Skip to main content
. 2020 Nov 22;12(6):1311–1320. doi: 10.1007/s12551-020-00776-4

Table 1.

The regression results of some standard PDE identified structure in Brunton’s PDE-FIND (Brunton et al. 2016b)

Partial differential equation(PDE) Form of PDE Approximate error (noise, no noise)
Korteweg–de Vries (KdV) zt + 6zzx + zxxx = 0 1%, 7%
Burgers Equation zt + zzx − ϵzxx = 0 0.15%, 0.8%
Schrodinger Equation izt+12zxxx22z=0 0.25%, 10%
Nonlinear Schrödinger equation(NLS) izt+12zxx+z2z=0 0.05%, 3%
Kuramoto–Sivashinsky (KS) equation zt + zzx + zxx + zxxxx = 0 1.3%, 52%
Reaction Diffusion Equation

zt = 0.1∇2z + λ(A)z − ω(A)w

wt = 0.1∇2w + λ(A)w + ω(A)z

A2 = z2 + w2, ω = − βA2, λ = 1 − A2

0.02%, 3.8%
Navier-Stokes Equation zt+u.z=1Re2z 1%, 7%