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Abstract
Electromyography (EMG) is a technique for recording biomedical electrical signals obtained from the neuromuscular
activities. These signals are used to monitor medical abnormalities and activation levels, and also to analyze the
biomechanics of any animal movements. In this article, we provide a short review of EMG signal acquisition and processing
techniques. The average efficiency of capture of EMG signals with current technologies is around 70%. Once the signal is
captured, signal processing algorithms then determine the recognition accuracy, with which signals are decoded for their
corresponding purpose (e.g., moving robotic arm, speech recognition, gait analysis). The recognition accuracy can go as high
as 99.8%. The accuracy with which the EMG signal is decoded has already crossed 99%, and with improvements in deep
learning technology, there is a large scope for improvement in the design hardware that can efficiently capture EMG signals.

Keywords EMG · Electromyogram · sEMG

Introduction

The electrical activities generated by skeletal muscles repre-
sent the core EMG signal. EMG is used to read myoelectric
signals via electrical measurements. These myoelectric sig-
nals are generated from motor neurons which are a part
of the central nervous system (CNS). As EMG signals are
due to neuromuscular activity, they can be used to diag-
nose muscle injury, nerve damage, and muscle dysfunction
that happens due to neurological and muscular disorder.
EMG signals are used to gather simple statistics or can be
even used with advanced deep learning to control complex
robotic applications (Fig. 1a). Furthermore, in some cases,
EMG signals can be used for gait analysis and capturing
muscle movements. Figure 2b shows the basic temporal
characteristics of the EMG signal. The amplitude is the posi-
tive peak to negative peak voltage. Phase is the time duration
of the initial negative cycle. The rise time is defined as the
time interval between negative and positive peaks. There are
three turns in the EMG signal. The duration is defined as the
total time between two negative cycles. A satellite is a small
signal followed by the main EMG signal.
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There are two major types of electrodes used to measure
EMG signals—the needle electrode and the surface elec-
trode. Needle electrodes (Fig. 1c) are further classified into
three subtypes: mono-polar single electrodes, single-fiber
EMG electrodes, and concentric-EMG electrodes. Needle
electrodes are approximately 1 mm2 wide. Surface electrodes
(Fig. 1d) are 0.5–2.5-cm wide and due to their position-
ing are non-invasive (Merlo et al. 2003). Surface electrodes
work on the principle of chemical equilibrium detecting the
change between the muscle surface and body skin through
electrolytic conduction. Surface electrodes are of two types:
gelled EMG electrodes and dry EMG electrodes.

There are 3 main types of electrograms, viz. electroen-
cephalogram (EEG), electrocardiogram (ECG), and EMG.
The advantage of using EMG over ECG and EEG is that
ECG and EEG signals are below 100 Hz whereas EMG
signals cover the range from 5 Hz to 2 kHz. EMG signals
appear in different patterns and are difficult to understand.
In this review paper, we explain how the different types
of EMG signals are acquired and processed. This paper
will be useful for medical and engineering communities for
developing better diagnostics using EMG.

Speech recognition based on EMG signal

Many researchers have used EMG for speech recognition
(Fig. 1b). Achieved recognition rates lie between 68 and
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Fig. 1 Different EMG sensor electrode positions on the human body.
a EMG sensor placed on biceps to move prosthetic arm. b EMG signal
placed on the surface of human cheek for speech recognition c Needle

electrode. d Surface electrode. e A schematic representation for the
decomposition of the myoelectric signal (De Luca et al. 2006). It shows
how motor unit action potential trains (MUAPTs are generated)

97% with an average success rate of 85.4% (Jorgensen
et al. 2003). Recently, Meltzner et al. (2011) have developed
an innovative method of speech recognition using EMG
signals from the face. They used signal acquisition and
processing techniques (Hershler and Milner 1978) on
surface EMG (sEMG) (Khushaba et al. 2012). Traditionally,
microphones are used for speech recognition, but the

removal of surrounding noise is the major task. As an
alternative, EMG sensors can now be used for speech
recognition. People who can not speak can even convey
the message through a computerized voice using this EMG
method. They have achieved 92.1% accuracy. Figure 4a
shows different sEMG sensor locations. Sensors 1 and 2
shows submental neck, sensors 3 and 4 show ventromedial

Fig. 2 a EMG amplifier circuit with DC coupling. b Temporal characteristics of EMG signal. Different positions of fingers while the hand is on
the steering wheel, e.g., index finger open (c), index and middle finger open (d), the ring and little fingers open (e)
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Fig. 3 a Different positions on the face, where electrodes should be placed to acquire proper EMG signal. b Portable EMG reader. Multiple
MyoWare connected to Arduino and HC05 is used to transfer the data. c Face plate with electrodes for speech recognition. d MyoWare sensor

neck, sensors 5 and 6 show supralabial face position,
and infralabial face placement is indicated by 7 and 8.
Chan et al. (2001) have worked on the myoelectric signals
(Fig. 4c) to augment speech recognition (ASR) with an
accuracy of 93%. Jou et al. (2006) have worked on
articulatory feature classification using sEMG achieving an
accuracy of 68%. Lee (2008), in his research of EMG-based
speech recognition using hiddenMarkov models with global
control variables, achieved an accuracy of 87%.

Robotic applications based on EMG signal

EMG signals are often used as input in a lot of robotic
applications (Osu and Gomi 1999; Wang and Buchanan
2002). Khan et al. (2012) have developed a portable EMG
circuit for a prosthetic arm. This can be worn on both arms
wherever necessary. The portable EMG circuit has achieved
a high fidelity and excellent signal to noise ratio (Kiguchi
et al. 2004). Figure 2a shows the dc-coupled amplification
circuit that was employed by the group of Khan et al. It
used IC 121 with a gain of 417 to the signal that was
acquired from surface EMG electrodes. The input signal
is directly connected between pins 2 and 3 without any
coupling. Filtering capacitors and resistors are connected
between pin 1 and pin 8. C1 and C2 have a value of 100 μF
and the resistance (R) is 120 �. INA121 IC requires a 9-V
DC supply connected between pins 7 and 4. The output is
collected across pin 6 and reference pin 5. Samarawickrama
et al. have analyzed the sEMG w.r.t upper limb and flexion

angle (Samarawickrama et al. 2018). They used an INA128
amplifier and a UAF42 filter IC to classify the signals for the
operation of prosthetic limbs. Jamal (2012) described signal
acquisition using surface EMG (Nawab et al. 2010) and
circuit design considerations for robotic prosthesis (Zecca
et al. 2002). They explained all the different types of
electrodes used in EMG signal analysis and described how
to correctly place them to get an accurate EMG signal.
In further work, the following electrodes were explained
in detail—a needle electrode, a fine wire electrode, and a
surface EMG electrode (Wang et al. 2013).

Diagnostics applications based on EMG
signal

Pauk (2008) described different techniques for EMG signal
processing. In that work, functional evaluation of 20 patients
having spastic diplegia was carried out. Spastic diplegia
is a form of cerebral palsy (CP) that displays chronic
neuromuscular conditions of hypertonia and spasticity. The
demographic data received was studied carefully and a
raw EMG data was made. Witman et al. (2019) have
explained the methods to get EMG signals and analyze
it for finger movement. They used the MyoWare device
with an ATmega 329P microcontroller (Fig. 3d). Finger
movements were classified into 5 types and the acquired
signals were transmitted using Bluetooth. For classification,
they have used K-nearest neighbors (K-nn) method (Witman
et al. 2019). They achieved an accuracy of 99.1% for
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Fig. 4 a Block diagram of
EMG-based automatic speech
recognition (ASR) system. The
upper of block diagram shows
the offline (training) procedure.
The lower part of the block
diagram shows an online
(recognition) procedure. Various
arm positions: b wrist extension,
c wrist flexion, d hand open, e
hand close, f soft gripping, g
medium gripping, h hard
gripping

finger movement. Figure 4b shows how electrodes were
placed into the channel slots to ensure that they were fixed
properly and would not move. The Bluetooth connection
was used, for data transmission from EMG hardware, and
received using a computer. Di Nardo et al. (2014) developed
a statistical analysis tool for EMG signal acquired from
the tibialis anterior (TA) during gait. During acceleration,
deceleration, and changes in the direction, a pattern was
acquired. They found that about 20% of the total strides
were TA active using the EMG signal.

EMG signal acquisition and processing

Pancholi and Agarwal (2016) have developed a low-
cost EMG system for the acquisition of Arm Activities
Recognition (AAR). They found that about 80% of the
EMG signals were captured efficiently and the overall
accuracy for AAR was about 79%. The EMG data can be
collected from various upper limb actions, viz. HO (hand
open), HC (hand closed), WE (wrist extension), WF (wrist
flexion), SG (soft gripping), MG (medium gripping), and
HG (hard gripping) as shown in Fig. 4b–h. Reaz et al.
(2006) presented work on various obstacles (e.g., noise) that
can interrupt EMG signal acquisition. They also explained
means for their detection and means for classifying them
into various forms. Shiavi and Negin (1973) found that
about 1% of the detection of motor unit firing is difficult
to capture in EMG signals, especially with wearable
devices. Pizzolato et al. (2017) have compared multiple

EMG acquisition setups of hand movement achieving an
acquisition efficiency of 54%. Mambrito and De Luca
(1984, 1983) have described a system for acquiring,
processing, and also decomposing EMG signal to extract
as many motor unit action potential (MUAPs) as possible
with the accuracy of 99.8% (Fig. 1e). Khushaba et al. (2013)
have developed machine-muscle computer interfaces for
driver distraction reduction. In this work, they found the
word error rate to be 7%. They proved EMG signals are
used to analyze driver drowsiness and performance. The
way the driver keeps the fingers on steering reflects how
concentrated the driver is while driving. Figure 2c, d, and
e show different classifications of recorded finger pressure
(Myers et al. 2003).

These positions are typical driver’s finger positions
occurring when the driver’s hand is kept on the steering
wheel. Figure 2c shows the index finger open. Figure 2d
shows the index and middle fingers open and (e) shows the
ring and little fingers open.

Gijsberts et al. (2014) have developed novel methods for
recording movement error rate for the evaluation of machine
learning methods. These methods were tested on sEMG-
based hand movement signal classifications and it was
found that the effectiveness of signal capture was around
60% with the accuracy of signal recognition at about 82%.
Milosevic et al. (2017) presented work regarding challenges
related to design issues such as electrodes and complexity
relating to constraints of signal processing. They tested
EMG signal recognition with 3 datasets (viz. NINAPRO,
UNIBO, Cerebro). They recorded an accuracy of 76.3% for
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NINAPRO (all), 89.8% for NINAPRO (reduced), 88.9% for
UNIBO, and 89.2% for Cerebro.

Mukhopadhyay and Samui (2020) had an experimental
study based on the deep neural network in this work. They
showed EMG signal can be used for obtaining the classifi-
cation of a normal person from a person suffering from a
neuromuscular disorder. Phinyomark et al. (2020) described
the sEMG signal processing and pattern recognition tech-
niques. They even described the various challenges faced
in obtaining the signals. They classified EMGs into hands-
free control and hands-busy control signals. Furthermore,
their study involved different classification models and con-
cluded with future directions. Fang et al. (2020) described
the pattern recognition procedure and classification and
even explained the challenges, such as low data quality,
inadequate and undisclosed data, and discrete interpretation
of continuous movements, faced by the researchers. Finally,
their work concluded with analysis and future development
and rectification to be made. Laryngeal EMG is a technique
used to differentiate neurogenic from myogenic disorder.
Lin and Robinson (2020) described laryngeal electromyo-
graphy (LEMG) procedures and clinical applications; they
even added LEMG techniques, components, and interpreta-
tion of the signals.

Analysis and discussion

For the purposes of this review, we recorded the capture
efficiency, error rate, classification accuracy, type of
electrode and recognition accuracy of multiple published
papers (Khezri and Jahed 2007). Recognition accuracy
is defined as the ability to correctly classify (Güler and
Koçer 2005) the action by EMG signal decoding, while
EMG capture efficiency is defined by the ability to
accurately capture the EMG signals with respect to a
standard electromyogram. Per Table 1, we found that the
recognition accuracy ranges from 68 to 99.8%. For the
majority of recorded literature, we found that recognition
accuracy was more than 90%. Hence, there is a slight
scope for improvement in recognition accuracy. The capture
efficiency for EMG signals is considerably lower lying in
the range of 50 to 80%. Hence, there is a large scope of
improvement in designing proper EMG signal acquisition
hardware with minimal noise.

Design guidelines for EMG system

1. For portable EMG systems, MyoWare is the best sensor
available in the market. For accurate results, MyoWare
sensors are preferred over low-cost sensors. Filters

and rectifiers need to be added before amplification if
MyoWare is not used.

2. Needle electrodes give equivalent accuracy to the
surface electrodes; hence, the user should always go
for a surface electrode-type EMG reader. As needle
electrodes are invasive, the use of a surface electrode
avoids pain caused by needle insertion. Also, the chance
of contaminating blood due to needle insertion is also
avoided.

3. One can also take the EMG signals while bending the
finger to find the sensitivity of the system. But before
placing the sEMG on the surface of the skin, keep in
mind to remove the makeup properly with alcohol as
well as clean the recording site.

4. Speech recognition is both precise and convenient when
recorded by EMG for the deaf and dumb person. The
surface electrodes must be placed on the chin and cheek
of the person.

5. To acquire the EMG signal of limbs, the most suitable
place is to take the signal from the back muscle, i.e.,
behind the tibia bone. In case the electrodes cannot be
placed on the back muscle, then the next best location
is the shoulders.

6. Wearable EMG can even be used for the detection of
facial expressions. (The wearable part is placed from
the back of the head touching the skin on the cheeks.)

7. sEMG sensors placed on the body parts such as the
hips, elbows, and collar bones show more accurate
results.

8. To reduce the electrical noise from the surroundings,
keep the cable wires as short as possible.

Future directions

The sensitivity and quality of the EMG signal can be
improved by using high-density EMG. Even a single-
cell EMG signal detection would be possible in the near
future due to advancements in VLSI technology, so we
should be able to detect the fine movements rather than
taking signals from the entire muscle tissue. More advanced
algorithms and open-source databases with high data quality
and accuracy can be used to solve the problem of pattern
recognition, so that this attracts more researchers to join the
field of EMG signal analysis for human behavior studies
(Fang et al. 2020). Another problem to be solved is the
removal of surrounding noise during signal processing,
when the noise is large, i.e., low SNR, a visual inspection
can be used to acquire the signals initially. Whenever the
signal quantity is high, i.e., high SNR, the contaminants
cannot affect the readings, so that the amplifiers can be used
(Phinyomark et al. 2020).
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Table 1 Comparison of different EMG systems with respect to the efficiency of EMG capture, error rate, classification accuracy, type of electrode,
and accuracy of recognition

Recognition accuracy Capture efficiency Error rate Classification accuracy Type of electrode

Meltzner et al. (2011) 92.1 7.9 Surface

Gijsberts et al. (2014) 82 60 Surface

Atzori et al. (2013) 70

Chan et al. (2001) 93 7

Bett and Jorgensen (2005) 74 26

Jou et al. (2006) 68 32 Surface

Lee (2008) 87 13

Pizzolato et al. (2017) 54

Benatti et al. (2014) 89.2 10.8

Milosevic et al. (2017) 89.8 10.2

Shiavi and Negin (1973) 99

Mambrito and De Luca (1984) 99.8 0.2

Pancholi and Agarwal (2016) 78.85 80 Surface

Witman et al. (2019) 99.1 0.9

Khushaba et al. (2013) 93 7

Wang et al. (2013) 15.66

Phinyomark et al. (2020) 68 32 Below 90

Mukhopadhyay and Samui (2020) 6.52

Fang et al. (2020) 90.85 9.15 37.85

Giannoccaro et al. (2020) 80 20 Single-fiber needle

Aghaei-Lasboo et al. (2020) 90 Concentric needle

Conclusion

EMG signals are widely used in robotics to develop
prosthetic arms and legs. They are also widely used in
speech recognition. This literature review has demonstrated
that useful EMG signals can be read through non-invasive
surface electrodes; hence, it is highly recommended to use
surface electrodes over traditional needle electrodes. Noise
is still a big issue affecting the capture efficiency of the
EMG signal. However with proper filtering, the captured
signal can improve up to 40 dB. Machine learning and deep
learning approaches in EMG signal analysis represent the
next step that can take recognition accuracy more than 99%.
For EMG signals in medical analysis applications, athletes
and trainers can use EMG as a suitable feedback signal and
the level of coaching can be taken to a whole different level.
EMG is perhaps the most important and easy to capture
biomedical signal, and a lot of patients with a disability can
profit from its acquisition and recognition.
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