Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2020 Dec 23;59(2):164–174. doi: 10.1007/s12275-021-0551-8

Biophysical characterization of antibacterial compounds derived from pathogenic fungi Ganoderma boninense

Syahriel Abdullah 1,#, Yoon Sin Oh 2,#, Min-Kyu Kwak 2,, KhimPhin Chong 1,
PMCID: PMC7756191  PMID: 33355891

Abstract

There have been relatively few studies which support a link between Ganoderma boninense, a phytopathogenic fungus that is particularly cytotoxic and pathogenic to plant tissues and roots, and antimicrobial compounds. We previously observed that liquid-liquid extraction (LLE) using chloroformmethanol-water at a ratio (1:1:1) was superior at detecting antibacterial activities and significant quantities of antibacterial compounds. Herein, we demonstrate that antibacterial secondary metabolites are produced from G. boninense mycelia. Antibacterial compounds were monitored in concurrent biochemical and biophysical experiments. The combined methods included high performance thin-layer chromatography (HPTLC), gas chromatography-mass spectrometry (GC-MS), high-performance liquid chromatography (HPLC), fourier transform infrared (FTIR), and nuclear magnetic resonance (NMR) spectroscopy. The antibacterial compounds derived from mycelia with chloroform-methanol extraction through LLE were isolated via a gradient solvent elution system using HPTLC. The antibacterial activity of the isolated compounds was observed to be the most potent against Staphylococcus aureus ATCC 25923 and multidrug-resistant S. aureus NCTC 11939. GC-MS, HPLC, and FTIR analysis confirmed two antibacterial compounds, which were identified as 4,4,14α-trimethylcholestane (m/z = 414.75; lanostane, C30H54) and ergosta-5,7,22-trien-3β-ol (m/z = 396.65; ergosterol, C28H44O). With the aid of spectroscopic evaluations, ganoboninketal (m/z = 498.66, C30H42O6), which belongs to the 3,4-seco-27-norlanostane triterpene family, was additionally characterized by 2D-NMR analysis. Despite the lack of antibacterial potential exhibited by lanostane; both ergosterol and ganoboninketal displayed significant antibacterial activities against bacterial pathogens. Results provide evidence for the existence of bioactive compounds in the mycelia of the relatively unexplored phytopathogenic G. boninense, together with a robust method for estimating the corresponding potent antibacterial secondary metabolites.

Electronic Supplementary Material

Supplementary material is available for this article at 10.1007/s12275-021-0551-8 and is accessible for authorized users.

Keywords: antibacterial activity, disc diffusion assay, ergosterol, ganoboninketal, Ganoderma boninense, lanostane

Electronic Supplementary Material

12275_2021_551_MOESM1_ESM.pdf (511.8KB, pdf)

Supplementary material, approximately 511 KB.

Acknowledgments

This research was supported by the Ministry of Education of Malaysia (FRGS0384-SG-2/2014). Syahriel Abdullah and Yoon Sin Oh-Two contributed equally to this work and should be considered co-first authors.

Footnotes

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Conflict of Interest

The authors declare that there are no competing interests associated with the manuscript.

These authors contributed equally to this work.

Contributor Information

Min-Kyu Kwak, Email: genie6@eulji.ac.kr.

KhimPhin Chong, Email: chongkp@ums.edu.my.

References

  1. Abdullah S, Jang SE, Kwak MK, Chong KP. Ganoderma boninense mycelia for phytochemicals and secondary metabolites with antibacterial activity. J. Microbiol. 2020;58:1054–1064. doi: 10.1007/s12275-020-0208-z. [DOI] [PubMed] [Google Scholar]
  2. Abdullah S, Soon LY, Daim SJ, Chong KP. Isolation and characterization of antibacterial compounds from Ganoderma boninense against methicillin-resistant Staphylococcus aureus (MRSA) Borneo J. Med. Sci. 2018;1:11–12. [Google Scholar]
  3. Anke T. Basidiomycetes: a source for new bioactive secondary metabolites. Prog. Ind. Microbiol. 1989;27:51–66. [Google Scholar]
  4. Annegowda HV, Tan PY, Mordi MN, Ramanathan S, Hamdan MR, Sulaiman MH, Mansor SM. TLC-bioautography-guided isolation, HPTLC and GC-MS-assisted analysis of bioactives of Piper betle leaf extract obtained from various extraction techniques: in vitro evaluation of phenolic content, antioxidant and antimicrobial activities. Food Anal. Methods. 2013;6:715–726. doi: 10.1007/s12161-012-9470-y. [DOI] [Google Scholar]
  5. Ben Arfa A, Combes S, Preziosi-Belloy L, Gontard N, Chalier P. Antimicrobial activity of carvacrol related to its chemical structure. Lett. Appl. Microbiol. 2006;43:149–154. doi: 10.1111/j.1472-765X.2006.01938.x. [DOI] [PubMed] [Google Scholar]
  6. Bendini A, Cerretani L, Di Virgilio F, Belloni P, Bonoli-Carbognin M, Lercker G. Preliminary evaluation of the application of the FTIR spectroscopy to control the geographic origin and quality of virgin olive oils. J. Food Qual. 2007;30:424–437. doi: 10.1111/j.1745-4557.2007.00132.x. [DOI] [Google Scholar]
  7. Bhawani SA, Mohamad Ibrahim MN, Sulaiman O, Hashim R, Mohammad A, Hena S. Thin-layer chromatography of amino acids: a review. J. Liq. Chromatogr. Relat. Technol. 2012;35:1497–1516. doi: 10.1080/10826076.2011.619039. [DOI] [Google Scholar]
  8. Brannan DK. Biology of microbes. In: Geis PA, editor. Cosmetic Microbiology: A Practical Approach. 2nd edn. New York, USA: Taylor & Francis; 2006. pp. 19–69. [Google Scholar]
  9. Bucar F, Wube A, Schmid M. Natural product isolation-how to get from biological material to pure compounds. Nat. Prod. Rep. 2013;30:525–545. doi: 10.1039/c3np20106f. [DOI] [PubMed] [Google Scholar]
  10. Chong KP, Abdullah S, Tong-Leong N. Molecular fingerprint of Ganoderma spp. from Sabah, Malaysia. Int. J. Agric. Biol. 2013;15:1112–1118. [Google Scholar]
  11. Chong KP, Atong M, Rossall S. The role of syringic acid in the interaction between oil palm and Ganoderma boninense, the causal agent of basal stem rot. Plant Pathol. 2012;61:953–963. doi: 10.1111/j.1365-3059.2011.02577.x. [DOI] [Google Scholar]
  12. Chong KP, Eldaa PA, Dayou J. Relation of Ganoderma ergosterol content to Basal Stem Rot disease severity index. Adv. Environ. Biol. 2014;8:14–19. [Google Scholar]
  13. Chong KP, Rossall S, Atong M. HPLC Fingerprints and in vitro antimicrobial activity of syringic acid, caffeic acid and 4-hydroxybenzoic acid against Ganoderma boninense. J. Appl. Sci. 2011;11:2284–2291. doi: 10.3923/jas.2011.2284.2291. [DOI] [Google Scholar]
  14. CLSI, Clinical Laboratory Standards Institute . Performance standards for antimicrobial susceptibility testing; 21st informational supplement. CLSI document M100-S21. Wayne, Pennsylvania, USA: Clinical Laboratory Standards Institute; 2011. [Google Scholar]
  15. Coates J. Interpretation of infrared spectra, a practical approach. In: Meyers RA, McKelvy ML, editors. Encyclopedia of analytical chemistry: applications, theory and instrumentation. Hoboken, New Jersey, USA: John Wiley & Sons, Inc.; 2006. [Google Scholar]
  16. Corley R, Hereward V, Tinker PB. The oil palm. Hoboken, New Jersey, USA: John Wiley & Sons; 2008. [Google Scholar]
  17. Cui SF, Addla D, Zhou CH. Novel 3-aminothiazolquinolones: design, synthesis, bioactive evaluation, SARs, and preliminary antibacterial mechanism. J. Med. Chem. 2016;59:4488–4510. doi: 10.1021/acs.jmedchem.5b01678. [DOI] [PubMed] [Google Scholar]
  18. Daruliza KMA, Fernandez L, Jegathambigai R, Sasidharan S. Anti-Candida activity and brine shrimp toxicity assay of Ganoderma boninense. Eur. Rev. Med. Pharmacol. Sci. 2012;16:43–48. [PubMed] [Google Scholar]
  19. Desbois AP, Smith VJ. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol. 2010;85:1629–1642. doi: 10.1007/s00253-009-2355-3. [DOI] [PubMed] [Google Scholar]
  20. Gong T, Yan R, Kang J, Chen R. Chemical components of Ganoderma. In: Lin Z, Yang B, editors. Ganoderma and Health. Singapore: Springer; 2019. pp. 59–106. [Google Scholar]
  21. Ho YW, Nawawi A. Ganoderma boninense Pat. from based stem rot of oil palm [Elaeis guineensis] in Peninsular Malaysia. Pertanika. 1985;8:425–428. [Google Scholar]
  22. Ismail K, Abdullah S, Chong KP. Screening for potential antimicrobial compounds from Ganoderma boninense against selected food borne and skin disease pathogens. Int. J. Pharm. Pharm. Sci. 2014;6:771–774. [Google Scholar]
  23. Kavyanifard A, Ebrahimipour G, Ghasempour A. Structure characterization of a methylated ester biosurfactant produced by a newly isolated Dietzia cinnamea KA1. Microbiology. 2016;85:430–435. doi: 10.1134/S0026261716040111. [DOI] [Google Scholar]
  24. Kuroda M, Mimaki Y, Ori K, Sakagami H, Sashida Y. Steroidal glycosides from the bulbs of Ornithogalum thyrsoides. J. Nat. Prod. 2004;67:1690–1696. doi: 10.1021/np040108i. [DOI] [PubMed] [Google Scholar]
  25. Ma K, Li L, Bao L, He L, Sun C, Zhou B, Si S, Liu H. Six new 3, 4-seco-27-norlanostane triterpenes from the medicinal mushroom Ganoderma boninense and their antiplasmodial activity and agonistic activity to LXRβ. Tetrahedron. 2015;71:1808–814. doi: 10.1016/j.tet.2015.02.002. [DOI] [Google Scholar]
  26. Ma K, Ren J, Han J, Bao L, Li L, Yao Y, Sun C, Zhou B, Liu H. Ganoboninketals A-C, antiplasmodial 3, 4-seco-27-norlanostane triterpenes from Ganoderma boninense pat. J. Nat. Prod. 2014;77:1847–1852. doi: 10.1021/np5002863. [DOI] [PubMed] [Google Scholar]
  27. Mahrous EA, Farag MA. Two dimensional NMR spectroscopic approaches for exploring plant metabolome: a review. J. Adv. Res. 2015;6:3–15. doi: 10.1016/j.jare.2014.10.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Marshall A. Fourier, hadamard, and hilbert transforms in chemistry. New York, USA: Springer Science+Business Media; 2013. [Google Scholar]
  29. Marston A. Role of advances in chromatographic techniques in phytochemistry. Phytochemistry. 2007;68:2786–2798. doi: 10.1016/j.phytochem.2007.08.004. [DOI] [PubMed] [Google Scholar]
  30. Marston A, Hostettmann K. Biological and chemical evaluation of plant extracts and subsequent isolation strategy. In: Bohlin L, Bruhn JG, editors. Bioassay Methods in Natural Product Research and Drug Development. Dordrecht, Germany: Springer; 1999. pp. 67–80. [Google Scholar]
  31. Misra BB, Fahrmann JF, Grapov D. Review of emerging metabolomic tools and resources: 2015–2016. Electrophoresis. 2017;38:2257–2274. doi: 10.1002/elps.201700110. [DOI] [PubMed] [Google Scholar]
  32. Molinski TF. NMR of natural products at the ‘nanomole-scale’. Nat. Prod. Rep. 2010;27:321–329. doi: 10.1039/b920545b. [DOI] [PubMed] [Google Scholar]
  33. Ofodile LN, Uma N, Grayer RJ, Ogundipe OT, Simmonds MSJ. Antibacterial compounds from the mushroom Ganoderma colossum from Nigeria. Phytother. Res. 2012;26:748–751. doi: 10.1002/ptr.3598. [DOI] [PubMed] [Google Scholar]
  34. Ono M, Ochiai T, Yasuda S, Nishida Y, Tanaka T, Okawa M, Kinjo J, Yoshimitsu H, Nohara T. Five new nortriterpenoid glycosides from the bulbs of Scilla scilloides. Chem. Pharm. Bull. 2013;61:592–598. doi: 10.1248/cpb.c13-00116. [DOI] [PubMed] [Google Scholar]
  35. Ono M, Takatsu Y, Ochiai T, Yasuda S, Nishida Y, Tanaka T, Okawa M, Kinjo J, Yoshimitsu H, Nohara T. Two new nortriterpenoid glycosides and a new phenylpropanoid glycoside from the bulbs of Scilla scilloides. Chem. Pharm. Bull. 2012;60:1314–1319. doi: 10.1248/cpb.c12-00457. [DOI] [PubMed] [Google Scholar]
  36. Peng XR, Liu JQ, Wang CF, Li XY, Shu Y, Zhou L, Qiu MH. Hepatoprotective effects of triterpenoids from Ganoderma cochlear. J. Nat. Prod. 2014;77:737–743. doi: 10.1021/np400323u. [DOI] [PubMed] [Google Scholar]
  37. Rajani M, Ravishankara MN, Shrivastava N, Padh H. HPTLC-aided phytochemical fingerprinting analysis as a tool for evaluation of herbal drugs. A case study of Ushaq (ammoniacum gum) JPC-J. Planar Chromat. 2001;14:34–41. [Google Scholar]
  38. Rajauria G, Abu-Ghannam N. Isolation and partial characterization of bioactive fucoxanthin from Himanthalia elongata brown seaweed: a TLC-based approach. Int. J. Anal. Chem. 2013;2013:802573. doi: 10.1155/2013/802573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Richter C, Wittstein K, Kirk PM, Stadler M. An assessment of the taxonomy and chemotaxonomy of Ganoderma. Fungal Divers. 2015;71:1–15. doi: 10.1007/s13225-014-0313-6. [DOI] [Google Scholar]
  40. Ríos JL, Andújar I. Lanostanoids from fungi as potential medicinal agents. In: Mérillon JM, Ramawat K, editors. Fungal Metabolites. Cham, New York, USA: Springer; 2017. pp. 1–34. [Google Scholar]
  41. Sarker SD, Nahar L. An introduction to natural products isolation. Methods Mol. Biol. 2012;864:1–25. doi: 10.1007/978-1-61779-624-1_1. [DOI] [PubMed] [Google Scholar]
  42. Schlotterbeck G, Ceccarelli SM. LC-SPE-NMR-MS: a total analysis system for bioanalysis. Bioanalysis. 2009;1:549–559. doi: 10.4155/bio.09.50. [DOI] [PubMed] [Google Scholar]
  43. Schwan WR. Mushrooms: an untapped reservoir for nutraceutical antibacterial applications and antibacterial compounds. Curr. Top. Nutraceutical. Res. 2012;10:75–82. [Google Scholar]
  44. Seyd AH, Lanez T, Belfar ML. Modelling of yield and distribution coefficient in a liquid-liquid extraction: Effect of the concentration of ligand. Asian J. Chem. 2012;24:4511–4516. [Google Scholar]
  45. Sikkema J, De Bont JA, Poolman B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 1995;59:201–222. doi: 10.1128/mr.59.2.201-222.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Snyder LR, Kirkland JJ, Glajch JL. Practical HPLC method development. 2nd edn. Hoboken, New Jersey, USA: John Wiley & Sons, Inc.; 2012. [Google Scholar]
  47. Tomašič T, Katsamakas S, Hodnik Ž, Ilaš J, Brvar M, Solmajer T, Montalvão S, Tammela P, Banjanac M, Ergović G, et al. Discovery of 4, 5, 6, 7-tetrahydrobenzo [1, 2-d] thiazoles as novel DNA gyrase inhibitors targeting the ATP-binding site. J. Med. Chem. 2015;58:5501–5521. doi: 10.1021/acs.jmedchem.5b00489. [DOI] [PubMed] [Google Scholar]
  48. Valle DL, Puzon JJM, Cabrera EC, Rivera WL. Thin layer chromatography-bioautography and gas chromatographymass spectrometry of antimicrobial leaf extracts from Philippine Piper betle L. against multidrug-resistant bacteria. Evid. Based Complement. Alternat. Med. 2016;2016:4976791. doi: 10.1155/2016/4976791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Vetter I, Davis JL, Rash LD, Anangi R, Mobli M, Alewood PF, Lewis RJ, King GF. Venomics: a new paradigm for natural products-based drug discovery. Amino Acids. 2011;40:15–28. doi: 10.1007/s00726-010-0516-4. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

12275_2021_551_MOESM1_ESM.pdf (511.8KB, pdf)

Supplementary material, approximately 511 KB.


Articles from Journal of Microbiology (Seoul, Korea) are provided here courtesy of Nature Publishing Group

RESOURCES