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Abstract
This personal hybrid review piece, written in light of my recipience of the UIPAB 2020 young investigator award, contains a
mixture of my scientific biography and work so far. This paper is not intended to be a comprehensive review, but only to highlight
my contributions to computation-related aspects of super-resolution microscopy, as well as their origins and future directions.

Keywords Super resolutionmicroscopy . Point-spread function engineering . Single particle tracking . Deep learning

The past

In 2008–2013, I was a graduate student at the Technion –
Israel Institute of Technology. My research, under the super-
vision of Prof. Mordechai (Moti) Segev in collaboration with
Prof. Yonina Eldar, dealt with recovering seemingly lost in-
formation in optical signals, such as phase and high spatial
frequencies, by using the prior knowledge of signal sparsity
(Shechtman et al. 2010; 2014a, b; Szameit et al. 2012).
Towards the end of my studies, I took a class in 3D imaging,
where I learned something fascinating, that would change the
trajectory of my career: the point spread function (PSF) of an
imaging system can be manipulated wildly, such that a point
source no longer appears as a point at all—but rather as two
points, with an orientation that depends on the distance of the
source from the imaging system (Pavani et al. 2009) (Fig. 1). I
was immediately hooked by this elegant method to encode
depth information in a 2D image, and the simplicity of its
implementation: placing a phase mask in the back focal plane
of the imaging system. I asked the professor, Yoav Schechner,
whether this PSF was the optimal shape to encode 3D infor-
mation in a 2D image, not knowing at the time that this ques-
tion would occupy my mind for the next few years.

After my PhD, I decided to take a step towards applying
my optics and engineering background to biological prob-
lems, very broadly defined. I was fortunate enough to find a
perfect place for this ambition: W.E. Moerner’s group at
Stanford University. At Stanford, I started working on a beau-
tiful system for single-molecule measurements based on elec-
trokinetic trapping, known as the Anti-Brownian
ELectrokinetic trap (ABEL) trap (Cohen and Moerner 2005;
Squires et al. 2018; Wang and Moerner 2014). This is a sys-
tem that enables observation of single molecule kinetics in
solution over extended durations, by exerting force that ne-
gates their Brownian motion, keeping them trapped inside a
small observation region. My plan was to apply compressed
sensing (Candès 2006; Donoho 2006) to improve the photon
efficiency of the trap. Quickly, however, it became clear to me
that this system has been already engineered so well by pre-
vious groupmembers, that my contribution will bemarginal at
best, and not worth the precious postdoc time.

At the same time, I rekindled my interest in 3D imaging.
The Moerner lab pioneered the use of sophisticated PSFs for
3D single-molecule microscopy (Backer and Moerner 2014;
Backlund et al. 2012; Badieirostami et al. 2010; Pavani et al.
2009), namely, PSF engineering, and I became increasingly
motivated to find the optimal PSF for 3D imaging. To briefly
explain how PSF engineering works, a phase mask, e.g., an
etched dielectric material or a programmable liquid-crystal
spatial light modulator (SLM), is placed in the back focal
plane (the Fourier plane) of a microscope (Fig. 1a). This acts
as a phase filter for spatial frequencies, with the result being a
modification of the PSF of the microscope, which can encode
3D information in the 2D PSF shape. Figure 2 shows several
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examples PSFs modified to encode depth information.
Importantly, there is a mapping between the pattern on the
phase mask and the resulting PSF. The mathematical relation
is that the PSF is, to a good approximation, proportional to the
absolute value squared of the Fourier transform of the phase
pattern on the mask, multiplied by a depth-dependent defocus
term (Petrov et al. 2017).

Different phase masks generate different PSFs. Some of
these are useful for 3D imaging because they contain in-
formation on depth in their shape (Fig. 2), and some are
exactly the opposite, extended depth of field PSFs (Ben-
Eliezer et al. 2003; Dowski and Cathey 1995), where a
point source looks pretty much the same no matter how
defocused it is, within some axial range which is designed
to be larger than the depth of field of the system. The
question on my mind, therefore, was the one from my
graduate class: what would be the optimal phase pattern
to use in order to best encode the 3D position of a micro-
scopic point source? The first step towards answering this
question was to define it better.

Intuitively, a “good” 3D PSF is one that changes dra-
matically as a function of z, but also, importantly, does not
spread the photons too much, otherwise it will be buried in
the noise; namely, it should probably consist of some ar-
rangement of spots. But how do you define this mathemat-
ically? After testing several unsuccessful definitions, in the
sense that they led to no useful solutions (for example,
minimizing the inner products between PSFs at different
axial positions), I chose to focus on maximizing a mathe-
matical quantity known as Fisher information (Kay 1995),
which was shown earlier to be very valuable in single-

molecule localization microscopy (Badieirostami et al.
2010; Ober et al. 2004). This quantity determines the lower
bound on the variance of an estimated parameter from a set
of measurements, using any unbiased estimator. In our
case, this corresponds to a lower bound on localization
precision. Simply put a PSF with high Fisher information
is likely to exhibit better 3D localization precision.

We solved the optimization problem numerically, directing
the computer to seek a phase pattern that would yield a PSF
with maximal 3D Fisher information over a predetermined
axial range. The result is the saddle-point PSF (Shechtman
et al. 2014a, b) later extended to the tetrapod PSFs which
exhibit larger axial ranges (Shechtman et al. 2015) (Fig. 2 f–
h). Our 3D PSF optimization work was published in late
September 2014, and 12 days later, it was announced that
my advisor, W.E. Moerner, was awarded the Nobel prize in
Chemistry for his pioneering work in single-molecule mea-
surements. Overall, it was a good month.

Later, we realized it was also possible to encode color in
the shape of the PSF of single molecules (Shechtman et al.
2016), a concept also used by other groups (Broeken et al.
2014; Jesacher et al. 2014). This made it possible to simul-
taneously image or track in 3D multiple-colored fluores-
cent emitters on a single optical channel, with no spectral
filtering, and differentiate between them according to the
shapes of their PSFs.

The present

In September 2016, I returned to the Technion in Israel as a PI,
to start my lab in the department of Biomedical Engineering,
as part of the Technion’s interdisciplinary program. The main
mission of the lab is to develop optical and computational
tools to observe life on the nanoscale. Research at this unique
interface between engineering and the life sciences requires a
highly interdisciplinary mixture of expertise, and I was fortu-
nate to be able to assemble a team of excellent researchers
with backgrounds ranging from physics, chemistry, biology,
and engineering.

With the resurgence of machine learning and its amazing
utility in a variety of image processing challenges (Dong et al.
2016; Kim et al. 2016; Rivenson et al. 2017; Wang et al.
2015), it was obvious that deep learning would be useful for
solving difficult problems in super-resolution microscopy.
Some of these directions I immediately started pursuing via
a fruitful and ongoing collaboration with Tomer Michaeli
from the Technion’s electrical engineering department.

First, we focused on single-molecule localization micros-
copy (SMLM). In SMLM, its most notable variants being
(F)PALM and STORM (Betzig et al. 2006; Hess et al. 2006;
Rust et al. 2006), the goal is to generate an image at super-
resolution, namely beyond the resolution of the microscope,

Fig. 1 The double-helix PSF encodes depth in the shape of the 2D PSF.
Top: imaging setup consisting of an inverted microscope augmented by a
4F system with a phase mask (SLM) in the Fourier plane. Bottom: mea-
sured images of a fluorescent bead as it appears for different defocus
values. Adapted from (Pavani et al. 2009)
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by sequential localization of blinking fluorescent emitters.
Determining the position of a single fluorescent molecule
from its PSF can be done to a precision much better than the
size of the PSF, up to about an order of magnitude smaller, and
so, if the molecules are labeling a structure of interest, this
structure can be recovered computationally at a practical res-
olution of tens of nanometers (Hell et al. 2015).

One of the limitations of SMLM is that obtaining a single
image requires the acquisition of a movie with typically thou-
sands of frames, which limits the temporal imaging resolution
to be on the order of minutes. This is because, traditionally,

each frame must contain only a sparse subset of the emitters,
to make image analysis feasible. To improve temporal resolu-
tion, therefore, a necessary condition is to handle localization
of very densely spaced emitters, such that their PSFs overlap.
Consequently, manymethods have been developed to address
the problem of overlapping emitters in SMLM (Barsic et al.
2014; Cox et al. 2011; Dertinger et al. 2009; Gazagnes et al.
2017; Holden et al. 2011; Huang et al. 2011; Hugelier et al.
2016; Qu et al. 2004; Sergé et al. 2008; Solomon et al. 2018;
Zhu et al. 2012). Some of these methods can handle dense
emitters very well, however, at the cost of long computation
and a considerable amount of manual parameter tuning.

We developed a fast, precise, and parameter-free tool based
on deep learning for dense emitter localization in SMLM,
termed Deep-STORM(Nehme et al. 2018). The idea was to
train a neural net to output super-resolved images from a large
amount of simulated blinking movies. Advantageously, train-
ing on simulated data, with some adjustments using a small
quantity of experimental data to refine the imaging model
(Ferdman et al. 2020), proved to be possible. Also, since the
training data consists of randomly positioned emitters, it does
not use a priori structural information and is therefore inher-
ently robust to different sample types.

The problem of emitter overlap is, naturally, even worse for
3D localization with engineered PSFs, because they are larger
and therefore overlap even at lower densities. Therefore, we
extended our deep learning approach to engineered PSFs with
DeepSTORM3D (Nehme et al. 2020a, b). This is conceptual-
ly a more difficult task than 2D, because in 3D, different
emitters exhibit very different PSFs, depending on their
depths, whereas in 2D all emitter PSFs appear very similar.
In fact, no existing algorithm was capable of handling such
overlap of different PSFs; deep learning proved to be uniquely
powerful in solving this difficult inverse problem, producing
super-resolved 3D images of cellular structures from dense
blinking frames using engineered PSFs (Fig. 3a–b).

Importantly, in DeepSTORM3D, we addressed another
challenge that was unsolvable by standard approaches: how
to design the optimal 3D PSF for a high density of emitters.
While the Tetrapod (Fig. 2f–h) is optimal for localizing a
single point source, it is laterally large, and therefore would
cause severe overlap for multiple adjacent PSFs. It is reason-
able to think that a PSF with a smaller lateral footprint would
perform better for dense localization. But, how to find the
optimal PSF for dense localization? This is not an easy task
to solve with classical methods such as Fisher information
maximization, because that would require considering numer-
ous individual cases of spatial overlaps and emitter quantities.
Therefore, to engineer the optimal 3D PSF for dense localiza-
tion, we trained a neural net to jointly optimize the phase mask
alongside the image recovery part, by training on many in-
stances of randomly and densely positioned emitters. The
resulting PSF is shown in Fig. 3c. Interestingly, it exhibits

Fig. 2 Example of measured PSFs encoding depth in their shapes, shown as
a function of defocus; each PSF spans a different axial range. a Astigmatism
(0.8 μm) (Huang et al. 2008). b Phase ramp (1 μm) (Baddeley et al. 2011). c
Double-helix (3 μm) (Pavani et al. 2009). d Accelerating beam (3 μm) (Jia
et al. 2014). e Corkscrew (3 μm) (Lew et al. 2011). f Saddle point (3 μm)
(Shechtman et al. 2014a, b). g/hTetrapod (6/20μm) (Shechtman et al. 2015).
Scale bars (a, c,d, e, f, g,h): 0.5, 2, 1, 1, 1, 2, and 5μm. Figures adapted from
Von Diezmann et al. (2017)

1305Biophys Rev (2020) 12:1303–1309



some rotation as well as asymmetric axially dependent
spreading—known attributes of previously developed depth-
encoding PSFs.

We recently extended the DeepSTORM3D PSF design ap-
proach to a two-channel system (Nehme et al. 2020a, b),
which is advantageous at very high emitter densities—where
the two channels are synergistically used to encode comple-
mentary information. In a similar manner, we have also de-
rived the optimal multicolor PSF, namely, a wavelength-
dependent PSF, that optimally encodes the colors of point
emitters in a grayscale image (Hershko et al. 2019).
Nowadays, deep learning has become an extremely useful tool
in super-resolution microscopy, with a variety of applications
ranging from single-image super-resolution to depth imaging
(Belthangady and Royer 2019; Ouyang et al. 2018; Weigert
et al. 2018; Zhang et al. 2018), with ever-increasing accessi-
bility to non-expert end users (von Chamier et al. 2020).

A daunting challenge in 3D microscopy is that of limited
throughput; Obtaining a 3D image is typically more time-
consuming than obtaining a 2D image, especially when it
necessitates scanning. Notably, there are methods to image
objects at high rates—a particularly successful one is

imaging flow cytometry (Basiji et al. 2007; George et al.
2004; Kay et al. 1979; Kay and Wheeless 1976), where cells
are flowing in a microfluidic channel and are imaged as they
move through an illuminated region. This typically produces
a single 2D image per cell, although light sheet microscopy
and holography have been incorporated into image flow
cytometry (Dardikman et al. 2018; Gualda et al. 2017;
Sung et al. 2014; Wu et al. 2013). Recently, we combined
imaging flow cytometry with PSF engineering, to enable 3D
co-localization inside live cells at a very high throughput of
thousands of cells per minute. This was achieved by inte-
grating a phase-modulating element (we used both a cylin-
drical lens and a phase mask) inside the imaging path of a
commercial imaging flow cytometer (Weiss et al. 2020).
This encoding of depth information enabled gathering large
statistics about 3D co-localization over short periods of time.
We used our method to demonstrate the characterization of
physical distances between two labeled DNA loci in live
yeast cells, dynamically on a population scale, as well as
quantification of cellular entry of nanoparticles designed
for therapeutic delivery by Avi Schroeder at the Technion
(Fig. 4).

Fig. 3 DeepSTORM3D solves the 3D dense emitter localization using a
neural network. a Top: Example experimentally measured frame. Each
shape (PSF) is a single fluorescent molecule. Bottom: Rendered frame
from recovered emitters by the neural net. Scale bar: 5 μm. b Super-

resolved mitochondria image from thousands of frames. Color encodes
depth. Scale bar: 5 μm. cAn optimal phase mask (left) and PSF (right) for
dense emitters in 3D, learned by the neural net. Scale bar: 3 μm.
Figure adapted from Nehme et al. (2020b)
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Another application where deep learning has proved to be
powerful is extracting information from challenging single-
particle tracking data (Dosset et al. 2016; Granik et al. 2019;
Kowalek et al. 2019; Muñoz-Gil et al. 2020). A common prob-
lem in particle-tracking experiments is that the acquired trajecto-
ries can be very short, e.g., due to photobleaching, and therefore,
deriving statistical information from them can be difficult. In a
collaboration with Yael Roichman from Tel Aviv University, we
trained a neural net to classify single-particle trajectories by the
type of diffusion—Brownian, fractional Brownian, or continu-
ous time randomwalk (Granik et al. 2019). Amain advantage of
our deep learning approach is that it outputs an accurate classifi-
cation from a relatively small number of steps (~ 25) and can also
efficiently handle sets of multiple short trajectories—which is
often the only kind of available data.

The future

The field of computational microscopy, in which the captured
image need not bear any resemblance to the desired image,
holds tremendous potential for capturing seemingly hidden
data in biological samples. Freeing microscopes from the bur-
den of generating images that are appealing to the human eye
opens up fascinating degrees of freedom.

Specifically, neural nets successfully tackle various chal-
lenging inverse problems in microscopy, such as denoising,
clustering, volumetric imaging, and more (Belthangady and
Royer 2019). However, beyond their use in image analysis,
an extremely appealing application for neural nets is in optical
design, i.e., learning an optimal imaging system for a specific
task. This is especially powerful when the route towards opti-
mizing the design metric is unclear: How would one rationally
design an optimal depth-/color-encoding PSF for dense

emitters in 3D (Hershko et al. 2019; Nehme et al. 2020a, b),
or an optimal illumination system for diagnosing malaria in
blood smears (Muthumbi et al. 2019)? How does one achieve
fast and robust autofocusing (Pinkard et al. 2019)? These are
questions that neural nets are already answering, and they are
likely to continue to contribute to related areas.

Our research group will continue to pursue various direc-
tions in computational microscopy development, as well as to
apply existing techniques to possible bio-medical applications;
these include observing chromatin dynamics in live cells by
single-particle tracking (Nehme et al. 2020a, b), developing
diagnostic tools for bacterial growth detection (Ferdman et al.
2018), dynamic microscopic surface profiling (Gordon-Soffer
et al. 2020), and sensitive bio-molecule measurements.
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