAs from the
raw signal intensity presents a challenge and has to be approached carefully. The
expressions presented above allow for the inference of transcriptional parameters from
the first two moments of the fluorescent signal by means of moment-based inference
techniques (Zechner et al. 2012). Quantitative information about nascent RNA can
also be obtained from electron micrograph images (El Hage et al. 2010), which avoids
the challenges presented by smFISH.

5 Model Extension with Pausing of RNAP

Thus far, we have studied a model where RNAPs do not pause as they move along
the gene. A natural extension is provided by a modified model in which RNAPs pause
along the gene at random sites and elongation is characterised by three processes:
forward hopping, pausing, and unpausing of RNAP. The motivation for studying
this extended model, which has recently been considered via stochastic simulation
in Md Zulfikar et al. (2020), is that experiments have revealed that RNAP exhibits
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(a) (b)

(c) (d)

Fig. 8 First and second moments of the local and total fluorescent signal for the bursty gene PDR5 in yeast.
In a, b, we show the dependence of the mean and the Fano factor of local fluorescent signal fluctuations on
the gene segment i , as predicted by our exact theory (solid lines) and SSA (dots), respectively. The plots for
CV 2(ri ) and CC(ri , ri+1) are identical to those of CV 2(ni ) and CC(ni , ni+1) in Fig. 2. The number of
gene segments is arbitrarily chosen to be L = 30. In c, d, we show the dependence of the mean and variance
of total fluorescent signal fluctuations on the number of gene segments L , as predicted by our exact theory
(Eq. (35); solid lines) and SSA (dots). The parameters su , sb , r , and 〈T 〉 are characteristic of the PDR5
gene and take the same values as in Fig. 2, as do the rates of elongation and RNAP detachment. The value
of the parameter ν is arbitrarily chosen to be ν = 10

pauses of varying duration, typically on the timescale of few seconds (Forde et al.
2002; Adelman et al. 2002).

5.1 Closed-Form Expressions for Moments of Local RNAP Fluctuations

We extend the model described in Fig. 1 by assuming that the RNAP on gene segment
i can switch between a non-paused (actively moving) state Pi and a paused state P̄i .
The actively moving state Pi switches to P̄i with rate rp, while the reverse reaction
occurs with rate ra . Premature detachment from the actively moving RNAP occurs
with rate da , whereas it occurs with rate dp from the paused RNAP. The resulting
extended model is illustrated in Fig. 9a. In ‘Appendix A’, we derive the mean and
variance of the corresponding elongation time, which is not Erlang distributed now,
as was the case for the model without pausing. Furthermore we find two interesting
properties of the coefficient of variation CV2

T of the elongation time: (i) in the limit of
large L at constant mean elongation time, CV2

T does not tend to zero, which implies
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(a) (b)

Fig. 9 Model of transcription that includes RNAP pausing. In a, we extend the model in Fig. 1 so that
it takes into account pausing of RNAP at random segments on the gene. Pausing on gene segment i is
modelled by the transition from the active state Pi to the paused state P̄i with rate rp , while the reverse
(‘unpausing’) transition occurs with rate ra . Premature termination of RNAP occurs with rate da from the
activelymoving state, andwith rate dp from the paused state. In b, we show the dependence of the coefficient
of variation squared (CV2

T ) of the elongation time distribution on the pausing rate (rp), as predicted from
SSA (dots) and theory (Eq. (A.7); solid lines). Results are shown for two different parameter regimes:
D0 ≡ {da = 0/min = dp} (no premature polymerase detachment) and D1 ≡ {da = 0.05/min = dp}
(premature polymerase detachment). The remaining parameters are fixed to L = 50, k = 10/min, and
ra = 0.1/min

that elongation is not deterministic; (ii) for small rates of premature detachment, CV2
T

is at its maximum when rp ≈ ra , i.e. when RNAP spends roughly half of its time in
the paused state. See ‘Appendix A’ for details and Fig. 9b for a confirmation through
stochastic simulation.

Proposition 3 Let the number of RNAP molecules in the active state Pi be denoted by
nai , let the number of molecules in the paused state P̄i be n

p
i , and let the number of

molecules of mature RNA be denoted by n. Let σ = rp/ra be the ratio of the pausing
and activation rates, let πra = ra/(ra + dp) be the probability of RNAP switching
to the actively moving state from the paused state, and let πdp = dp/(ra + dp) be
the probability of premature RNAP detachment from the paused state. Furthermore,
define the new parameters μ̃ = k/(k + da + rpπdp ) and λ = σπra .

Then, it follows that the steady-state mean number of RNAP molecules in the active
and paused states on gene segment i (i = 1, . . . L) is given by

〈nai 〉 = ηρkμ̃
i and 〈n p

i 〉 = 〈nai 〉λ. (36)

Hence, the total mean number of RNAP molecules on each gene segment i reads

〈ni 〉 = 〈nai 〉 + 〈n p
i 〉 = 〈nai 〉(1 + λ). (37)

The proof of Proposition 3 can be found in ‘Appendix H’. Note that in the limit of
no pausing, i.e. for rp = 0, Eq. (37) reduces to the expression for the mean of RNAP
reported in Eq. (2b).

Proposition 4 Let τra = 1/ra be the timescale of RNAP activation from the paused
state, let τdp = 1/dp be the timescale of premature termination of paused RNAP,
let τp = 1/(k + da) be the typical time that an actively moving RNAP spends on
a gene segment, and let τpp = 1/(ra + dp) be the typical time spent in the paused
state. Furthermore, define the new parameters λrp = πrp/(1 − πrp ), where πrp =
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(a) (b)

(c) (d)

Fig. 10 Dependence of the steady-state probability distributions of total RNAP and mature RNA on the
RNAP pausing rate rp for two different genes in yeast. In a, b, we compare the distribution P(ntot) of the
total number of RNAP molecules, as predicted by our model (solid lines), with that obtained from SSA
(dots) for yeast genes PDR5 and DOA1, respectively. The model prediction involves fitting a Negative
Binomial distribution with a mean and variance given by the closed-form expressions in Eqs. (41) and (42).
In c, d, we compare the distribution P(n) of mature RNA, as obtained from singular perturbation theory
(Eq. (43); solid lines) with the SSA (dots) for yeast genes PDR5 and DOA1, respectively. Note that for
both genes, we keep all parameters fixed (including the elongation rate k) while varying the pausing rate
rp to simulate an experiment where the pausing rate can be perturbed directly. The parameters for each
gene can be found in Table 1a; we furthermore used L = 50 and fixed k to L/〈T 〉, where 〈T 〉 is the mean
elongation time measured experimentally and reported in Table 1a. Note that the actual mean elongation
time is not fixed, as it depends on the pausing rate (rp) via Eq. (40). The remaining parameters are fixed
to ra = 0.1/min, da = 0.01/min, and dp = 0.03/min. The value of da is taken from Table 1 in Rajala
et al. (2010),where it is reported as the premature termination rate of polymerase in E. coli; the value of dp
was chosen to be larger than that of da to simulate a scenario where premature detachment is enhanced in
the paused state. Note that our theory is less accurate for PDR5 than it is for DOA1, as all parameters are
very small compared to the elongation rate in the latter case, hence satisfying better the assumptions behind
the theory (Color figure online)

rp/(rp + k + da) is the probability of the actively moving RNAP switching to the
paused state, as well as

ωra = πraτg

πra τra + τg
, α̃ = τg + λrpπdpτg

τg + τp + λrpτg(1 − ωra )
, and ω = τg

τpp + τg
.

(38)

Assume that the elongation rate is faster than the rates of RNAP pausing, activation,
and premature termination, i.e. that k 
 ra, rp, da, dp. Then, it follows that to leading
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order in 1/k, asymptotic expressions for the variances and covariances of molecule
number fluctuations of active and paused RNAP are given by

Cov(nai , n
a
j ) = δi j 〈nai 〉 + 〈nai 〉〈naj 〉α̃β · gaai j , where gaai j = gaa(i, j) + gaa( j, i),

Cov(nai , n
p
j ) = 〈nai 〉〈n p

j 〉α̃β · gapi j , where gapi j = ωα̃ j−1,

Cov(n p
i , naj ) = 〈n p

i 〉〈naj 〉α̃β · gpa
i j , where gpa

i j = ωα̃i−1,

Cov(n p
i , n p

j ) = δi j 〈n p
i 〉 + 〈n p

i 〉〈n p
j 〉α̃β · gpp

i j , where gpp
i j = (gapi j + gpa

i j )/2;

(39)

here, i, j = 1, 2, . . . , L and

gaa(i, j) = α̃i+ j−1

(2α̃ − 1)i
+ 1

2i+ j−1

(
i + j − 1

i

)[
1 − 2α̃ − 1

2α̃
2F1

(
1, i + j; j; 1

2α̃

)]
.

These results are proved in full in ‘Appendix H’. From ‘Appendix A’, we also have
that the mean elongation time in the pausing model is given by

〈T 〉 = L
(ra + dp)2 + rarp

(ra + dp)[(k + da)(ra + dp) + dprp] . (40)

Solving Eq. (40) for the elongation rate k, we find that in the limit of L → ∞ taken
at constant mean elongation time, k tends to infinity and hence is much larger than ra ,
rp, da , and dp, which implies that the results of Proposition 4 hold naturally in that
limit.

5.2 Approximate Distributions of Total RNAP andMature RNA

Negative Binomial approximation of total RNAP distribution:We define the total
number of RNAP molecules as ntot = ∑L

i=1 ni . It then immediately follows from
Eq. (37) that the mean of the total RNAP distribution in the pausing model is given
by

〈ntot〉 = ηρk(1 + λ)μ̃
μ̃L − 1

μ̃ − 1
. (41)

It can also be shown that the variance of total RNAP fluctuations reads

Var(ntot) = 〈ntot〉 + (ηρk)
2α̃β

[
2

L∑

i, j=1

gaa(i, j) + λ(2 + λ)ωL
α̃L − 1

α̃ − 1

]
; (42)

see ‘Appendix H’. Next, we approximate the distribution of total RNAP by a Negative
Binomial distribution whose mean and variance match those just derived, i.e. we
consider Eq. (20) with the mean and variance of the total RNAP distribution given by
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Eqs. (41) and (42) now, respectively. The resulting approximate Negative Binomial
distribution is compared with the distribution obtained from SSA in Fig. 10a, b for two
different yeast genes, PDR5 and DOA1. The results verify that our approximation is
accurate provided the elongation rate k is significantly larger than the other parameters,
as assumed in Proposition 4.
Perturbative approximation of mature RNA distribution: We can apply singular
perturbation theory to formally derive the distribution of mature RNA, assuming that
k/dm 
 1 and ra/dm 
 1. Following the derivation in Sect. 3.2, we find the following
analytical expression for the steady-state probability distribution of mature RNA:

P(n) = 1

n!
(su)n

(sb + su)n

( r

dm

)n(
μ̃L)n

1F1
( su
dm

+ n; sb + su
dm

+ n;− r

dm
μ̃L

)
; (43)

see ‘Appendix I’ for details. Note that the solution in Eq. (43) is dependent on the
parameter μ̃L , which gives the probability that an RNAP molecule does not prema-
turely detach before termination; see ‘Appendix A’. Also, note that in the limit of zero
premature termination, i.e. for da = 0 = dp, Eq. (43) is identical to the distribution
of mature RNA predicted by the telegraph model. Finally, by solving Eq. (40) for k,
then substituting the resulting expression into Eq. (43) and taking the long-gene limit
of L → ∞ at constant 〈T 〉, we obtain that the probability distribution of mature RNA
has the same functional form as in Eq. (43), albeit with

lim
L→∞ μ̃L = e−ψ〈T 〉, where ψ = da + rpπdp

1 + σπra
. (44)

Note that Eqs. (43) and (44) equal the steady-state solution predicted by the telegraph
model, with the initiation rate r renormalised to rμ̃L or re−ψ〈T 〉, respectively. In
Fig. 10c, d, we verify the accuracy of our analytical solution using stochastic simu-
lation for two different genes in yeast. Note that a change in the pausing rate rp has
relatively little effect on the distribution of mature RNA, as compared to the effect on
the distribution of total RNAP; cf. panels (a) and (b) of Fig. 10 in comparison with
panels (c) and (d), respectively.

6 Summary and Conclusion

In this paper, we have analysed a detailed stochastic model of transcription. Our model
extends previous analytical work (Choubey et al. 2015; Heng et al. 2016) by (i) taking
into account salient processes, such as premature detachment and pausing of RNAP,
that were previously not considered analytically; (ii) deriving explicit expressions for
the mean and variance of RNAP numbers (nascent RNA) on gene segments as well as
on the entire gene; (iii) deriving explicit expressions for the mean and variance of the
fluorescent nascent RNA signal obtained from smFISH and identifying differences
between the statistics thereof and those of direct measurements of nascent RNA; and
(iv) finding approximate distributions of total nascent RNA fluctuations on a gene,
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Table 2 Summary of main results

The cartoon represents our model in various limits: no pausing (rp = 0), pausing (rp �= 0), stochastic
elongation (T Erlang distributed), deterministic elongation (T fixed), bursty limit (r , sb → ∞), and pre-
mature RNAP detachment (d, da , dp �= 0). We summarise our analytical expressions for the approximate
distributions and moments of total RNAP and mature RNA
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Table 3 Definition of parameters and functions

f (i, j) = αi+ j−1

(2α − 1)i
+ 1

2i+ j−1

(i+ j−1
i

)[
1 − 2α − 1

2α 2F1
(
1, i + j; j; 1

2α
)]
,

gaa(i, j) = α̃i+ j−1

(2α̃ − 1)i
+ 1

2i+ j−1

(i+ j−1
i

)[
1 − 2α̃ − 1

2α̃ 2F1
(
1, i + j; j; 1

2α̃

)]
,


 = 2(Tg + Tm ) + eTg [2(Tg − 1)Tm + (Tg − 2)Tg]
η = su/(su + sb) Fraction of time the gene spends in the active

state

ρk = r/k Mean number of bound RNAPs in the time
1/k

ρ = r/dm Mean number of bound RNAPs in the time
1/dm

μ = k/(k + d) Local RNAP survival probability
(no-pausing case)

τp = 1/(d + k) Timescale of fluctuations of RNAP

τg = 1/(su + sb) Timescale of fluctuations of gene

τd = 1/d Timescale of RNAP detachment

τm = 1/dm Timescales of fluctuations of mature RNA

α = 1/(1 + τp/τg) Non-dimensional parameter

γ = 1/(1 + τp/τm ) Non-dimensional parameter

θ = 1/(1 + τm/τg) Non-dimensional parameter

β = sb/su Ratio of gene inactivation and activation
rates

b = r/sb Mean burst size

υk = su/k Ratio of gene activation and RNAP
elongation rates

υm = su/dm Ratio of gene activation and mature RNA
degradation rates

δg = τg/τd Ratio of gene timescale and RNAP
detachment timescale

Tg = 〈T 〉/τg Ratio of elongation timescale and gene
timescale

Td = 〈T 〉/τd Ratio of elongation timescale and RNAP
detachment timescale

Tr = r〈T 〉 Ratio of the mean elongation time to the
timescale of initiation

Tm = dm 〈T 〉 Ratio of the mean elongation time to the
timescale of decay of mature RNA

Tsb = sb〈T 〉 Ratio of the mean elongation time to the
timescale of gene deactivation

σ = rp/ra Ratio of the pausing and activation rates

πra = ra/(ra + dp) Probability of RNAP activation
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Table 3 continued

πdp = dp/(ra + dp) Probability of premature RNAP detachment
from the paused state

λ = σπra Probability of RNAP pausing from active
state

μ̃ = k/(k + da + rpπdp ) Local RNAP survival probability (in pausing
case)

τra = 1/ra Timescale of RNAP activation from the
paused state

τdp = 1/dp Timescale of premature termination of
paused RNAP

τp = 1/(k + da) Typical time that an actively moving RNAP
spends on a gene segment

τpp = 1/(ra + dp) Typical time spent in the paused state

λrp = πrp /(1 − πrp ) Ratio of active RNAP timescale over RNAP
pausing timescale

πrp = rp/(rp + k + da) Probability of the actively moving RNAP
switching to the paused state

ωra = πra τg/(πra τra + τg) Non-dimensional parameter

α̃ = (τg + λrpπdp τg)/(τg + τp + λrp τg(1 − ωra )) Non-dimensional parameter.

without assuming slow promoter switching. A number of interesting observations
from our work include the following:

(i) When the premature detachment rate of RNAP is nonzero and gene expression is
bursty, the coefficient of variation of local RNAP fluctuations can either decrease
or increase with distance from the promoter. By contrast, when expression is con-
stitutive, the coefficient of variation increases monotonically with distance from
the promoter. Other statistical measures such as the mean, Fano factor, and corre-
lation coefficient of local RNAP numbers decrease monotonically with distance
from the promoter.

(ii) In the limits of bursty expression, deterministic elongation, and no premature
detachment or pausing, the Fano factor of total nascent RNAequals 1+2b, whereas
that of mature RNA is 1+ b, where b denotes the mean burst size. An implication
is that the telegraph model will result in an overestimate of the mean burst size
from nascent RNA data by a factor of 2. Another implication is that deviations
from Poisson fluctuations are more apparent in data for nascent RNA than they
are for mature RNA. One can further state the following relationship: the Fano
factor of nascent RNA equals twice the Fano factor of mature RNA, minus 1. If
expression is non-bursty, then the Fano factor of nascent RNA can be larger or
smaller than that of mature RNA, as determined by the condition in Eq. (19).

(iii) For genes characterised by bursty expression, the sensitivity of the noise in total
RNAP fluctuations is highest to perturbations in the gene activation rate and the
mean elongation time; for constitutive genes, the most sensitive parameters are the
initiation rate and the mean elongation time.
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(iv) ANegative Binomial distribution, parameterisedwith the expressions for themean
and variance of total nascent RNA derived here, provides a good approximation to
the true distribution of total nascent RNA fluctuations on a gene when expression
is either bursty or constitutive; the approximation is not accurate when the gene
spends roughly equal amounts of time in the active and inactive states. We show
that the distribution of nascent RNA is highly sensitive to the distribution of elon-
gation times. In particular, if the elongation time is assumed to be exponentially
distributed, as is implicitly assumed by telegraph models of nascent RNA, then
the probability of observing zero RNA is much lower than if the elongation time
is assumed to be fixed.

(v) Using geometric singular perturbation theory (GSPT), we have rigorously proven
that, in the limit of deterministic elongation (or fast elongation), no pausing and
premature detachment, the steady-state distribution ofmature RNA in ourmodel is
identical to that in the telegraph model (Raj et al. 2006). Consideration of pausing
and premature detachment leads to a distribution that can also be obtained from a
telegraph model with appropriately renormalised parameters.

A summary of the main theoretical results can be found in Table 2, with all requisite
parameters and functions defined in Table 3. The main limiting assumption of our the-
oretical approach is that the initiation rate is slow enough such that RNAP molecules
do not frequently collide with each other while moving along the gene. Hence, the
expressions we have derived are reasonable for all but the strongest promoters which
are characterised by very fast initiation rates. We anticipate that approximate closed-
form expressions for the corresponding moments can also be derived when volume
exclusion between RNAPs is taken into account by a modification of methods previ-
ously devised to understand molecular movement and kinetics in crowded conditions
(Cianci et al. 2016; Smith et al. 2017). It is also possible to extend our model by
including translation of mature RNA to protein; one can then again apply GSPT to
derive distributions for protein numbers in the limit of RNA decaying much faster than
protein; however, given item (v) above, we anticipate that the resulting protein distri-
bution will be very similar to those derived from models that do not explicitly take
into account nascent RNA (Shahrezaei and Swain 2008; Popović et al. 2016). Further
research is required to develop simple approximations of the nascent RNA distribu-
tion that are accurate independently of the ratio of gene switching rates. Finally, given
the strong recent interest in the development of statistical inference techniques in
molecular biology (Gorin et al. 2020; Zechner et al. 2012; Kaan Öcal et al. 2019), we
expect that our closed-form expressions for the moments and distributions of nascent
and mature RNA will be useful for developing computationally efficient and accurate
methods for estimating transcriptional parameters.
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Appendix

A. Distribution of Elongation Time

In this section, we answer the following question: what is the distribution of the
elongation time, i.e. the time between initiation and termination? In other words, with
reference to Fig. 9—which includes the non-pausing model in Fig. 1 as a special case-
we want to find the distribution of the time at which RNAP leaves gene segment L
(termination) if it was in the active state on gene segment 1 at time t = 0 (initiation).

Let zi (t) be the probability of an RNAP to be on gene segment i in the active state
at time t , let z̃i (t) be the probability of the RNAP to be on gene segment i in the
paused state at time t , and let z∗i (t) be the probability of the RNAP moving to gene
segment i + 1 at time t ; note that z∗L(t) is the probability of the RNAP falling off
the gene and forming a mature RNA, since for i = L , gene segment L + 1 does not
exist. Then, it follows from the reaction scheme illustrated in Fig. 9 that the master
equations describing the Markovian dynamics on gene segment i are given by

∂t zi (t) = −(rp + k + da)zi (t) + ra z̃i (t), (A.1a)

∂t z̃i (t) = −(dp + ra)z̃i (t) + rpzi (t), (A.1b)

∂t z
∗
i (t) = kzi (t). (A.1c)

Now, we use these equations to find the distribution of the time when RNAP jumps
to gene segment i + 1, given that it is on gene segment i in the active state at t = 0,
i.e. that zi (0) = 1 and z̃i (0) = 0. Taking the Laplace transform of Eqs. (A.1a) and
(A.1b), we find

sẑi (s) − 1 = −(rp + k + da)ẑi (s) + ra ˆ̃zi (s), (A.2a)

s ˆ̃zi (s) = −(dp + ra) ˆ̃zi (s) + rp ẑi (s), (A.2b)

where f̂ (s) = ∫ ∞
0 e−st f (t) dt . Solving these equations simultaneously, we obtain

ẑi (s) = s + dp + ra
(s + k + da)(s + dp + ra) + rp(s + dp)

(A.3)

Letw(t)dt be the probability that the RNAPmoves from segment i to i +1 in the time
interval (t, t + dt). Then, it follows from Eq. (A.1c) that w(t) = ∂t z∗i (t) = kzi (t).
Integratingw(t) over all times gives us the probability that theRNAPultimatelymoves
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to the next segment i + 1,

∫ ∞

0
w(t) dt = ŵ(0) = kẑi (0) = k

(
ra + dp

)

(da + k)
(
ra + dp

) + dprp
. (A.4)

Note that ŵ(0) is identical to the parameter μ̃, as defined in Proposition 3. Let y(t)dt
be the probability that the RNAP moves from gene segment i to segment i + 1 in
the time interval (t, t + dt), conditioned on those realisations that lead to an RNAP
moving to the next gene segment i + 1. (In other words, we exclude those realisations
that lead to premature detachment.) Then, it follows by the definition of conditional
probabilities that y(t) = w(t)/ŵ(0), which implies

ŷ(s) = ŵ(s)

ŵ(0)
= [(da + k)(ra + dp) + dprp](ra + dp + s)

(ra + dp)[(da + k + s)(ra + dp + s) + rp(dp + s)] . (A.5)

It follows that the mean 〈t〉 and variance Var(t) of the time t it takes RNAP to move
to the next gene segment are given by

〈t〉 = −d ŷ(s)

ds

∣∣∣∣
s=0

= (ra + dp)2 + rarp
(ra + dp)[(da + k)(ra + dp) + dprp] , (A.6a)

Var(t) = d2 ŷ(s)

ds2

∣∣∣∣
s=0

−
(
d ŷ(s)

ds

∣∣∣∣
s=0

)2

= 2rarp(ra + dp)(da + ra + dp + k) + (ra + dp)4 + rar2p(ra + 2dp)

(ra + dp)2[(da + k)(ra + dp) + dprp]2 ,

(A.6b)

respectively. Since RNAP can only move forwards in our model (irreversible motion),
it follows that the time it takes an RNAP to move from the i th to the (i + 1)th gene
segment is independent of the time taken to move from another, j th segment to the
( j + 1)th segment. Hence, the time required for an RNAP to move across the entire
gene from the first to the Lth segment, i.e. the ‘elongation’ time T from initiation to
termination, is a sum of L independent and identical random variables. Thus, we can
immediately state that the mean elongation time is 〈T 〉 = L〈t〉, whereas the variance
of the elongation time is Var(T ) = LVar(t). The coefficient of variation squared takes
the form

CV2
T = Var(T )

〈T 〉2 = 1 + 2rarp[(da + k)(ra + dp) + dprp]
[(ra + dp)2 + rarp]2 . (A.7)

From Eq. (A.7), it can be shown that for small premature detachment rates, the coef-
ficient of variation of the elongation time is maximised when rp ≈ ra . Taking the
limit of infinitely many gene segments at constant mean elongation time, i.e. solving
for k from the expression for the mean elongation time in Eq. (A.6), substituting into
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Eq. (A.7), and taking the limit of L → ∞, we obtain

lim
L→∞CV2

T = 2rarp
〈T 〉(ra + dp)[(ra + dp)2 + rarp] . (A.8)

For the non-pausingmodel shown in Fig. 1, the above results simplify considerably due
to rp = 0 = dp and da = d; in that case, the inverse Laplace transform of Eq. (A.5)
implies that y(t) is an exponential distribution with parameter k + d. Hence, the total
time it takes an RNAP to move across the entire gene is the sum of L independent
and identically distributed exponential random variables, i.e. an Erlang distribution
with shape parameter L and rate k + d, which implies that the mean elongation time
is L/(k + d), with coefficient of variation 1/

√
L . It can be seen from Eq. (A.8) that

deterministic elongation can only be observed when there is no pausing, i.e. when
rp = 0.

B. Solution of Lyapunov Equation

Proof of Proposition 2 We start by defining the symmetric functions fi j = f j i for
i, j = 1, . . . , L as

f00 = 1, f0 j = α j−1, f0M = θαL−1,

fi j = ( fi−1, j + fi, j−1)/2, fiM = γ fi−1,M + (1 − γ ) fi L , fMM = fLM ,
(B.1)

where the non-dimensional parameters α, γ , and θ are defined in Proposition 2. The
elements of the Lyapunov equation given by Eq. (5) can be written explicitly as a set
of simultaneous equations:

C11 · 2J11 = −D11, (B.2a)
C12 · (J11 + J22) = −J21C11, (B.2b)
C1 j · (J11 + J j j ) = −J j, j−1C1, j−1 for j = 3, . . . , L + 1, (B.2c)
C1,L+2 · (J11 + JL+2,L+2) = −JL+2,L+1C1,L+1, (B.2d)
C22 · 2J22 = −2J21C12 − D22, (B.2e)
C23 · (J22 + J33) = −J21C13 − J32C22 − D23, (B.2f)
C2 j · (J22 + J j j ) = −J21C1 j − J j, j−1C2, j−1 for j = 4, . . . , L + 1, (B.2g)
C2,L+2 · (J22 + JL+2,L+2) = −J21C1,L+2 − JL+2,L+1C2,L+1, (B.2h)
Ci i · 2Ji i = −2Ji,i−1Ci−1,i − Di i for i = 3, . . . , L + 1, (B.2i)
Ci,i+1 · (Ji i + Ji+1,i+1) = −Ji,i−1Ci−1,i+1 − Ji+1,iCi i − Di,i+1 for i = 3, . . . , L, (B.2j)
Ci j · (Ji i + J j j ) = −Ji,i−1Ci−1, j − J j, j−1Ci, j−1 for i = 3, . . . , L + 1

and j = i + 2, . . . , L + 1,
(B.2k)

Ci,L+2 · (Ji i + JL+2,L+2) = −Ji,i−1Ci−1,L+2 − JL+2,L+1Ci,L+1 for i = 3, . . . , L + 1, (B.2l)
CL+2,L+2 · 2JL+2,L+2 = −2JL+2,L+1CL+1,L+2 − DL+2,L+2. (B.2m)

Now, we substitute the elements of the Jacobian matrix J and the diffusion matrix
D from Eqs. (6) and (7), respectively, into the above system of algebraic equations,

123



3 Page 38 of 62 T. Filatova et al.

which we then solve to find the elements of the covariance matrix C. Note that, for
the following mathematical derivation, we take into account the expressions for the
steady-state mean numbers of species given in Eq. (2), as well as the definition of the
functions fi j in Eq. (B.1).

From Eq. (B.2a), one easily obtains C11 = η2β. Then, it follows from Eq. (B.2b)
that

C12 = r

su + sb + k + d
C11 = ρkμα(η2β) = η(ηρkμ)αβ = η〈n1〉αβ · f01. (B.3)

Eq. (B.2c) implies that, for j = 3, . . . , L + 1:

C1 j = k

su + sb + k + d
C1, j−1 = μα · C1, j−1 = (μα) j−2C12

= (μα) j−2(η〈n1〉αβ) = η〈n j−1〉αβ · f0, j−1.

(B.4)

From Eq. (B.2d), we have that

C1,L+2 = k

su + sb + dm
C1,L+1 = k

dm
θ(〈nL〉αβ · f0L)

= η(
k

dm
〈nL 〉)(αβ)(θ · f0L) = η〈n〉 · f0M ;

(B.5)

from Eq. (B.2e), we find

C22 = r〈n0〉 + (k + d)〈n1〉
2(k + d)

+ r

k + d
C12 = ρkμη + 〈n1〉

2

+ (ρkμ)(η〈n1〉αβ · f01) = 〈n1〉 + 〈n1〉2αβ · f11,
(B.6)

since f11 = ( f01 + f10)/2 = f01 from the definition in Eq. (B.1).
From Eq. (B.2f), we obtain

C23 = − k

2(d + k)
〈n1〉 + r

2(k + d)
C13 + k

2(d + k)
C22

= −〈n2〉
2

+ 1

2
(ρkμη)〈n2〉αβ · f02 + 1

2
μ[〈n1〉 + 〈n1〉2αβ · f11]

= −〈n2〉
2

+ 1

2
〈n1〉〈n2〉αβ · f02 + 〈n2〉

2
+ 1

2
(μ〈n1〉)〈n1〉αβ · f11

= 1

2
〈n1〉〈n2〉αβ · f02 + 1

2
〈n2〉〈n1〉αβ · f11 = 〈n1〉〈n2〉αβ

1

2
( f02 + f11)

= 〈n1〉〈n2〉αβ · f12, (B.7)

since f12 = ( f02 + f11)/2 from the definition in Eq. (B.1).
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From Eq. (B.2g), we have that, for j = 4, . . . , L + 1,

C2 j = r

2(k + d)
C1 j + k

2(k + d)
C2, j−1 = ρkμ

2
C1 j + μ

2
C2, j−1

= ρkμ

2

j−4∑

q=0

(μ

2

)q
C1, j−q +

(μ

2

) j−3
C23.

(B.8)

The proof of Eq. (B.8) is given in Lemma B.1. The above expression for C2 j can be
further simplified to

C2 j = ρkμ

2

j−4∑

q=0

(μ

2

)q
η〈n j−q−1〉αβ · f0, j−q−1 +

(μ

2

) j−3〈n1〉〈n2〉αβ · f12

=
j−4∑

q=0

(1
2

)q+1
(ρkμη)(μq 〈n j−q−1〉)αβ · f0, j−q−1 +

(1
2

) j−3〈n1〉(μ j−3〈n2〉)αβ · f12

=
j−4∑

q=0

(1
2

)q+1〈n1〉〈n j−1〉αβ · f1, j−q−1 +
(1
2

) j−3〈n1〉〈n j−1〉αβ · f12

= 〈n1〉〈n j−1〉αβ

[ j−4∑

q=0

(1
2

)q+1
f1, j−q−1 +

(1
2

) j−3
f12

]
= 〈n1〉〈n j−1〉αβ · f1, j−1.

(B.9)

For the proof of the last equality in Eq. (B.9), see Lemma B.2.
From Eq. (B.2h), we have that

C2,L+2 = r

k + d + dm
C1,L+2 + k

k + d + dm
C2,L+1 = ρkμγC1,L+2 + μγC2,L+1

= (ρkμγ )(η〈n〉αβ · f0M ) + (μγ )(〈n1〉〈nL〉αβ · f1L)

= (ρkημ)〈n〉αβ · γ f0M + μ
dm
k

〈n1〉 k

dm
〈nL〉αβ · γ f1L

= 〈n1〉〈n〉αβ ·
[
γ f0M + μ

dm
k

γ f1L
]

= 〈n1〉〈n〉αβ · [γ f0M + (1 − γ ) · f1L ] = 〈n1〉〈n〉αβ · f1M , (B.10)

where f1M is defined in Eq. (B.1).
Eqs. (B.2i) through (B.2k) yield the system

Ci i = k〈ni−2〉 + (k + d)〈ni−1〉
2(k + d)

+ k

k + d
Ci−1,i = 〈ni−1〉 + μCi−1,i ,

Ci,i+1 = μ

2
Ci−1,i+1 + μ

2
Ci i − μ

2
〈ni−1〉 = μ

2
(Ci−1,i+1 + μCi−1,i ),

Ci j = μ

2
(Ci−1, j + Ci, j−1),

(B.11)
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which can be rewritten more compactly as

Ci j = δi j 〈ni−1〉 + 〈ni−1〉〈n j−1〉αβ · fi−1, j−1 for i, j = 3, . . . , L + 1,

(B.12)

where δi j is the Kronecker delta. A detailed derivation is given in Lemma B.3.
From Eq. (B.2l), we have that for i = 3, . . . , L + 1,

Ci,L+2 = k

k + d + dm
Ci−1,L+2 + k

k + d + dm
Ci,L+2

= μγCi−1,L+2 + (k/dm)(1 − γ )Ci,L+1

= γ (μ〈ni−2〉)〈n〉αβ · fi−2,M + (1 − γ )〈ni−1〉(k/dm〈nL 〉)αβ · fi−1,L

= 〈ni−1〉〈n〉αβ · [γ fi−2,M + (1 − γ ) fi−1,L ] = 〈ni−1〉〈n〉αβ · fi−1,M ,

(B.13)

where fiM is defined in Eq. (B.1).
Finally, Eq. (B.2m) yields

CL+2,L+2 = k〈nL〉 + dm〈n〉
2dm

+ k

dm
CL+1,L+2

= 〈n〉 + (k/dm)〈nL〉〈n〉αβ · fLM = 〈n〉 + 〈n〉2αβ · fMM ,

(B.14)

where fMM = fLM is defined in Eq. (B.1).
Summarising the above results, we conclude that the solution for the symmetric covari-
ance matrix C is given by the system in Eq. (4), where we have that Cov(ni , n j ) =
Ci+1, j+1, Cov(ni , n) = Ci+1,L+2 for i, j = 0, . . . , L , and Var(n, n) = CL+2,L+2.
Here, the functions fi j are defined as in Eq. (B.1). Now, the recurrence relation
fi j = ( fi−1, j + fi, j−1)/2 in Eq. (B.1) can be solved for i, j = 1, 2, . . . , L via
the method of generating functions, which gives the following analytical expression:

fi j = f (i, j) + f ( j, i), (B.15)

where

f (i, j) = αi+ j−1

(2α − 1)i
+ 1

2i+ j−1

(
i + j − 1

i

)[
1 − 2α − 1

2α
2F1

(
1, i + j; j; 1

2α

)];

see Lemma B.5 for a detailed derivation. Additionally, we can easily prove that the
function fiM in Eq. (B.1) can be rewritten as

fiM = γ i f0M + (1 − γ )

i∑

q=1

γ i−q fqL , (B.16)

as shown in Lemma B.4. ��
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Lemma B.1 For j = 4, . . . , L + 1, we have the identity

C2 j = ρkμ

2
C1 j + μ

2
C2, j−1 = ρkμ

2

j−4∑

q=0

(μ

2

)q
C1, j−q +

(μ

2

) j−3
C23, (B.17)

as stated in Eq. (B.8).

Proof The identity in Eq. (B.17) will be proved by induction: one can easily show that
it holds for j = 4. Now, we assume that Eq. (B.17) is true for some j ≥ 5; hence, for
j + 1, we have

C2, j+1 =
j−3∑

q=0

(μ

2

)q ρkμ

2
C1, j+1−q +

(μ

2

) j−2
C23

= ρkμ

2
C1, j+1 +

j−3∑

q=1

(μ

2

)q ρkμ

2
C1, j+1−q +

(μ

2

) j−2
C23

= ρkμ

2
C1, j+1 + μ

2

[ j−3∑

q=1

(μ

2

)q−1 ρkμ

2
C1, j+1−q +

(μ

2

) j−3
C23

]

= ρkμ

2
C1, j+1 + μ

2

[ j−4∑

q=0

(μ

2

)q ρkμ

2
C1, j−q +

(μ

2

) j−3
C23

]

= ρkμ

2
C1, j+1 + μ

2
C2 j , (B.18)

as claimed, which implies that the identity in Eq. (B.17) holds for all j = 4, . . . , L+1.
��

Lemma B.2 The function f1 j , which is defined by the recurrence relation f1 j = ( f0 j +
f1, j−1)/2 in Eq. (B.1), satisfies the identity

f1 j =
j−3∑

q=0

(1
2

)q+1
f0, j−q +

(1
2

) j−2
f12 for j = 3, . . . , L, (B.19)

as stated in Eq. (B.9).

Proof Wewill again proveEq. (B.19) by induction. For j = 3,we have fromEq. (B.19)
that f13 = ( f03 + f12)/2, which is true by the definition of f13. We assume that the
identity in Eq. (B.19) is correct for some j ≥ 4; then, for j + 1, the definition of
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f1, j+1, in combination with our assumption, implies

f1, j+1 = 1

2
f0, j+1 + 1

2
f1 j = 1

2
f0, j+1 + 1

2

[ j−3∑

q=0

(1
2

)q+1
f0, j−q +

(1
2

) j−2
f12

]

= 1

2
f0, j+1 + 1

2

[ j−2∑

q=1

(1
2

)q
f0, j+1−q +

(1
2

) j−2
f12

]

=
j−2∑

q=0

(1
2

)q+1
f1, j+1−q +

(1
2

) j−1
f12,

as claimed. Hence, the equality in Eq. (B.19) is true for all j = 3, . . . , L . ��
Lemma B.3 The system in Eq. (B.11), which is given by

Ci i = 〈ni−1〉 + μCi−1,i for i = 3, . . . , L,

Ci,i+1 = μ

2
(Ci−1,i+1 + μCi−1,i ) for i = 3, . . . , L,

Ci j = μ

2
(Ci−1, j + Ci, j−1) for i = 3, . . . , L + 1 and j = i + 1, . . . , L + 1,

(B.20)

is equivalent to the system

Ci j = δi j 〈ni−1〉 + 〈ni−1〉〈n j−1〉αβ · fi−1, j−1 for i, j = 3, . . . , L + 1,

(B.21)

as stated in Eq. (B.12). Here, the functions fi j are defined as in Eq. (B.1).

Proof We again use the method of induction. For i = 3, we have

C33 = 〈n2〉 + 〈n2〉2αβ · f22 = 〈n2〉 + μ〈n1〉〈n2〉αβ · f12 = 〈n2〉 + μC23,

C34 = 〈n2〉〈n3〉(βα) · f34 = 〈n2〉〈n3〉αβ( f22 + f13)/2

= [〈n2〉〈n3〉αβ · f22 + 〈n2〉〈n3〉αβ · f13]/2
= [μ〈n1〉〈n3〉αβ · f13 + μ2〈n1〉〈n2〉αβ · f12]/2
= μ

2
[〈n1〉〈n3〉αβ · f13 + μ〈n1〉〈n2〉αβ · f12] = μ

2
(C24 + μC23),

C3 j = 〈n2〉〈n j−1〉αβ · f2, j−1 = 〈n2〉〈n j−1〉αβ( f2, j−2 + f1, j−1)/2

= [〈n2〉〈n j−1〉αβ · f2, j−2 + 〈n2〉〈n j−1〉αβ · f1, j−1]/2
= [〈n2〉μ〈n j−2〉αβ · f2, j−2 + μ〈n1〉〈n j−1〉αβ · f1, j−1]/2
= μ

2
[〈n2〉〈n j−2〉αβ · f2, j−2 + 〈n1〉〈n j−1〉αβ · f1, j−1]

= μ

2
(C3, j−1 + C2 j )

(B.22)
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Now, we assume that the statement is true for some i ≥ 4; then, for i + 1, we have

Ci+1,i+1 = 〈ni 〉 + 〈ni 〉2αβ · fii = 〈ni 〉 + μ〈ni−1〉〈ni 〉αβ · fi−1,i = 〈ni 〉 + μCi,i+1,

Ci+1,i+2 = 〈ni 〉〈ni+1〉αβ · fi,i+1 = 〈ni 〉〈ni+1〉αβ( fi−1,i+1 + fii )/2

= [〈ni 〉〈ni+1〉αβ · fi−1,i+1 + 〈ni 〉〈ni+1〉αβ · fii ]/2
= [μ〈ni−1〉〈ni+1〉αβ · fi−1,i+1 + μ2〈ni−1〉〈ni 〉αβ · fi−1,i ]/2
= μ

2
[〈ni−1〉〈ni+1〉αβ · fi−1,i+1 + μ〈ni−1〉〈ni 〉αβ · fi−1,i ]

= μ

2
(Ci,i+2 + μCi,i+1),

Ci+1, j = 〈ni 〉〈n j−1〉αβ · fi, j−1 = 〈ni 〉〈n j−1〉αβ( fi−1, j−1 + fi, j−2)/2

= [〈ni 〉〈n j−1〉αβ · fi−1, j−1 + 〈ni 〉〈n j−1〉αβ · fi, j−2]/2
= [μ〈ni−1〉〈n j−1〉αβ · fi−1, j−1 + μ〈ni 〉〈n j−2〉αβ · fi, j−2]/2
= μ

2
[〈ni−1〉〈n j−1〉αβ · fi−1, j−1 + 〈ni 〉〈n j−2〉αβ · fi, j−2]

= μ

2
(Ci j + Ci+1, j−1),

(B.23)

which is also correct. Hence, the statement of the lemma is true for all i and j , as
stated. ��
Lemma B.4 For i = 1, . . . , L, the function fiM defined in Eq. (B.1) can be simplified
as in Eq. (B.16); specifically, we have the identity

fiM = γ fi−1,M + (1 − γ ) fi,L = γ i · f0M + (1 − γ )

i∑

q=1

γ i−q · fqL . (B.24)

Proof The proof is by induction: for i = 1, the identity is obvious. We now suppose
that Eq. (B.24) is true for some i ≥ 2; hence, for i + 1, we have

fi+1,M = γ i+1 · f0M + (1 − γ )

i+1∑

q=1

γ i+1−q · fqL

= γ

[
γ i · f0M + (1 − γ )

i∑

q=1

γ i−q · fqL

]
+ (1 − γ ) fi+1,L

= γ fiM + (1 − γ ) fi+1,L ,

(B.25)

which is correct. Hence, Eq. (B.24) is true for all i , as stated. ��
Lemma B.5 For i, j = 1, . . . , L, the solution of the recurrence relation fi j =
( fi, j−1 + fi−1, j )/2 in Eq. (B.1) is given by fi j = f (i, j) + f ( j, i), where
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f (i, j) = αi+ j−1

(2α − 1)i
+ 1

2i+ j−1

(
i + j − 1

i

)[
1 − 2α − 1

2α
2F1

(
1, i + j; j; 1

2α

)]
.

(B.26)

Proof In order to solve the recurrence relation for the function fi j , we take into account
the initial conditions f00 = 1 and f0 j = f j0 = α j−1. Then, we define a generating
function g(x, y) via

g(x, y) =
∑

i, j≥0

fi j x
i y j = f00 +

∑

j≥1

f0 j y
j +

∑

i≥1

fi0x
i +

∑

i, j≥1

fi j x
i y j , (B.27)

where the last term can be rewritten as

∑

i, j≥1

fi j x
i y j =

∑

i, j≥1

1

2
( fi−1, j + fi, j−1)x

i y j

= 1

2
x

∑

i, j≥1

fi−1, j x
i−1y j + 1

2
y

∑

i, j≥1

fi, j−1x
i y j−1

= 1

2
x

∑

i≥0

∑

j≥1

fi j x
i y j + 1

2
y
∑

i≥1

∑

j≥0

fi j x
i y j

= 1

2
x

( ∑

i, j≥0

fi j x
i y j −

∑

i≥0

fi0x
i
)

+ 1

2
y

( ∑

i, j≥0

fi j x
i y j −

∑

j≥0

f0 j y
j
)

= 1

2
x

(
g(x, y) −

∑

i≥0

fi0x
i
)

+ 1

2
y

(
g(x, y) −

∑

j≥0

f0 j y
j
)

.

(B.28)

Hence, Eq. (B.27) becomes

g(x, y) = f00 +
∑

j≥1

f0 j y
j +

∑

i≥1

fi0x
i + 1

2
x

(
g(x, y) −

∑

i≥0

fi0x
i
)

+1

2
y

(
g(x, y) −

∑

j≥0

f0 j y
j
)

,

which is equivalent to

g(x, y)
(
1 − 1

2
x − 1

2
y
)

= f00
(
1 − 1

2
x − 1

2
y
)

+
(
1 − 1

2
y
) ∑

j≥1

f0 j y
j

+
(
1 − 1

2
x
) ∑

i≥1

fi0x
i
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or

g(x, y) = f00 +
(
1 − 1

2
y
) 1

1 − 1

2
x − 1

2
y

∑

j≥1

f0 j y
j

+
(
1 − 1

2
x
)

1 − 1

2
x − 1

2
y

∑

i≥1

fi0x
i . (B.29)

Taking into account the initial conditions, we find that

∑

j≥1

f0 j y
j =

∑

j≥1

α j−1y j = 1

α

∑

j≥1

(αy) j and
∑

i≥1

fi0x
i = 1

α

∑

i≥1

(αx)i ,(B.30)

which we substitute into Eq. (B.29) to obtain

g(x, y) = 1 +
(
1 − 1

2
y
) 1

1 − 1
2 x − 1

2 y

1

α

∑

j≥1

(αy) j

+
(
1 − 1

2
x
) 1

1 − 1
2 x − 1

2 y

1

α

∑

i≥1

(αx)i . (B.31)

Making use of the well-known symmetric, bivariate generating function of the bino-
mial coefficients

1

1 − s − t
=

∑

i, j≥0

(
i + j

i

)
si t j , (B.32)

we can rewrite Eq. (B.31) as

g(x, y) = 1 +
(
1 − 1

2
y
) 1

α

∑

j≥1

(αy) j
∑

i, j≥0

(
i + j

i

)
xi y j

2i+ j

+
(
1 − 1

2
x
) 1

α

∑

i≥1

(αx)i
∑

i, j≥0

(
i + j

i

)
xi y j

2i+ j

=
(
1 − 1

2
y
) ∑

i, j≥0

j−1∑

q=0

(
i + q

i

)
α j−q−1

2i+q
xi y j

+
(
1 − 1

2
x
) ∑

i, j≥0

i−1∑

q=0

(
j + q

q

)
αi−q−1

2 j+q
xi y j .
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Rearranging sums in the above expression, we find

g(x, y) =
∑

i, j≥0

[ j−1∑

q=0

(
i + q

i

)
α j−q−1

2i+q
−

j−2∑

q=0

(
i + q

i

)
α j−q−2

2i+q+1

+
i−1∑

q=0

(
j + q

q

)
αi−q−1

2 j+q
−

i−2∑

q=0

(
j + q

q

)
αi−q−2

2 j+q+1

]
xi y j .

Hence, we obtain the following exact expression for the function fi j ,

fi j =
j−1∑

q=0

(
i + q

q

)
α j−q−1

2i+q
−

j−2∑

q=0

(
i + q

q

)
α j−q−2

2i+q+1

+
i−1∑

q=0

(
j + q

q

)
αi−q−1

2 j+q
−

i−2∑

q=0

(
j + q

q

)
αi−q−2

2 j+q+1 . (B.33)

The expression in Eq. (B.33) can be simplified further due to its symmetry with respect
to the indices i and j : we write fi j = f (i, j) + f ( j, i), where f (i, j) is defined as

f (i, j) =
j−1∑

q=0

(
i + q

q

)
α j−q−1

2i+q
−

j−2∑

q=0

(
i + q

q

)
α j−q−2

2i+q+1 . (B.34)

The function f (i, j) can be further simplified as

f (i, j) =
(
i + j − 1

j − 1

)
1

2i+ j−1 + 2α
j−2∑

q=0

(
i + q

q

)
α j−q−2

2i+q+1 −
j−2∑

q=0

(
i + q

q

)
α j−q−2

2i+q+1

=
(
i + j − 1

j − 1

)
1

2i+ j−1 + (2α − 1)
α j−2

2i+1

j−2∑

q=0

(
i + q

q

)( 1

2α

)q;

(B.35)

next, we use the identity

j∑

q=0

(
i + q

i

)
xq = 1

(1 − x)i+1 − x j+1
(
j + 1 + i

j + 1

)
2F1(1, j + i + 2; j + 2; x),

(B.36)

where 2F1 is again the generalised hypergeometric function of the second kind (Digital
Library of Mathematical Functions 2020a). Note that the above identity can be used
only when |x | < 1, as the hypergeometric function 2F1 is not defined otherwise.
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Hence, Eq. (B.35) becomes

f (i, j) =
(
i + j − 1

j − 1

)
1

2i+ j−1 + (2α − 1)
α j−2

2i+1

×
[( 2α

2α − 1

)i+1 − 1

(2α) j−1

(
j + i − 1

j − 1

)
2F1

(
1, j + i; j; 1

2α

)]

= αi+ j−1

(2α − 1)i
+ 1

2i+ j−1

(
i + j − 1

i

)[
1 − 2α − 1

2α
2F1

(
1, j + i; j; 1

2α

)]

(B.37)

Given the expression for f (i, j) in Eq. (B.37), one can find the corresponding expres-
sion for f ( j, i) by exchanging the indexes i ↔ j . ��

C. Variance of Total RNAP Distribution

In this section, we derive the exact expression for the variance of the total RNAP
distribution, as stated in Eq. (10), which is given by the sum over the covariances
Cov(xi , x j ) (i, j = 1, . . . , L), as defined in Eq. (4d). Hence, we have

Var(ntot) =
L∑

i, j=1

Cov(ni , n j ) =
L∑

i=1

Var(ni ) +
∑

i �= j

Cov(ni , n j )

=
L∑

i=1

[〈ni 〉 + 〈ni 〉2αβ · fii
] +

∑

i �= j

〈ni 〉〈n j 〉αβ · fi j

=
L∑

i=1

〈ni 〉 + αβ

( L∑

i=1

〈ni 〉2 · fii +
∑

i �= j

〈ni 〉〈n j 〉 · fi j

)

=
L∑

i=1

〈ni 〉 + αβ

L∑

i, j=1

〈ni 〉〈n j 〉 · fi j ,

(C.1)

where the function fi j is given in Eq. (10). The first term in Eq. (C.1) equals 〈ntot〉,
the mean of the total RNAP distribution, as stated in Eq. (10); substituting in the
expressions for the means 〈ni 〉 from Eq. (2b), as well, we obtain

Var(ntot) = 〈ntot〉 + αβ(ηρk)
2

L∑

i, j=1

μi+ j · fi j . (C.2)
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Lemma C.1 In the limit of deterministic elongation, i.e. for L → ∞, the expression
for Var(ntot) in Eq. (10) simplifies to

Var(ntot)∞ = 〈ntot〉∞
+β(ηr)2

(sb + su − d) − (sb + su + d)e−2d〈T 〉 + 2de−(sb+su+d)〈T 〉

d(sb + su + d)(sb + su − d)
,

(C.3)

which can be further simplified to the expression in Eq. (11).

Proof In order to find the limit of L → ∞ in Eq. (10) (or Eq. (C.2)), we have to
evaluate the term

∑L
i, j=1 μi+ j · fi j in that limit. For the following derivation, we

consider the function fi j = f (i, j) + f ( j, i), where f (i, j) is defined in terms of
sums in Eq. (B.34). Hence, we have

L∑

i, j=1

μi+ j · fi j =
L∑

i, j=1

μi+ j f (i, j) +
L∑

i, j=1

μi+ j f ( j, i) = 2
L∑

i, j=1

μi+ j f (i, j)

= 2

[ L∑

i, j=1

j−1∑

q=0

μi+ j
(
i + q

q

)
α j−q−1

2i+q
−

L∑

i, j=1

j−2∑

q=0

μi+ j
(
i + q

q

)
α j−q−2

2i+q+1

]

= 2
L∑

i, j=1

μi+ j
(
i + j − 1

i

)
1

2i+ j−1

︸ ︷︷ ︸
G1

+ 2(2α − 1)
L∑

i, j=1

j−2∑

q=0

μi+ j
(
i + q

q

)
α j−q−2

2i+q+1

︸ ︷︷ ︸
G2

.

(C.4)

Substituting k → L/〈T 〉 − d in Eq. (C.4) and taking the limit of L → ∞, we have
that G1 −→

L→∞ 0; hence, Var(ntot) evaluates to

Var(ntot)∞ = 〈ntot〉∞ + lim
L→∞[αβ(ηρk)

2G2] (C.5)

in that limit, which yields the expression in Eq. (C.3), as can easily be verified with
the computer algebra package Mathematica. Hence, in the limit of deterministic elon-
gation, the expression for the variance of the RNAP distribution in Eq. (10) reduces
to the one in Eq. (11), as claimed. ��

D.Moments of Total RNAP andMature RNA in Bursty and Constitutive
Limits

Moments of total RNAP in the bursty limit: In the bursty limit, the expressions for
the mean and variance of the total RNAP distribution given in Eq. (10) simplify to
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〈ntot〉b = b
su
k

μ
μL − 1

μ − 1
, and Var(ntot)b = 〈ntot〉b + b2

su
k

L∑

i, j=1

μi+ j · hi j .

(D.1)

If, furthermore, we take the limit of deterministic elongation, with L → ∞ at constant
〈T 〉, Eq. (D.1) simplifies to

〈ntot〉(b;∞) = b
su
d

(1 − e−Td ) and Var(ntot)(b;∞)

= 〈ntot〉(b;∞) + 〈ntot〉2(b;∞)

d

su

1 + e−Td

1 − e−Td
,

(D.2)

where the subscript (b;∞) denotes the bursty limit with infinite L . In the limit of zero
RNAP detachment, Eq. (D.2) further simplifies to

〈ntot〉(b;∞;0) = bsu〈T 〉 and Var(ntot)(b;∞;0) = 〈ntot〉(b;∞;0)(1 + 2b), (D.3)

where the subscript (b;∞; 0) denotes the bursty limit, with L → ∞ and d → 0.
Moments of total RNAP in the constitutive limit: In the constitutive limit, Eq. (10)
simplifies to

〈ntot〉c = r

k
μ

μL − 1

μ − 1
= Var(ntot)c. (D.4)

If, furthermore, we take the limit of deterministic elongation, i.e. L → ∞ at constant
〈T 〉, Eq. (D.4) simplifies to

〈ntot〉(c;∞) = r

d
(1 − e−Td ) = Var(ntot)(c;∞); (D.5)

finally, in the limit of zero RNAP detachment, Eq. (D.5) further simplifies to

〈ntot〉(c;∞;0) = r〈T 〉 = Var(ntot)(c;∞;0). (D.6)

Moments of mature RNA distribution in the bursty limit: In that limit, the closed-
form expressions in Eq. (8) are given by

〈n〉b = bυmμL and Var(n)b = 〈n〉b + 〈n〉2b(υkμ)−1 · hMM , (D.7)

which in the limit of deterministic elongation simplify to

〈n〉(b;∞) = bυme
−Td and Var(n)(b;∞) = 〈n〉(b;∞) + 〈n〉2(b;∞)υ

−1
m . (D.8)

In the limit of zero RNAP detachment, these expressions further simplify to

〈n〉(b;∞;0) = bυm and Var(n)(b;∞;0) = 〈n〉(b;∞;0) + 〈n〉2(b;∞;0)υ
−1
m . (D.9)

123



3 Page 50 of 62 T. Filatova et al.

E. Introduction to Geometric Singular Perturbation Theory (GSPT)

We consider a system of first-order autonomous ordinary differential equations in the
general (‘standard’) form

εẋ = f(x, y, ε), (E.1)

ẏ = g(x, y, ε), (E.2)

where (x, y) ∈ R
m × R

l , with m, l ∈ N. Here, 0 < ε � 1 is a (real) singular
perturbation parameter, and the overdot denotes differentiation with respect to the
‘slow’ time t . (Correspondingly, Eq. (E.1) is referred to as the ‘slow’ system.) The
variable x is referred to as the ‘fast variable’, while y is the ‘slow variable’. For
simplicity, the functions f : R

m × R
l × R

+ → R
m and g : R

m × R
l × R

+ → R
l are

assumed to be C∞-smooth in all their arguments. In the context of our analysis of the
characteristic system in Eq. (26), we have the ‘slow system’

εu̇i = ui − ui+1 + (d/k)ui for i = 1, . . . , L − 1, (E.3a)

εu̇L = uL − u + (d/k)uL , (E.3b)

u̇ = u, (E.3c)

Ḟ0 = (su/dm)F1 − (sb/dm)F0 + (r/dm)u1F0, (E.3d)

Ḟ1 = (sb/dm)F0 − (su/dm)F1. (E.3e)

By comparing the system of equations in Eq. (E.3) with the general form in Eq. (E.1),
we see that ui (i = 1, . . . , L) are the fast variables, while u, F0, and F1 are slow.
Correspondingly, we have m = L and l = 3 in the above notation, which implies f =
( f1, f2, . . . , fL), with fi = fi (ui , ui+1) = ui − ui+1 + (d/k)ui for i = 1, . . . , L −
1, fL = fL(uL , u) = uL − u + (d/k)uL , and g = (g1, g2, g3)(u1, u, F0, F1) =
(u, (su/dm)F1 − (sb/dm)F0 + (r/dm)u1F0, (sb/dm)F0 − (su/dm)F1).

Now, we introduce a new ‘fast’ time τ = t/ε, which we substitute into Eq. (E.1)
to find the ‘fast system’

x′ = f(x, y, ε), (E.4a)

y′ = εg(x, y, ε) (E.4b)

corresponding to Eq. (E.1); here, the prime denotes the derivative with respect to τ .
Hence, rewriting Eq. (E.3) in the fast formulation, we find

u′
i = ui − ui+1 + (d/k)ui for i = 1, . . . , L − 1, (E.5a)

u′
L = uL − u + (d/k)uL , (E.5b)

u′ = εu, (E.5c)

F ′
0 = ε[(su/dm)F1 − (sb/dm)F0 + (r/dm)u1F0], (E.5d)

F ′
1 = ε[(sb/dm)F0 − (su/dm)F1]. (E.5e)
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For positive ε, the systems in Eqs. (E.1) and (E.4)—and, correspondingly, the systems
in Eqs. (E.3) and (E.5)—are equivalent; however, in the singular limit of ε → 0, we
obtain two different systems: setting ε = 0 in Eq. (E.1), we have the ‘reduced problem’

0 = f(x, y, 0), (E.6a)

ẏ = g(x, y, 0), (E.6b)

while we obtain the ‘layer problem’

x′ = f(x, y, 0), (E.7a)

y′ = 0 (E.7b)

for ε = 0 in Eq. (E.4). The ‘reduced problem’ for the system in Eq. (E.3) implies
that the flow of (u, F0, F1) is constrained to lie on the (l = 3)-dimensional ‘critical
manifold’ S0 that is defined by f = 0:

ui = μ · ui+1 = μi+L−1 · u for i = 1, . . . , L, (E.8)

where uL+1 ≡ u and (F0, F1) are assumed to vary in an appropriately chosen subset
of R

2.
From the ‘layer problem’ of the system in Eq. (E.3), we conclude that y =

(u, F0, F1) is a parameter which parameterises the (m = L)-dimensional flow of
u′
i = fi (i = 1, . . . , L), the equilibria of which are located on S0.
The Jacobian matrixDxf(x, y, 0) of the ’layer problem’ corresponding to Eq. (E.5)

about S0 has the eigenvalues

λi = k(1 + (d/k) − ui+1) = (k + d)(1 − μi+L+1u) for i = 1, . . . , L.

(E.9)

Since our definition of the generating function F(z, τ ) in Sect. 3.2 assumed z ∈
[−1, 1], wemay restrict to u ∈ [−2, 0]which, byEq. (E.9), implies thatλi > 0.Hence,
the critical manifold S0 is ‘normally hyperbolic’—and, in fact, normally repelling—
with an (m + l = L + 3)-dimensional unstable manifold Wu(S0).

The geometric singular perturbation theory due to Fenichel (1979) thus implies
that S0 will persist, for ε positive and sufficiently small, as a slow manifold’ Sε

that is (locally) invariant, smooth, and O(ε)-close to S0. (As the unstable manifold
Wu(S0) equals the entire phase space of Eq. (E.3), it trivially persists as the unstable
manifold Wu(Sε) for Sε.) In particular, as S0 is repelling in forward time, it follows
that the inverse characteristic transformation corresponding to Eq. (26) is well defined
in backward time; details can be found in Veerman et al. (2018), Popović et al. (2016).
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F. Variance of Fluctuating Total Fluorescent Signal

By definition, the variance of the total fluorescent signal is given by the sum over all
elements Cov(ri , r j ) for i, j = 1, . . . , L , where ri = (ν/L)ini ; the corresponding
definitions can be found in Sect. 4 of the main text. Hence, we have that

Var(rtot) =
L∑

i, j=1

Cov(ri , r j ) =
L∑

i, j=1

Cov
( ν

L
ini ,

ν

L
jn j

)
=

( ν

L

)2 L∑

i, j=1

i j · Cov(ni , n j )

=
( ν

L

)2( L∑

i=1

i2Var(ni ) +
∑

i �= j

i j · Cov(ni , n j )

)

=
( ν

L

)2( L∑

i=1

i2[〈ni 〉 + 〈ni 〉2αβ · fi i ] +
∑

i �= j

i j〈ni 〉〈n j 〉αβ · fi j

)

=
( ν

L

)2 L∑

i=1

i2〈ni 〉 +
( ν

L

)2
αβ

( L∑

i=1

i2〈ni 〉2 · fi i +
∑

i �= j

i j〈ni 〉〈n j 〉 · fi j

)

=
( ν

L

)2 L∑

i=1

i2〈ni 〉 +
( ν

L

)2
αβ

L∑

i, j=1

i j〈ni 〉〈n j 〉 · fi j .

(F.1)

Substituting the expressions for the means 〈ni 〉 from Eq. (2b) into Eq. (F.1), we obtain

Var(rtot) =
( ν

L

)2
ηρk

L∑

i=1

i2μi +
( ν

L

)2
αβ(ηρk)

2
L∑

i, j=1

i j · μi+ j · fi j , (F.2)

which is the expression stated in Eq. (35).

G.Moments of Fluctuations in Total Fluorescent Signal in Various Lim-
its

Deterministic elongation Substituting k 	→ L/〈T 〉−d and taking the long-gene limit
of L → ∞ in Eq. (35), we obtain the simplified expressions

〈rtot〉∞ = νηr

dTd
[1 − (1 + Td)e

−Td ],

Var(rtot)∞ = 〈rtot〉∞ · F0 + 〈rtot〉2∞ · βδg
F1 + F2 + F3

2(δg − 1)2(δg + 1)2[1 − (1 + Td)e−Td ]2 ,

(G.1)
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where

F0 = ν

[
2

Td
− Tde−Td

1 − (1 + Td)e−Td

]
,

F1 = (δg − 1)2(2δg + 1),

F2 = (δg + 1)2[2δg(1 + Td)(1 + Td − Tg) − 1]e−2Td ,

F3 = −4δ3g(1 + Td + Tg)e
−Tge−Td ;

(G.2)

the expression for the variance in Eq. (G.1) is found via the same method as is used in
Lemma C.1 of ‘Appendix C’. When there is no detachment of RNAP from the gene,
i.e. when d = 0, Eq. (G.1) simplifies to

〈rtot〉(∞;0) = 1

2
νηr〈T 〉,

Var(rtot)(∞;0) = 〈rtot〉(∞;0)
2ν

3

+ 〈rtot〉2(∞;0) · 8βT−1
g

[1
3

− 1

2
T−1
g + T−3

g − T−3
g

(
1 + Tg

)
e−Tg

]
.

(G.3)

Bursty limit: In the limit when the rates sb and r are large, the expressions for the
mean and variance of the total fluorescent signal given in Eq. (35) become

〈rtot〉b = νb
su
d

( k
d

(1 − μL)

μL
− μL

)
,

Var(rtot)b =
( ν

L

)2
b
su
k

L∑

i=1

i2μi +
( ν

L

)2
b2

su
k

L∑

i, j=1

i j · μi+ j · fi j .

(G.4)

Constitutive limit:When the gene spends most of its time in the active state, Eq. (35)
simplifies to

〈rtot〉c = ν

L
ρkμ

1 + μL [L(μ − 1) − 1]
(μ − 1)2

,

Var(rtot)c =
( ν

L

)2
ρkμ

1 + μ − μL [L2μ2 + (1 + L)2μ − (2L2 + 2L − 1)]
(1 − μ)3

.

(G.5)

Bursty expression with deterministic elongation. In this case, Eq. (G.4) simplifies
to

〈rtot〉(b;∞) = νbsu
dTd

[
1 − (1 + Td)e

−Td
]
,

Var(rtot)(b;∞) = 〈rtot〉(b;∞) · F0 + 〈rtot〉2(b;∞) · d

2su

1 − (1 + 2Td + 2T 2
d )e−2Td

[
1 − (1 + Td)e−Td

]2 ,

(G.6)

123



3 Page 54 of 62 T. Filatova et al.

whereF0 is given by Eq. (G.2). In the special case of no premature RNAP detachment
from the gene (d → 0), Eq. (G.6) can be further simplified to

〈rtot〉(b;∞;0) = 1

2
νbsu〈T 〉,

Var(rtot)(b;∞;0) = 〈rtot〉(b;∞;0) · 2ν
3

+ 〈rtot〉2(b;∞;0) · 8

3su〈T 〉 .
(G.7)

Constitutive expression with deterministic elongation: In this case, Eq. (G.5) sim-
plifies to

〈rtot〉(c;∞) = ν

Td

r

d

[
1 − (1 + Td)e

−Td
]

and

Var(rtot)(c;∞) = ν2

T 2
d

r

d

[
2 − (2 + 2Td + T 2

d )e−Td
]
,

(G.8)

which reduces to

〈rtot〉(c;∞;0) = 1

2
νr〈T 〉 and Var(rtot)(c;∞;0) = 1

3
ν2r〈T 〉 (G.9)

for the special case of zero RNAP detachment from the gene.

H. ExtendedModel with RNAP Pausing

Proof of Proposition 3 The new pausing model presented in Fig. 9 can be conveniently
described by 2L + 2 species interacting via an effective set of 5L + 4 reactions.
The vector �m of the number of molecules of the respective species is given by
�m = (n0, na1, . . . , n

a
L , n p

1 , . . . , n p
L , n); in the table below, we summarise the respec-

tive positions of each entry in �m, as well as the definition of the rate functions f j , for
j = 1, . . . , 5L + 4. Note that we do not consider Goff as an independent species,

Species Molecule numbers Position (in �m)

Gon n0 1
Pi , i ∈ {1, . . . , L} nai i + 1
P̄i , i ∈ {1, . . . , L} n pi i + L + 1
M n 2L + 2

as a conservation law implies 〈Goff 〉 = 1 − 〈n0〉. Given the ordering of species and
reactions as described in the above tables, we can define the (2L + 2) × (5L + 4)-
dimensional stoichiometry matrix S, with nonzero elements given by
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Reaction Rate function f j

Gon
sb−→ Goff f1 = sb〈n0〉

Goff
su−→ Gon f2 = su(1 − 〈n0〉)

Gon
r−→ Gon + P1 f3 = r〈n0〉

Pi
k−→ Pi+1, i ∈ {1, . . . , L − 1} fi+3 = k〈nai 〉

PL
k−→ M fL+3 = k〈naL 〉

Pi
da−→ ∅, i ∈ {1, . . . , L} fi+L+3 = da〈nai 〉

Pi
rp−→ P̄i , i ∈ {1, . . . , L} fi+2L+3 = rp〈nai 〉

P̄i
ra−→ Pi , i ∈ {1, . . . , L} fi+3L+3 = ra〈n pi 〉

P̄i
dp−→ ∅, i ∈ {1, . . . , L} fi+4L+3 = dp〈n pi 〉

M
dm−→ ∅ f5L+4 = dm 〈n〉

S11 = −1, S12 = 1,

Si,i+1 = 1, Si,i+2 = −1, Si,i+L+2 = −1,

Si,i+2L+2 = −1, Si,i+3L+2 = 1,

Si+L,i+2L+2 = 1, Si+L,i+3L+2 = −1, Si+L,i+4L+2 = −1,

S2L+2,L+3 = 1, S2L+2,5L+4 = −1,

(H.1)

where i = 2, . . . , L + 1. From the associated CME, it can be shown via the moment
equations that the time evolution of the vector �〈m〉 of mean molecule numbers in a
system of reactions with propensities that are linear in the number of molecules is
determined by d �〈m〉/dt = S · �f . Given the form of the stoichiometric matrix S and of
the rate functions f j , it follows that the mean numbers of molecules of active gene,
active and paused RNAP, and mature RNA in steady-state can be obtained by solving
the following system of 2L + 2 algebraic equations:

0 = su(1 − 〈n0〉) − sb〈n0〉,
0 = r〈n0〉 − (k + da + rp)〈na1〉 + ra〈n p

1 〉,
0 = k〈nai−1〉 − (k + da + rp)〈nai 〉 + ra〈n p

i 〉 for i = 2, . . . , L,

0 = rp〈nai 〉 − (ra + dp)〈n p
i 〉 for i = 1, . . . , L,

0 = k〈naL〉 − dm〈n〉.

(H.2)

Here, we recall the definition of the following parameters from themain text: η = suτg ,
where τg = 1/(su + sb) is the gene switching timescale, ρk = r/k, and ρ = r/dm .
Also, we define several new parameters: σ = rp/ra as the ratio of the pausing and
activation rates; πra = ra/(ra + dp), which is the probability of RNAP switching to
the active state; πdp = dp/(ra+dp), which is the probability of premature termination
from the paused RNAP state; μ̃ = k/(k + da + rpπdp ); and λ = σπra . It follows that
the solution of Eq. (H.2) can be written as

〈n0〉 = η, 〈nai 〉 = ηρkμ̃
i , 〈n p

i 〉 = 〈nai 〉λ, and 〈n〉 = ηρμ̃L . (H.3)
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Proof of Proposition 4 In order to solve the Lyapunov equation J ·C+C · JT +D = 0
for the symmetric elements Ci j = C j i of the (2L + 2) × (2L + 2)-dimensional
covariance matrix C, we will follow the same approach as in ‘Appendix B’. First, we
define the (2L + 2) × (2L + 2)-dimensional Jacobian and diffusion matrices for our
system. The Jacobian matrix J has the following nonzero elements:

J11 = −(su + sb),

J21 = r , J22 = −(k + da + rp), J2,2+L = ra ,

Ji,i−1 = k, Ji i = −(k + da + rp), Ji,i+L = ra for i = 3, . . . , L + 1,

Ji+L,i = rp, Ji+L,i+L = −(ra + dp) for i = 2, . . . , L + 1,

J2L+2,L+1 = k, J2L+2,2L+2 = −dm ,

(H.4)

while the nonzero elements of the symmetric diffusion matrix D are given by

D11 = su(1 − 〈n0〉) + sb〈n0〉,
D22 = r〈n0〉 + (k + da + rp)〈na1〉 + ra〈n p

1 〉, D23 = −k〈na1〉, D2,2+L = −rp〈na1〉 − ra〈n p
1 〉;

for i = 3, . . . , L + 1 :
Di i = k〈nai−2〉 + (k + da + rp)〈nai−1〉 + ra〈n p

i−1〉, Di,i+1[i≤L] = −k〈nai−1〉, DL+1,2L+2 = −k〈naL 〉,
Di,i+L = −rp〈nai−1〉 − ra〈n p

i−1〉;
for i = 2, . . . , L + 1 :
Di+L,i+L = rp〈nai−1〉 + (ra + dp)〈n p

i−1〉,
D2L+2,2L+2 = k〈naL 〉 + dm 〈n〉.

(H.5)

Next, using the definition of J andD from Eqs. (H.4) and (H.5), respectively, we solve
the Lyapunov equation. Here, we note that we are only interested in expressions for
the covariances of fluctuations in active and paused RNAP, but not of mature RNA
fluctuations; hence, we require closed-form expressions for the elements Ci j with
i, j �= 2L + 2, which we derive by following the same procedure as in ‘Appendix B’.

Now, we recall that β = sb/su is the ratio of gene deactivation and activation rates,
while τp = 1/(k + da) is the typical time that an actively moving RNAP spends on
a gene segment. Additionally, let τra = 1/ra be the timescale of RNAP activation
from the paused state, let τdp = 1/dp be the timescale of premature termination of
paused RNAP, and let τpp = 1/(ra + dp) be the typical time spent in the paused
state. Finally, we define the following new parameters: λrp = πrp/(1 − πrp ), where
πrp = rp/(rp + k + da) is the probability of actively moving RNAP switching to the
paused state, as well as

ωra = πraτg

πra τra + τg
, α̃ = τg + λrpπdpτg

τg + τp + λrpτg(1 − ωra )
, and ω = τg

τpp + τg
;
(H.6)
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then, closed-form expressions for the covariances of the active gene with itself and
the remaining species are given by

Var(n0) = η2β · gaa00 , where gaa00 = 1,

Cov(n0, n
a
j ) = η〈naj 〉α̃β · gaa0 j , where gaa0 j = α̃ j−1,

Cov(n0, n
p
j ) = η〈n p

j 〉α̃β · gap0 j , where gap0 j = ωα̃ j−1.

(H.7)

Similarly, closed-form expressions for the covariances between all RNAP species read

Cov(nai , n
a
j ) = δi j 〈nai 〉 + 〈nai 〉〈naj 〉α̃β · gaai j ,

Cov(nai , n
p
j ) = 〈nai 〉〈n p

j 〉α̃β · gapi j ,

Cov(n p
i , naj ) = 〈n p

i 〉〈naj 〉α̃β · gpa
i j ,

Cov(n p
i , n p

j ) = δi j 〈n p
i 〉 + 〈n p

i 〉〈n p
j 〉α̃β · gpp

i j ,

(H.8)

where the functions gaai j = gaaji , g
ap
i j = gpa

ji , and gpp
i j = gpp

ji satisfy the following
recurrence relations:

gaai j = [(k + da)(ra + dp) + rpdp](gaai−1, j + gaai, j−1) + rarp(g
ap
i j + gpa

i j )

2(k + da + rp)(ra + dp)
,

gapi j = [(k + da)(ra + dp) + rpdp]gapi−1, j + (ra + dp)2gaai j + rarpg
pp
i j

(k + da + ra + rp + dp)(ra + dp)
,

gpp
i j = gapi j + gpa

i j

2
.

(H.9)

Now, we assume that the elongation rate is faster than the rates of RNAP pausing,
activation, and premature termination, i.e. that k 
 ra, rp, da, dp in Eq. (H.9). Taking
the limit of k → ∞, we find that the expressions in Eqs. (H.7) and (H.8) remain
unchanged, while Eq. (H.9) simplifies to

gaai j = (gaai−1, j + gaai, j−1)/2, (H.10a)

gapi j = gapi−1, j , (H.10b)

gpp
i j = (gapi j + gpa

i j )/2; (H.10c)

in particular, to leading order in 1/k, the functions gaai j , g
ap
i j , g

pa
i j , and gpp

i j hence
do not depend on k. Eq. (H.10a) defines a recurrence relation for the symmetric
function gaai j = gaaji with initial conditions gaa00 and gaa0 j from Eq. (H.7). Using the
same mathematical technique as in Lemma B.5, we find that the solution for the
function gaai j is given by gaai j = gaa(i, j) + gaa( j, i), where
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gaa(i, j) = α̃i+ j−1

(2α̃ − 1)i
+ 1

2i+ j−1

(
i + j − 1

i

)[
1 − 2α̃ − 1

2α̃
2F1

(
1, i + j; j; 1

2α̃

)];
(H.11)

Eq. (H.10b) is a recurrence relation for the function gapi j with initial conditions gap0 j
from Eq. (H.7); the corresponding solution is then given by gapi j = ωα̃ j−1. Finally,

the solution of the recurrence relation in Eq. (H.10c) for gpp
i j is given by gpp

i j =
ω(α̃ j−1 + α̃i−1)/2. In sum, the leading-order asymptotics (in 1/k) of the covariances
between the various RNAP species for k large is hence given by Eq. (H.8), with gaai j ,

gapi j = gpa
i j , and gpp

i j as stated above. ��

Asymptotics of variance of totalRNAPdistribution:The variance of the total RNAP
distribution for the pausing model is given by

Var(ntot) =
L∑

i, j=1

(
Cov(nai , n

a
j ) + Cov(nai , n

p
j ) + Cov(n p

i , naj ) + Cov(n p
i , n p

j )
)
,

(H.12)

where the expressions for the corresponding covariances are given in Eq. (39). In
order to simplify the above expression, we consider each term on the right-hand side
in Eq. (H.12) separately, as follows:

L∑

i, j=1

Cov(nai , n
a
j ) =

L∑

i, j=1

δi j 〈nai 〉 + (ηρk)
2α̃β

L∑

i, j=1

gaai j ,

L∑

i, j=1

Cov(nai , n
p
j ) = (ηρk)

2α̃βλ

L∑

i, j=1

gapi j ,

L∑

i, j=1

Cov(n p
i , naj ) = (ηρk)

2α̃βλ

L∑

i, j=1

gpa
i j ,

L∑

i, j=1

Cov(n p
i , n p

j ) =
L∑

i, j=1

δi j 〈n p
i 〉 + (ηρk)

2α̃βλ2
L∑

i, j=1

gpp
i j .

(H.13)

Since
∑L

i, j=1

(
δi j 〈nai 〉 + δi j 〈n p

i 〉) = ∑L
i=1〈ni 〉 = 〈ntot〉, Eq. (H.12) becomes

Var(ntot) = 〈ntot〉 + (ηρk)
2α̃β

L∑

i, j=1

(
gaai j + λgapi j + λgpa

i j + λ2gpp
i j

)
. (H.14)
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Using the expressions for the functions gaai j , g
ap
i j , g

pa
i j , and gpp

i j from Eq. (39), we
conclude that Eq. (H.14) further simplifies to

Var(ntot) = 〈ntot〉 + (ηρk)
2α̃β

[
2

L∑

i, j=1

gaa(i, j) + λ(2 + λ)ωL
α̃L − 1

α̃ − 1

]
.

(H.15)

I. Approximation of Mature RNA Distribution in ExtendedModel

Similarly to Sect. 3.2, we apply geometric singular perturbation theory (GSPT) to
formally derive the distribution of mature RNA for the extended pausing model. As
was done there, we define Pj (�n; t) ( j = 0, 1) as the probability of the state �n =
(na1, . . . , n

a
L , n p

1 , . . . , n p
L , n) at time t while the gene is either active (0) or inactive

(1); then, the time evolution of these probabilities can be described by a system of
coupled CMEs:

∂ t P0 = su P1 − sb P0 + r(E−1
n1 − 1)P0 + k

L−1∑

i=1

(Enai
E

−1
nai+1

− 1)nai P0 + k(EnaL
E

−1
n − 1)naL P0

+ da

L∑

i=1

(Enai
− 1)nai P0 + rp

L∑

i=1

(Enai
E

−1
n p
i

− 1)nai P0 + ra

L∑

i=1

(En p
i
E

−1
nai

− 1)n p
i P0

+ dp

L∑

i=1

(En p
i

− 1)n p
i P0 + dm(En − 1)nP0,

∂ t P1 = sb P0 − su P1 + k
L−1∑

i=1

(Enai
E

−1
nai+1

− 1)nai P1 + k(EnaL
E

−1
n − 1)naL P1

+ da

L∑

i=1

(Enai
− 1)nai P1 + rp

L∑

i=1

(Enai
E

−1
n p
i

− 1)nai P1 + ra

L∑

i=1

(En p
i
E

−1
nai

− 1)n p
i P1

+ dp

L∑

i=1

(En p
i

− 1)n p
i P1 + dm(En − 1)nP1.

(I.1)

In order to find analytical expressions for the propagator probabilities P(�n; t) which
satisfy the system of CMEs in Eq. (I.1), we define the probability-generating functions
Fj (�z; t), where �z = (za1, . . . , z

a
L , z p1 , . . . , z pL , z) is a vector of variables corresponding

to the state �n. Given the equations for Pj (�n; t) from Eq. (I.1), we obtain the following
system of PDEs for the corresponding generating functions Fj (�z; t):

L[F0] = su F1 − sbF0 + r(za1 − 1)F0,

L[F1] = sbF0 − su F1; (I.2)
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here,

L = ∂ t + dm(z − 1)∂ z + k
L−1∑

i=1

(zai − zai+1)∂ zai
+ k(zaL − z)∂ zaL + da

L∑

i=1

(zai − 1)∂ zai

+rp

L∑

i=1

(zai − z pi )∂ zai
+ ra

L∑

i=1

(z pi − zai )∂ z pi
+ dp

L∑

i=1

(z pi − 1)∂ z pi

(I.3)

is a differential operator acting on the functions F0 and F1. Eq. (I.2) represents a system
of coupled, linear, first-order PDEs. Now, we introduce new variables uai = zai − 1,
u p
i = z pi − 1, and u = z − 1; we also rescale all rates and the time variable with the

degradation rate dm of mature RNA. Next, we apply the method of characteristics,
with s being the characteristic variable. The first characteristic equation will give us
dm(dt/ds) = 1, with solution s ≡ dmt ; hence, we can use the variable t ′ = dmt as the
independent characteristic variable and thus convert the system of PDEs in Eq. (I.2)
into a characteristic system of ODEs:

u̇ai = (k/dm)[(uai − uai+1) + (da/k)u
a
i + (rp/k)(u

a
i − u p

i )] for i = 1, . . . , L − 1,
(I.4a)

u̇aL = (k/dm)[(uaL − u) + (da/k)u
a
L + (rp/k)(u

a
L − u p

L)], (I.4b)

u̇ p
i = (ra/dm)[(u p

i − uai ) + (dp/ra)u
p
i ] for i = 1, . . . , L,

(I.4c)

u̇ = u, (I.4d)

Ḟ0 = (su/dm)F1 − (sb/dm)F0 + (r/dm)ua1F0, (I.4e)

Ḟ1 = (sb/dm)F0 − (su/dm)F1, (I.4f)

where the overdot denotes differentiation with respect to t . Here, we assume that
k/dm 
 1 and ra/dm 
 1; hence, we define ε = dm/k as the singular perturbation
parameter, and we write dm/ra = εδ, where δ = k/ra = O(1) by assumption. Since
0 < ε � 1 is small, we can apply GSPT in order to separate the system in Eq. (I.4)
into fast and slow dynamics, which will allow us to find an asymptotic approximation
for F0 and F1 in steady state. With the above definitions, the governing equations for
uai and u p

i in the ‘slow system’ in Eqs. (I.4a) through (I.4c) become

εu̇ai = (uai − uai+1) + (da/k)u
a
i + (rp/k)(u

a
i − u p

i ) for i = 1, . . . , L − 1,
(I.5a)

εu̇aL = (uaL − u) + (da/k)u
a
L + (rp/k)(u

a
L − u p

L), (I.5b)

εu̇ p
i = [(u p

i − uai ) + (dp/ra)u
p
i ]/δ for i = 1, . . . , L. (I.5c)

It follows that uai and u
p
i (i = 1, . . . , L) are the fast variables in our system, while u,

F0, and F1 are the slow ones; see ‘Appendix E’. Setting ε = 0 and solving the system
in Eq. (I.5), we find ua1 = μ̃L · u, where μ̃ = k/(k + da + rpπdp ) has previously been
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defined in Proposition 3. Now, given Eq. (I.4d), we apply the chain rule, dt ′ ≡ du · u,
to rewrite Eqs. (I.4e) and (I.4f) as:

F ′
0dmu = su F1 − sbF0 + rμ̃LuF0, (I.6a)

F ′
1dmu = sbF0 − su F1, (I.6b)

where the prime now denotes differentiation with respect to u. The system in Eq. (I.6)
is the same as that in Eq. (28), with the substitution μ 	→ μ̃; hence, following the
same derivation as in Sect. 3.2, we conclude that the steady-state analytical expression
for the probability distribution of mature RNA is given by

P(n) = 1

n!
(su)n

(sb + su)n

( r

dm

)n
(μ̃L)n1F1

( su
dm

+ n; sb + su
dm

+ n;− r

dm
μ̃L

)
. (I.7)
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