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Abstract
This review presents a modern perspective on dynamical systems in the context of current goals and open challenges. In
particular, our review focuses on the key challenges of discovering dynamics from data and finding data-driven representations
that make nonlinear systems amenable to linear analysis. We explore various challenges in modern dynamical systems, along
with emerging techniques in data science and machine learning to tackle them. The two chief challenges are (1) nonlinear
dynamics and (2) unknown or partially known dynamics. Machine learning is providing new and powerful techniques for both
challenges. Dimensionality reduction methods are used for projecting dynamical methods in reduced form, and these methods
perform computational efficiency on real-world data. Data-driven models drive to discover the governing equations and give
laws of physics. The identification of dynamical systems through deep learning techniques succeeds in inferring physical
systems. Machine learning provides advanced new and powerful algorithms for nonlinear dynamics. Advanced deep learning
methods like autoencoders, recurrent neural networks, convolutional neural networks, and reinforcement learning are used in
modeling of dynamical systems.
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Introduction

Dynamical systems provide a mathematical framework to de-
scribe the real-world problems, modeling the rich interactions
among quantities that change in time. Formally, dynamical
systems concern the analysis, prediction, and understanding
of the behavior of systems of differential equations or iterative
mappings that describe the evolution of the state of a system.
Data-driven models are an emerging field of simulating and
discovering dynamical systems purely from data using tech-
niques of machine learning and data science. We have an
explosion of data in climate science, neuroscience, disease
modeling, and fluid dynamics. The amount of data getting
from experiments, simulations, and historical records is grow-
ing at an incredible pace. Simultaneously, the algorithms in

machine learning, data science, and statistics optimization
techniques are getting much better. Therefore we can discover
dynamical systems and characterize them purely from data. In
the past, dynamical systems were essentially written down by
physical laws and derived the equations from first principles
using physics. But, today the systems that we want to under-
stand like the brain, climate, or financial market. There are no
first principles physics that we can write down in an easy to
understand simulate and control framework. Therefore, we are
trying to build data-driven techniques more powerful for these
emerging classes of problems.

Neural networks and deep learning are becoming extreme-
ly powerful techniques to learn these dynamics from data.
Genetic algorithms and genetic programming have been used
very effectively for discovering dynamic systems from data.
The high-level overview of these dynamical systems from
data can cope with nonlinearity, high-dimensional chaos. Lu
proposed a linear multistep (LM) scheme to bridge the deep
learning methods (Lu et al. 2018) with ordinary differential
equations. LM scheme is an effective architecture that can be
applied to ResNet like neural networks. The LM scheme on
ResNet achieved higher accuracy than ResNet on both
ImageNet and CIFAR. Rudy presented a data-driven model
of dynamical systems through DNN (Rudy et al. 2019a, b).
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This model estimates the signal-noise at every observation.
This algorithm is responsible for measuring errors and un-
known dynamics. The authors demonstrated the ability of this
data-driven model and issues with DNNs for dynamical sys-
tems. Harman put forward a reduced model of dynamics via
neural networks (Hartman and Mestha 2017). This model has
the benefit of projecting dynamical systems onto a nonlinear
space. This method is applied to extract nonlinear features
through DNNs.

Zhang proposed pre-classified reservoir computing tech-
niques (Zhang et al. 2021) to analyze the fault of 3D printers.
This method reduces the interclass separation by summing
information labels of similar conditions. Because of the reser-
voir computing model and pre-classification strategy, the pre-
sented method achieves the maximum accuracy in the fault
analysis of three-dimensional printers. Ibanez analyze the abil-
ity of data-driven approaches to predict the reactive extrusion
in complex processes (Ibañez et al. 2020). This work is carried
out based on thermo-set chase mixing steps with the polypro-
pylene phase. The goal of this paper is to characterize the
suitable processing conditions regarding the mechanical prop-
erty improvements of new polypropylene materials with the
help of reactive extrusion. Watson examined call detailed re-
cords from mobile networks (Watson et al. 2020) to charac-
terize and identify the spatial-temporal multi-scales patterns in
person mobility using spectral graph wavelets. This unsuper-
vised method allows the dimensional reduction of the data to
find mobility patterns and changes in humans. The mobility
patterns in humans afforded by spectral graph wavelets used
in urban planning and hazard risk management. Figure 1 vi-
sualizes the future direction of applied mathematics towards
deep learning techniques.

Dimensionality reduction methods

Singular value decomposition algorithms can be efficiently
applied for data processing, high-dimensional statistics, and
reduced-order modeling. SVD can be used to efficiently rep-
resent human faces, in the so-called eigenfaces. Principal
component analysis (PCA) is a workhorse algorithm in statis-
tics, where dominant correlation patterns are extracted from

high-dimensional data. San projected a feed-forward ANN for
nonlinear reduced-order models (San and Maulik 2018). This
research mainly focuses on the selection of basis functions
with the help of orthogonal decomposition and Fourier basis.
This model works better compared to Galerkin projection. Lee
proposed a new method for projecting complex dynamical
systems using deep learning (Lee and Carlberg 2020). This
method follows a practical approach based on convolutional
autoencoders. Erichson introduced a spare PCA algorithm via
variable projection (Erichson et al. 2020). The algorithm al-
lows for robust sparse PCA instead of corrupted input data and
performs computational efficiency on real-world data.
Erichson also put forward a new CANDECOMP/
PARAFAC dimensionality reduction (Benjamin Erichson
et al. 2020) for multidimensional data. This research talks
about approximation errors via oversampling. The challenges
posed to big data by extracting important features from mul-
tidimensional data. Suarez developed an open-source pyDML
(Juan Luis Suarez et al. 2020) that has a library of distance
metric learning algorithms. The pyDML is used to improve
nearest neighbor algorithms and dimensional reduction. This
library provides parameter tuning and visualization of classi-
fiers. Baek presented a multi-choice wavelet threshold algo-
rithm (Baek et al. 2020) based on perception, decision, and
cognition. The wavelet threshold SVMs (Rajendra et al. 2018)
and information complexity are incorporated to assess learn-
ing models. The authors used to evaluate the available data-
sets to illustrate the planned method and the results are com-
pared with recent methods. Wei aim to solve the noise of
internet information (Wei et al. 2020) and compares web
pages in natural language processing (NLP). Web-page visu-
alization has been implemented based on PCA. The result
shows that ML processing NLP algorithm has better perfor-
mance in prediction and classification accuracy. See Fig. 2 for
various dimensionality reduction methods used in the
literature.

Dynamic mode decomposition

The dynamic mode decomposition (DMD) is a new frame-
work to extract features from high-dimensional data. The
DMD is applied to complex systems in fluid dynamics, dis-
ease modeling, neuroscience, plasma physics, robotics, and
video modeling. Erichson introduced a compression DMD
model for modeling of background (Erichson et al. 2019a).
The compressed DMD algorithm is scaled with matrix rank
instead of the actual matrix. The result of DMD algorithm
proves that the background quantified by a recall, precision
which helps the algorithm’s computational performance.
Erichson also presented a randomized DMD algorithm
(Erichson et al. 2019b) for computing low-rank matrices and
eigenvalues. The algorithm takes about the modularFig. 1 Mathematics future on deep neural networks
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probability framework. This approach provides features to
extract from big data with the intrinsic rank of a matrix. Bai
used DMD for compressive system identification via the
Koopman operator (Bai et al. 2020). This operator is intro-
duced in 1931 but has experienced renewed interest recently
because of the increasing availability of measurement data and
advanced regression algorithms. This research allows us to
identify order-reduced models from limited data. The results
demonstrate the extraction of the main features that are well
characterized. Kaptanoglu developed a reduced-order model
of characterizingmagnetized plasmas with DMD (Kaptanoglu
et al. 2020). The magnetic features of simulation and experi-
mental data-sets are analyzed. This algorithm provides new
insights into the plasma structure. Fujii proposed a new algo-
rithm via multitask learning that incorporated information of
labels into supervised DMD (Fujii and Kawahara 2019). The
authors researched the empirical performance by utilizing syn-
thetic datasets and validated their algorithm that can extract
the label-specific structures. The supervised DMD method
shows enhanced accuracy compared to conventional DMD
methods. Vigneswaran presented a method to extract the fea-
tures using DMD (Rahul-Vigneswaran et al. 2019). ImageNet
data samples are used to perform experiments. The extracted
features using DMD with a random kitchen walk approach
performs better results. Brunton explored finite-dimensional
linear representation by restricting the Koopman operator and
investigated the choice of observable functions (Brunton et al.
2016a). Finally, the authors demonstrated the advantages of
nonlinear observable subspaces via Koopman operator. Yu
proposed a low-rank DMD model for the prediction of traffic
flow (Yu et al. 2020). The low-rank DMD predicts the traffic
flow via the state transmission matrix. The result shows that
the low-rank DMD performs better on modern methods.

Takeishix proposed a data-driven approach via “learning
Koopman invariant subspaces” principle from observed data
(Takeishix et al. 2017). The authors introduced ANN to eval-
uate the data-driven DMD performance using nonlinear dy-
namical systems and estimated a set of parametric functions.
See Fig. 3 for the accuracy of various dynamic mode decom-
position methods versus their training frequencies.

The discovery of governing partial differential
equations

The sparse regression method is capable of discovering PDEs
of a given system in the spatial domain by the time-series
measurements. Rudy introduced a data-driven sparse regres-
sion model that helps us to discover the governing PDEs of a
dynamical system (Rudy et al. 2017). The method is efficient-
ly demonstrated on canonical problems that span multiple
domains. This research promises to discover physical laws
and governing equations. Brunton explores forward deep
learning methods for discovering nonlinear PDE (Brunton
et al. 2016b). The authors considered noisy and scattered ob-
servations in time and space. The methodology helps us to
forecast future states of the physical system like Navier-
Stokes (Subba Rao et al. 2017; Rao et al. 2018),
Schrodinger, and Burger’s equation. Sirignano proposed a
DNN algorithm for solving high-dimensional nonlinear PDE
(Sirignano and Spiliopoulos 2018). The algorithm is mess-
free and DNN is trained with randomly sampled points in
space and time. The DNN algorithm is tested on Burger’s
equation and results are approximated to the general solution.
Raissi introduced a new DNN that is trained to solve
governing nonlinear PDE and gives laws of physics (Raissi
2018). The method is demonstrated through some classical
examples of physics problems. Long proposed a new DNN

Fig. 3 The classification accuracy of dynamic mode decomposition
(DMD) methods concerning training frequencies

Fig. 2 Dimensionality reduction methods
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called PDE-Net (Rudy et al. 2019a, b). The constraints of
PDE-Net are designed by exploiting wavelet theory. This
feed-forward PDE-Net is used to predict the dynamics of
physical systems and helps to identify the governing partial
differential equations.

Raissi leverages the advantages in probabilistic ML to dis-
cover governing differential equations (Raissi et al. 2017).
The modified Gaussian process priors help to infer parameters
from noisy observations. The noise observations come from
computer simulations and experiments. Raissi also presented
“hidden physics models” that learn PDEs from small data
(Raissi and Karniadakis 2018). The planned method is applied
to identify the data-driven discovery of PDEs. This method
relies on a Gaussian process that enables a balance between
data fitting and model complexity. Schaeffer investigated the
problem of learning PDE via sparse optimization and data-
driven approach (Schaeffer 2017). The authors implemented
a learning algorithm via sparse optimization to perform pa-
rameter estimation and feature selection and the result shows
the ability and capability of performing analytics. Chang in-
vestigated surface flow equations (Chang and Zhang 2019)
through ML technique of “Least absolute Shrinkage and
Selection Operator (LASSO).” The authors discussed the pro-
cedure to calculate differential from noise data. The planned
LASSO model gives a better outcome for learning equations
of surface flow. Berg used ML to discover hidden PDEs in
complex data-sets. The authors elaborately discussed the mod-
el and its feature selection (Berg and Nyström 2019). The
dynamics of second-order nonlinear PDE were accurately de-
scribed by an ODE that is automatically discovered. The flow-
chart in Fig. 4 explains the flow of discovery of governing
PDEs from available data.

Identification of nonlinear dynamical systems

The combined techniques of sparse regression, machine learn-
ing, and dynamical systems are used to identify nonlinear
PDE entirely from data. Mangan proposed data-driven
methods to infer neural networks by using sparse identifica-
tion of dynamical systems (Mangan et al. 2016). This method
succeeds in inferring the metabolic network, regularity net-
work, and enzyme kinetics. Wang proposed Runge-Kutta
DNN governed ODE for the identification of dynamical sys-
tems (Wang and Lin 1998). Runge-Kutta DNN estimates the
rate of the system state in high accuracy. The authors invested
two algorithms for Runge-Kutta DNN and proved the conver-
gence of learning algorithms. Mangan developed a methodol-
ogy for a model selection of dynamical systems (Mangan et al.
2019). This methodology is used for the identification of non-
linear dynamical systems (Rajendra et al. 2019a, b). The au-
thors demonstrated a mass-spring system and the infection’s
disease model. Li proposed data-driven methods for

identifying time-varying aerodynamics (Li et al. 2019).
Aerodynamic systems capture vortex-induced vibrations of a
prototype bridge. The simulations of vortex-induced vibra-
tions are in high accuracy with normalized MSE of 0.0023.
Josh introduced a method for nonlinear dynamical systems to
generate symbolic equations automatically (Bongard and
Lipson 2007). The proposed method is applied to nonlinear
dynamical systems and demonstrated on 4 simulated and 2
real systems. The model-free symbolic equations play a sig-
nificant role to know complex systems. Li’s nonlinear system
identification through “Proportional (P), Integral (I), and
Derivative (D)” neural networks simply called PID neural
networks (Li and Liu 2006). The weights in PID neural net-
works are in tune with the algorithm of backpropagation. The
authors demonstrated that the model gives a lesser amount of
fault and rapid convergence. Qiao proposed “a self-organizing
radial basis function (SORBF) ANN method” to recognize
and model the dynamical systems (Qiao and Han 2012). The
SORBF performance could be able to achieve through the
optimization of parameters. The authors presented the simu-
lation results and effectiveness of the SORBFmethod. Table 1
explains the regression results of some standard PDE
(Burgers, Schrodinger, and Navier-Stokes) identified structure
in Brunton’s PDE-FIND (Brunton et al. 2016b).

Fig. 4 Discovery of governing partial differential equations from
available data
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Machine learning of dynamical systems

Machine learning is currently being used to extract useful
patterns and coherent structures in high-dimensional dynam-
ics of complex systems. Weinan proposed a machine learning
algorithm via high-dimensional nonlinear dynamical systems
(Weinan 2017). The supervised learning algorithm is devel-
oped by consideration of regression problems. This paper con-
cludes that continuous dynamical systems are an alternative
way to develop machine learning techniques. Brunton pro-
posed the discovery of a multi-scale model for materials with
the help of data-driven methods (Brunton and Kutz 2019).
The authors developed a python-based program for sparse
identification of high-dimensional dynamical systems called
pySINDy. This research demonstrated how to use pySINDy
to simulate canonical dynamical systems and perform numer-
ical studies of nonlinear tracking control Regazzoni presented
a new data-driven method called “model order reduction”
based on machine learning that is applied to nonlinear dynam-
ical systems arising in ODE (Regazzoni et al. 2019). This
model formulates the dimensional reduction problem as a
probability of maximum likelihood to minimize errors in
input-output data pairs. Lee critically examined the main ad-
vantages of machine learning (Lee et al. 2018). The authors
particularly discussed RNN and its role in decision-making
and control problems. This paper also presented the advan-
tages and disadvantages of these methods for the field of en-
ergy and process systems engineering. Boots proposed an
online spectral algorithm that uses SVD to scale the partial
observable nonlinear complex dynamical systems (Boots
and Gordon 2011). The authors demonstrated a high band-
width video mapping and illustrated the behaviors of dynam-
ical systems. Wolfe presented the algorithms for learning the
predictive state representation model (Wolfe et al. 2005). The
Monte Carlo and temporal difference algorithms were devel-
oped to model dynamic systems. The performance and results
of these algorithms are compared with existing algorithms.
Song extended the Hilbert space embeddings and estimated

a kernel to handle conditional distributions (Song et al. 2009).
The authors presented a nonparametric method for dynamic
system models via conditional embedding and verified the
effectiveness of the model in a variety of dynamical systems.
Figure 5 visualizes two important problems of regression and
classification that arise in data-driven methods.

Deep learning of dynamics

Neural networks can be trained for use with dynamical sys-
tems, providing an efficient tool for time-stepping and fore-
casting (Rajendra et al. 2019a, b). Cireşan presented a method
of multi-column DNN for the classification of traffic sign
recognition (Cireşan et al. 2012). This research paper imple-
ments DNN fully on GPU and DNNs are trained on various
preprocessed data into MCDNN. This helps us to make the
system insensitive and improves reorganization performance.
Lusch presented a data-driven DNN method to discover
eigenfunctions of nonlinear identification of dynamical sys-
tems (Lusch et al. 2018). The author identifies nonlinear co-
ordinate transformation from data. The authors claim that the
benefit from DNN and the physical interpretability of univer-
sal linear Koopman embeddings. Wu proposed data-driven
dynamical models of deep NN that identify signal-noise de-
composition (Wu et al. 2018). The authors modeled an un-
known vector field with the help of DNN. The authors
discussed critical issues that identify signal-noise decomposi-
tion. The authors’ discussed the critical issues with the DNN
for nonlinear dynamical systems and demonstrated methods
showing the robustness to form the predictivemodels. Atencia
proposed a model for parametric estimation and dynamical
systems’ identification (Atencia et al. 2005) via the Hopfield
Neural Network (HNN). The put forward HNN gives less
error and is more efficient compared with gradient estimators.
Suzuki proposed a method to model dynamical systems via
point attractors (Suzuki et al. 2018). The model comprises
CNN autoencoder and time-scale RNN. The method applied

Table 1 The regression results of some standard PDE identified structure in Brunton’s PDE-FIND (Brunton et al. 2016b)

Partial differential equation(PDE) Form of PDE Approximate error (noise, no noise)

Korteweg–de Vries (KdV) zt + 6zzx + zxxx = 0 1%, 7%

Burgers Equation zt + zzx − ϵzxx = 0 0.15%, 0.8%

Schrodinger Equation izt þ 1
2 zxx−

x2

2 z ¼ 0 0.25%, 10%

Nonlinear Schrödinger equation(NLS) izt þ 1
2 zxx þ z2

�
�

�
�z ¼ 0 0.05%, 3%

Kuramoto–Sivashinsky (KS) equation zt + zzx + zxx + zxxxx = 0 1.3%, 52%

Reaction Diffusion Equation zt = 0.1∇2z + λ(A)z −ω(A)w
wt = 0.1∇2w + λ(A)w +ω(A)z
A2 = z2 + w2, ω = −βA2, λ = 1 −A2

0.02%, 3.8%

Navier-Stokes Equation zt þ u:∇ð Þ z ¼ 1
Re∇

2z 1%, 7%
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to manipulate the soft materials. The result depicts that the
robot could perform the job via sensor signals. Qin proposed
a scheme for approximating data-driven unknown governing
PDEs using DNN (Qin et al. 2019). The residual network,
recurrent residual neural network, and recursive residual neu-
ral network are demonstrated based on the integral form of
dynamical systems. The performances of these methods are
discussed in several examples. Table 2 gives the details of
DNNs and their associated ODE numerical methods.

CNN, RNN, and LSTM of dynamic models

The deep CNN is regularly used in image processing and
analysis. Weimer proposed a design configuration of DNN
architectures for feature extraction by sequential learning strat-
egies from huge data (Weimer et al. 2016). The developed
DNN algorithm automatically generates features in industrial
inspection. Trischler proposed a FFNN algorithm that can be
trained on datasets of nonlinear dynamical systems (Trischler
and D’Eleuterio 2016). Recast the FFNN as RNN that re-
places the original nonlinear dynamical systems. The authors
claim that the FFNN and RNN operate on continuous data.

The unified model MgNet developed (He and Xu 2019) that
depends on closed connections between multigrid (MG) and
CNN. The concept of data space and feature space is intro-
duced in convolutional neural networks. The result shows
better performance compared with other CNN existing
models. Chen put forward the ODE neural network (Chen
et al. 2018). The derivation of the hidden layer state is param-
eterized using the ODE-Net. This allows complete training of
ordinary differential equations within deep learning models
(See Table 3). Kumar planned a diagonal RNN method is
similar to the identification of nonlinear unknown dynamics
(Kumar et al. 2018). The authors developed a back propaga-
tion dynamic algorithm to tune the diagonal RNN model pa-
rameters. The method is compared with identification models
of radial base functions and feed-forward multilayer neural
networks. The diagonal RNN has performed better and ro-
bustly in dynamical systems. Zhang constructed a data-
driven ANN model (Zhang et al. 2019) by combining CNN
and LSTM for the prediction of unmanned surface vehicle roll
motion. CNN used the sensor data of the unmanned surface
vehicles to extract local time series and relevant features. The
planned model on real datasets outperformed compared with
other modern methods. Zhu presented an electrocardiogram

Fig. 5 Driven framework used to
develop machine learning
algorithms

Table 2 List of Deep Neural Networks, their associated Differential Equation Numerical schemes

Deep neural network Associated differential equation Numerical scheme

Residual neural network(ResNet) ∂u
∂t ¼ f uð Þ Euler’s forward

Deep PolyNet ∂u
∂t ¼ f uð Þ Euler’s backward

Ultra-DNN(FractalNet) ∂u
∂t ¼ f uð Þ Runga-Kutta(RK)

Reversible Residual Network(RevNet) Ẋ ¼ f ðẎ Þ and Ẏ ¼ f ðẊ Þ Euler’s forward
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generation with a generative adversarial network method re-
ferred to as BiLSTM-CNN (Zhu et al. 2019) by combining
LSTM and CNN. This model includes a generator that em-
ploys the BiLSTM network and a discriminator which is
based on CNN. The authors compared the recital of their
model through RNN-AE and RNN-VAE. The BiLSTM-
CNN model converges very fast and generates electrocardio-
gram data with high accuracy. Lechner designed a learning
model to train dynamical systems by gradient descent in the
domain of robotics (Lechner et al. 2020). The authors intro-
duced a regularization component for the improvement of
systems stability. The scheme evaluated simulated robotic ex-
periments and compared them with linear and nonlinear RNN
architectures. The method improves the performance of tests
to match the performance of nonlinear RNN.

Data-driven models of dynamical systems

The recent innovations in data-driven models for PDE sys-
tems have been highlighted by many re-searchers. Davoudi
proposed a vision-based inspection of data-driven models for
surface observations of concrete beams (Davoudia et al.
2018). The image dataset containing 862 has been included
in a database for reinforced concrete beams. A supervised ML
builds predictive models that are useful for estimating internal
shear and moment loads. The authors estimated the accuracy
of reinforced concrete beams. Suna provided a physics-
constrained deep neural network and developed a surrogate
model for fluid dynamics (Suna et al. 2020). This model is not
dependent on any simulation-based data and it shows good
results on the flow field in between deep learning and numer-
ical simulations. Wu presented a data-driven time-dependent
PDE framework in modal space using DNNs (Wu and Xiu
2020). The finite-dimensionalmodel is accomplished by train-
ing DNN based on ResNet using specified data. The predic-
tive accuracy of models for different PDEs including Burger’s
equation is presented to illustrate the error analysis and effec-
tiveness. Pai points out that the frequency-time study is appro-
priate for parameter and nonparametric of dynamical systems
(Frank Pai 2013). The Hilbert-Huang transform is the alliance
of Hilbert transform and mode decomposition chosen empir-
ically. The Hilbert-Huang transform provides piece decompo-
sition and precise time-frequency analysis compared with

Fourier and Wavelet transforms. The conjugate pair decom-
position is used for online frequency tracking. The planned
method could provide accurate identification of various non-
linear dynamical systems. Dsilva focuses on applying ma-
chine learning methods to spot components in a group of
multi-scale data (Dsilva et al. 2016). The authors presented
an approach to utilize local geometry and noise dynamics. The
analysis of data-driven reduction for multi-scale dynamical
systems recovers the underlying slow variables. Schulze pre-
sented a data-driven insight for dynamical systems with delay
(Schulze and Unger 2016). This approach is validated by dif-
ferent examples. The result shows that the need for preserving
the delay formation in the model of dynamical systems.
Giannakis developed a scheme for dynamic mode decompo-
sition (Giannakis 2019) and forecasting of ergodic unobserved
component modeling systems (Murthy et al. 2018; Narasimha
Murthy et al. 2019). This scheme is based on Perron-
Frobenius and Koopman groups on an orthogonal basis. The
authors established the connection between Laplace-Beltrami
and Koopman operators to provide an analysis of diffusion-
mapped coordinates for system dynamics. See in Figure 6 the
spiral function approximated with a neural ODE (Chen et al.
2018).

Fig. 6 A Neural ODE approximated the spiral function is better than
RNN (Chen et al. 2018)

Table 3 Performance on MNIST
shows test error (Chen et al. 2018) Test error Number of Params Memory Time

Multilayer perceptron 1.6% 0.2 M – –

Residual neural network 0.4% 0.6 M Order (L) Order (L)

RK-Net 0.5% 0.2 M Order (L) Order (L)

ODE-Net 0.4% 0.2 M Order (1) Order (L)
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Way forward

The amount of data generated from experiments, simulations,
and historical records is exponentially growing at an incredi-
ble pace. Simultaneously, the algorithms in deep learning and
data science are getting much better. Therefore, we character-
ize the dynamical systems purely from data. Deep learning
provides new and powerful algorithms like CNNs RNNs
and reinforcement learning is used in modeling of dynamical
systems. Data-driven methods are revolutionizing in science
and technology, and most of these methods are applicable to
model the complex dynamical systems. These formulation
models are facilitated in the future to encompass an incredible
range of phenomena, including those observed in classical
mechanical systems, electrical circuits, turbulent fluids, cli-
mate science, finance, ecology, social systems, neuroscience,
epidemiology, and nearly every other system that evolves in
time. In the future, these techniques will continue to gain
greater relevance, because there are investigations that are
working in the process of integrating data, which will allow
data of different types to be used and origins, allowing discov-
eries to be made about the relationships and interactions be-
tween the different dynamical systems.
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