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Abstract

Viruses are obligate intracellular parasites that usurp cellular signaling networks to promote 

pathogen spread and disease progression. Signaling through extracellular vesicles (EVs) is an 

emerging field of study in the virus-host interaction network. EVs relay information both locally 

and distally through incorporated contents, typically without tripping innate immune sensors. 

Therefore, this extracellular signaling axis presents itself as a tantalizing target for promoting a 

favorable niche for the pathogen(s) takeover of the host, particularly for chronic infections. From 

the incorporation of virus-encoded molecules such as micro RNAs and proteins/enzymes to the 

envelopment of entire infectious particles, evolutionary distinct viruses have shown a remarkable 

ability to converge on this means of communication. In this review, we will cover the recent 

advances in this field and explore how EV can be used as potential biomarkers for chronic, 

persistent, or latent virus infections.

Graphical abstract

*To whom correspondence should be sent: dirk_dittmer@med.unc.edu. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

Declarations of Interests
This review was funded through the AIDS Malignancy Consortium Fellowship (part of the 5UM1CA121947–10) awarded to R.P.M. 
and the National Institutes of Health grant 1R01DA040394 awarded to D.P.D. The funding sources had no involvement in the 
interpretations or writing of this review.

HHS Public Access
Author manuscript
Curr Opin Virol. Author manuscript; available in PMC 2021 October 01.

Published in final edited form as:
Curr Opin Virol. 2020 October ; 44: 129–138. doi:10.1016/j.coviro.2020.07.014.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extracellular vesicles are realeased by all cell types and transfer internal contents from one cell to 

the next. Viruses can mocify these internal contents, thereby influrncing recipient cell physiology 

without infection.
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Introduction

As a part of the extracellular signaling network, cells release extracellular vesicles (EVs). 

The current model posits that EVs exist as three major subgroups: (i) apoptotic bodies, (ii) 

microvesicles, and (iii) exosomes. Apoptotic bodies are produced when a cell is undergoing 

apoptosis, and contain materials from every cellular subcompartment, and have a broad size 

range (100 nanometers (nm) - >1 μm in diameter). Microvesicles originate from the pinching 

off of the plasma membrane and are enriched for surface membrane proteins, and usually 

have a diameter of 80 – 500 nm). Strictly speaking, exosomes originate from the 

invagination of the late endosome into the multivesicular body (MVB) and are enriched for 

members of the endosomal sorting complex required for transport (ESCRT) machinery. 

Exosomes have a size range of 40 – 150 nm in diameter [1,2]. In cell supernatant or 

biological fluids, it is difficult to identify origin for any individual EV.

EVs function similarly to a virion in their ability to transfer active materials from one cell to 

another, either locally or distally. In primary fluids such as blood, EVs exist at higher 

concentrations (up to 1010 particles/mL) than even high titer viruses such as flaviviruses, 

filoviruses, or human immunodeficiency virus (HIV) [3,4]. Similar to a virus, contents 

delivered by an EV influence cell and tissue physiology such as transcription, 
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differentiation, migration, signaling, and metabolic state [1,5–10]. EVs from tumor cells 

have been linked to metastasis [10–13]. Given their function in steering local and systemic 

equilibrium, it is unsurprising that viruses have evolved to co-opt an EV to facilitate 

pathogen spread and disease progression (Figure 1).

Much of our current understanding of EVs comes from studies using viruses that 

deliberately manipulate EV cargo through the incorporation of viral nucleic acids, proteins, 

and even entire virions into EV [14–23]. Delivery of these virus-modified EVs to naïve cells 

alters their physiology, demonstrating that EVs can functionally deliver pathogenic 

materials. Given that EVs exist naturally (i.e. in the absence of virus infection) they transport 

these materials unbeknownst to the host’s immune response. This phenomenon is believed to 

have occurred for millennia but has only become appreciated in recent years as a means by 

which viruses usurp cellular resources.

This review will focus on established models of EV hijacking by viruses, as well as recent 

advances in this field. We will highlight the work done on EV-virus interactions in the 

context of viruses that can induce chronic infections. Finally, the potential of using EV as a 

biomarker for chronic, persistent, and latent infection will be discussed.

Herpesviruses

A shared trait among the Herpesviridae family is that they persist at an equilibrium between 

latent and lytic replication phases. Both phases are required for viral spread and disease, but 

only the lytic is responsible for the production of infectious particles. Herpesviruses are 

some of the oldest mammalian viruses known, with estimates of their origin being hundreds 

of million years ago, and have host ranges extending from humans (Homo sapiens) to turtles 

(Chelonia mydas) [24,25].

Herpes simplex virus (HSV-1) has been shown to export viral miRNAs and the innate 

immune regulator stimulator of interferon genes (STING) protein into EVs post-infection 

[19,26]. EV transfer of STING has prompted the development of a model in which HSV-1 

attenuates its shift from latency into the lytic phase through EVs. Multiple interferon 

stimulatory genes and pro-inflammatory regulators such as tumor necrosis factor-alpha 

(TNF-α) were upregulated in cells treated with EVs from HSV-1 infected cells. This led to a 

decrease in viral transcripts, pushing HSV-1’s equilibrium towards latency [27,28]. This 

shift would allow the existing, chronically-infected cells to avoid detection through innate 

sensors triggered by cytokines like TNF-α. Other work has shown that in oligodendrocytic 

cells, knockdown of the MVB protein Rab27a attenuated HSV-1 infection [29,30]. This 

work was bolstered by the findings that HSV-1 hijacks a microvesicle-like body to transfer 

the virus to receptor-negative, neighboring cells. These HSV-1 particles were resistant to 

neutralizing antibodies and could package multiple virions into one body. Interestingly, these 

virus-filled vesicles contained markers of the autophagosome [31]. This phenomenon 

resembles poliovirus exiting through the autophagosome-mediated exit without lysing 

(AWOL) pathway [32].
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Studies on Epstein-Barr virus (EBV) have shown an intricate subversion of EV-signaling. 

The viral latent membrane protein 1 (LMP1) is a driver for the transformation of B-cells 

[33–35]. In a B-cell lymphoma, LMP1 is expressed during the latency-II and latency-III 

phases in germinal center B cells. LMP1 is incorporated into exosomes and delivered to non-

infected cells through LMP1’s association with CD63 and lipid rafts [36–39]. LMP1 is 

primarily expressed in the terminal type III latency, which has a mRNAseq profile distinct 

from transient latency-IIb phases [40]. Exosome-mediated export of LMP1 in an EBV-

transformed B-cell during latency-III to exert effects on non-infected cells or even receptor-

negative cells is supported by other findings in which EVs play a role in cancer metastasis 

(reviewed in [10]). In addition to LMP1, EBV transfers viral miRNAs through EVs. 

Lymphoblastoid cells express high concentrations of EBV BHRF1 and BART cluster viral 

miRNAs and are trafficked into an EV. EBV miRNAs could be transferred to naïve dendritic 

cells and act on their known cellular target mRNA [41].

Kaposi’s Sarcoma-associated herpesvirus (KSHV) is the causative agent of primary effusion 

lymphoma (PEL) and Kaposi’s Sarcoma (KS) [42–44]. Post-infection, the KSHV genome is 

maintained in a mostly transcriptionally quiescent state, but a handful of latent proteins and 

noncoding RNAs are expressed [45–47]. During latency, KSHV packages high 

concentrations of viral miRNAs into EVs from infected cells (KSHV-EVs) [9,48]. Delivery 

of KSHV-EVs reprograms recipient, non-infected endothelial cells transcriptionally, and 

alters their metabolic profile into a distinct, cancer-cell defining state termed the “Warburg 

state” or “Warburg effect” [7,8]. The Warburg effect, named after Otto Warburg, describes a 

cell with a metabolic state with largely glycolytic-based energy production as opposed to 

oxidative phosphorylation through the electron transport chain [49]. These metabolic and 

transcriptome shifts occur without the transfer of the virus itself. These alterations in cellular 

physiology by KSHV-EV do not activate innate immune sensors such as interferon 

regulatory factor 3 (IRF3), STING, and nuclear factor kappa b (NF-κB). In contrast, 

extracellular signal-regulated kinase (ERK) is activated by KSHV-EVs. Upon chronic 

exposure of naïve endothelial cells to KSHV-EVs, cells transition into a hyper-proliferative 

state, with Ki67 positive staining similar to that of a bona fide KS tumor. These complex 

reprogramming events occur during latency and infectious particle production is low [7]. 

Therefore, the detection of KSHV miRNAs in blood has been proposed as a biomarker for 

virus infection [8,9].

Retroviruses

The human immunodeficiency virus (HIV) emerged into the human population in the early 

20th century from spillover events of the simian immunodeficiency virus (SIV) [43,50,51]. 

HIV chronically infects T-lymphocytes and macrophages, depleting them over the course of 

years, ultimately leading to a collection of clinical symptoms referred to as AIDS.

The HIV-encoded Tat potently transactivates the viral genome and forms a positive feedback 

loop [52–54]. Early HIV transcripts are fully spliced, and encode for Tat, Rev, and Nef. In 

addition to Tat’s role at the HIV promoter, a portion of Tat is enriched on membranes 

through its interaction with phosphatidylinositol (4–5) bisphosphate (PI(4,5)P2) [55,56]. 

Tat’s membrane affinity is largely controlled by the first few amino acids of its RNA binding 
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domain (RBD). This particular domain of Tat has also doubled as a peptide transduction 

sequence, allowing for the cellular penetration of membrane-impermeable drugs [57,58]. 

The Tat-PI(4,5)P2 interaction has been proposed to allow for Tat to be exported from the cell 

via EV [59]. Experimentally, even particle-free Tat proteins and Tat-fusion moieties retain 

the ability to cross-target cell membranes and enter the cytosol directly.

In addition to Tat, the HIV-encoded 5’ RNA element TAR has also been found in EVs [60–

63]. TAR is transcribed at the HIV promoter by RNA Polymerase II, and Tat binds to the 

RNA with elongation factors with a remarkable affinity [64]. The finding of both Tat and 

TAR inside of EVs further highlights this unique RNA-protein binding couple. Interestingly, 

the delivery of Tat and/or TAR-enriched EV has been shown to activate HIV from resting 

CD4+T lymphocytes [65] and activate cellular migration/proliferation in an ERK-dependent 

manner [66].

Nef was identified as the first detectable viral protein expressed post-HIV-infection, yet the 

nef open reading frame is dispensable for in vitro growth [67,68]. Nef is nevertheless a 

critical driver for HIV and SIV disease progression in human and non-human primates, 

respectively [69–74]. Nef downregulates surface CD4 and MHC-I presumably to prevent 

super-infection of a cell and avoid immune detection [75–84]. A large fraction of Nef is 

secreted from cells through EVs in vivo. This is likely owed to its interactions with the 

endosomal recycling pathway [85,86] and its anchoring onto the inner leaflet of the plasma 

membrane [87–93]. The ability of this viral protein to be incorporated into EV is 

evolutionarily conserved between HIV and SIV. The Nef-EV can be uptaken by naïve CD4+ 

T cells and can induce their apoptosis [94], metabolic and lipid raft reorganization, and 

enhance HIV infection through inflammatory signaling [95]. Nef-EVs can also be uptaken 

by macrophages and endothelial cells which line the vasculature where Nef localizes to 

punctate intracellular structures [4,96]. Nef’s ability to interact with and/or modify lipid rafts 

may be the mechanism by which the viral protein is trafficked into EVs [96–98]. Both HIV 

and SIV Nef can be visualized in complex with CD81, a known lipid raft component, by 

super-resolution microscopy (Figure 2) [1,4]. This has lead to a model that Nef exerts 

pathogenic effects via EV, contributing to co-morbidities frequently associated with long-

term HIV infection and late stage AIDS. Supporting this hypothesis, Nef can be detected in 

EV during treatment with antiretroviral therapy (ART), which effectively abrogates virus 

production [4,93,99].

Hepatitis viruses

There are several taxonomically distinct hepatitis viruses that infect humans. Vaccinations 

exist for hepatitis A virus (HAV, a picornavirus) and hepatitis B virus (HBV, a 

hepadnavirus), and successful antiviral therapy regimens for hepatitis C virus (HCV, a 

flavivirus). Yet, these three viruses continue to infect millions of people worldwide each 

year. Other viruses cause viral hepatitis as well, but we will focus on HAV and HCV.

HAV belongs to the Picornaviridae family of viruses, which are positive-sense RNA viruses 

without an envelope [100,101]. However, early work showed that HAV exists on a spectrum 

of buoyancies, indicating interaction with lipid moieties [102]. It was later discovered that 
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HAV acquires a cellular envelope through the endosomal recycling pathway. This “quasi-

enveloped HAV” (eHAV) is resistant to neutralizing antibodies [103–106]. Uptaken HAV 

and eHAV are trafficked through the endosomal pathway, but eHAV ultimately goes to the 

lysosome where the envelope is degraded [107]. HAV represent the prominent species in 

feces, and source of person-to-person transmission whereas eHAV circulates in the 

bloodstream and liver. Other members of the Picornaviridae family have also shown the 

ability to acquire cell membranes despite being defined as “non-enveloped” viruses 

[108,109]. This envelope appears to be from the late endosome due to its enrichment in 

phosphatidylserine (PS) [9,110]. PS binds to TIM-family of receptors on the cell surface, 

notably TIM1 and TIM4, allowing for phagocytosis of apoptotic cells, EV, or a virion coated 

with PS [111–114]. Interestingly, CRISPR-mediated knockout of TIM1 reduced eHAV 

infection in Vero cells but was not essential for HAV or eHAV virus infection [115]. Instead, 

both HAV and eHAV appear to be uptaken through a β 1 integrin-mediated clathrin and 

dynamin endocytic processes [107], in addition to TIM1.

HCV is a unique member of the Flaviviridae family in that it is transmitted from human-to-

human, in contrast to other flaviviruses such as Dengue virus, West Nile virus, and Zika 

virus that are transmitted by arthropods [116,117]. Post-entry (see review [118]), the 

positive-strand viral RNA genome is sufficient to initiate an infection state in a susceptible 

cell. EV transfer of HCV RNA has been observed in hepatocytes, and virus constructs 

lacking functional structural (virion) proteins could traffic viral RNA into EVs and promote 

an infection state [119,120]. HCV RNA can be transferred to receptor-negative plasmacytoid 

dendritic cells, triggering IFN-α production [121]. This occurs through the ESCRT 

machinery proteins chromatin-modifying protein 4B (CHMP4B) and the tumor 

susceptibility gene 101 (TSG101) [122–124]. EVs from HCV-infected cells promote 

activation and fibrosis in hepatic stellate cells, which themselves cannot be infected with 

HCV. This phenomenon is believed to occur via the EV-mediated transfer of miR19a and 

miR192 from HCV-infected cells. These two miRNAs lead to higher levels of transforming 

growth factor β (TGF-β) signaling and activation of liver fibrosis [125,126].

Concluding Remarks

Extracellular signaling is paramount for organism homeostasis, and unsurprisingly viruses 

evolved to hijack this network. By manipulating EVs, viruses can establish a niche favorable 

for pathogen takeover without de novo infection or activation of innate immune cascades. 

Importantly, this can occur in receptor-negative cells. Additionally, the transfer of viral 

contents through EVs is mostly unaffected by neutralization by immunoglobulins (Figure 3). 

In many ways, EVs are akin to platelets, which unlike organs or cells, can be transplanted 

across HLA-mismatched individuals [127].

The phenomenon of reshaping the environment can occur during latency and antiviral 

treatment. For example, HIV and SIV Nef have been detected in EVs even during ART 

[4,99]. Nef-EVs may originate from leaky latent reservoirs expressing early HIV genes but 

not functional virions. Eradication of HIV latent reservoirs represent the single greatest 

hurdle towards a curative strategy for HIV, and Nef-EV may provide some utility as a 

biomarker for disease. Most strategies of HIV detection and quantitation rely on viral RNA 
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genome amplification or p24 detection, which are made in the context of full viral genome 

activation, and thus cells with leaky early gene expression can be missed. It has been 

proposed that both SIV and HIV latency is an intentional strategy by the virus to promote 

virus survival [128–130]. Current strategies of activating this latent reservoir to purge out 

SIV/HIV, particularly in resting CD4+ T lymphocytes, have seen a marked improvement in 

recent years [131–133]. Studies examining how EVs fit into HIV latency, curative strategies, 

and biomarkers for disease state seem warranted.

Given their ability to vehicle viral factors during latency, using EVs as biomarkers for 

infection has been explored [21]. For the oncogenic EBV and KSHV, viral genomes remain 

remarkably low during tissue transformation. This is in sharp contrast to viral miRNAs, 

which are robustly transcribed during latency. These miRNAs are trafficked into exosomes 

and are present at high concentrations in cultured cell supernatant and primary fluids [7–

9,41,47,48,122,134,135]. This is analogous to certain tumors that have a unique exosome 

RNA profile [136,137]. Therefore EVs can have clinical utility in the form of liquid biopsy.

While this review focused on chronically infecting viruses, there is considerable literature 

showing a dynamic relationship between EVs and acutely infecting viruses. In many of these 

cases, EVs play an integral anti-viral role. Examples of this include infection with influenza 

virus [138,139], dengue virus [140], zika virus [141], and hepatitis B virus (which can elicit 

both acute and chronic infection) [142]. Similar to examples listed in this review, these 

responses can be induced through the transfer of specific factors to a naïve cell. 

Comparisons and contrasts in the interplay between EVs and acutely and chronically 

infecting viruses will be of considerable interest in the coming years as our understanding of 

this signaling axis continues expanding.

Other viruses that elicit chronic infections utilize EV pathogenesis, and we were unable to 

cover these in the depth they deserve. Examples include CMV, HPV, and HTLV-1 

[15,20,143–147]. Evolutionarily distinct viruses converged to utilize EVs for the functional 

transfer of materials. This allows viruses to modify the local area of infection and avoid 

detection by the immune system and may play a previously underappreciated role in 

maintaining virus latency.
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Highlights

• Distinct viruses converged to usurp extracellular vesicle signaling.

• Extracellular vesicles transfer virus-encoded factors during latency.

• Extracellular vesicles can be used for biomarker detection.
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Figure 1. 
Virus infection alters the cargo of an extracellular vesicle (EV) in vivo. The virus-modified 

EV is used to establish a more favorable niche for pathogen takeover through the alterations 

of recipient cell physiology and signaling networks such as those listed.
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Figure 2. 
Super-resolution microscopy of SIV and HIV Nef with the EV marker CD81. A-C. 

dSTORM of a CD81-mCherry expressing cell transfected with HIV Neg-GFP (scale = 10 

μm). D-F. Zoomed in view of box in (C) (scale = 0.5 μm). G-I Further zoomed-in image of 

CD81-mCherry and HIV Nef-GFP co-localizing events (scale = 0.2 μm). J-L. Raw 

photoswitching events of -(G-I). M-X. Same as (A-L), but for SIV Nef-GFP.
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Figure 3. 
Virus-modified EV alter the physiology of naïve and non-infectable (receptor-negative) 

cells. Cells lacking receptors for specific viruses can still be targeted by viruses through the 

incorporation of virus-modified cargo into EV (colored in yellow) emanating from an 

infected cell. This allows the virus to reprogram cellular signaling, gene expression, and 

metabolic state without de novo infection.

McNamara and Dittmer Page 19

Curr Opin Virol. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Graphical abstract
	Introduction
	Herpesviruses
	Retroviruses
	Hepatitis viruses
	Concluding Remarks
	References
	Figure 1.
	Figure 2.
	Figure 3.

