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SUMMARY

Rhizoctonia solani is a soil-borne necrotrophic fungus that causes sheath blight in grasses. The basal resis-

tance of compatible interactions between R. solani and rice is known to be modulated by some WRKY tran-

scription factors (TFs). However, genes and defense responses involved in incompatible interaction with R.

solani remain unexplored, because no such interactions are known in any host plants. Recently, we demon-

strated that Bd3-1, an accession of the model grass Brachypodium distachyon, is resistant to R. solani and,

upon inoculation with the fungus, undergoes rapid induction of genes responsive to the phytohormone sali-

cylic acid (SA) that encode the WRKY TFs BdWRKY38 and BdWRKY44. Here, we show that endogenous SA

and these WRKY TFs positively regulate this accession-specific R. solani resistance. In contrast to a suscepti-

ble accession (Bd21), the infection process in the resistant accessions Bd3-1 and Tek-3 was suppressed at

early stages before the development of fungal biomass and infection machinery. A comparative transcrip-

tome analysis during pathogen infection revealed that putative WRKY-dependent defense genes were

induced faster in the resistant accessions than in Bd21. A gene regulatory network (GRN) analysis based on

the transcriptome dataset demonstrated that BdWRKY38 was a GRN hub connected to many target genes

specifically in resistant accessions, whereas BdWRKY44 was shared in the GRNs of all three accessions.

Moreover, overexpression of BdWRKY38 increased R. solani resistance in Bd21. Our findings demonstrate

that these resistant accessions can activate an incompatible host response to R. solani, and BdWRKY38 reg-

ulates this response by mediating SA signaling.

Keywords: Brachypodium distachyon, disease resistance, Rhizoctonia solani, salicylic acid, incompatible

interaction, sheath blight, transcriptome, WRKY.

INTRODUCTION

Rhizoctonia solani is a soil-borne necrotrophic fungus that

causes disease in various plant species, including the eco-

nomically important crops rice (Oryza sativa), wheat (Triti-

cum aestivum), barley (Hordeum vulgare), maize (Zea

mays), potato (Solanum tuberosum) and cotton (Gossyp-

ium hirsutum; Zheng et al., 2013; Okubara et al., 2014). In

particular, R. solani, which belongs to anastomosis group

AG-1 1A, is the causal agent of sheath blight, which can

devastate rice production in paddy fields. The primary
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inoculum of sheath blight is sclerotia, masses of hyphae

that can remain dormant in soil for years. During field

preparation and water management in paddy fields, the

sclerotia float and attach to rice leaf sheaths. At this point,

the sclerotia germinate and produce oval gray lesions.

Once the pathogen has colonized the entire rice plant, it

severely impairs plant growth and reduces yield. Because

yield losses due to sheath blight represent an estimated 8–
50% of total rice production in Asia annually (Okubara

et al., 2014), managing this pathogen has been a long-

standing challenge in rice production.

The phytohormone salicylic acid (SA) plays a central role

in plant immunity. The SA signaling pathway is involved in

various defense responses, such as the production of

antimicrobial molecules, defense gene expression and

hypersensitive responses during incompatible plant–patho-
gen interactions (Vlot et al., 2009). Recently, we demon-

strated that exogenous application of SA confers

resistance to R. solani in both rice and the small model

grass Brachypodium distachyon (Kouzai et al., 2018).

Transgenic rice plants overexpressing the bacterial

SA-degrading enzyme NahG were more susceptible than

wild-type plants to R. solani. Therefore, SA-dependent

immunity contributes to basal resistance against R. solani

in grasses. Because SA plays crucial roles in plant resis-

tance against both biotrophic and hemibiotrophic patho-

gens, these findings suggest that R. solani may have a

short biotrophic stage during early infection. This hypothe-

sis is supported by the observation that green-tissue-speci-

fic heterologous expression of Arabidopsis (Arabidopsis

thaliana) NPR1 (NONEXPRESSOR OF PATHOGENESIS-

RELATED 1), which encodes a master regulator of the SA

signaling pathway, enhances sheath blight resistance in a

susceptible rice cultivar without negatively affecting

growth and yield parameters (Molla et al., 2016).

Members of the plant-specific WRKY transcription factor

(TF) family regulate a variety of biological processes,

including immunity (Phukan et al., 2016). WRKY TFs are

characterized by the highly conserved DNA-binding WRKY

domain, which recognizes the W-box element (TTGAC/T)

in the promoter regions of target genes. To date, many

WRKY TFs have been identified and their functions eluci-

dated in various plant species. In Arabidopsis, AtWRKY70,

one of the best-characterized WRKY TFs in plants, con-

tributes to resistance against bacterial and fungal patho-

gens, including the necrotrophic fungus Botrytis cinerea (Li

et al., 2006; AbuQamar et al., 2006).

Among the WRKY TFs present in grass species, those

involved in disease resistance have been investigated

mainly in rice. OsWRKY13, OsWRKY22, OsWRKY31,

OsWRKY45, OsWRKY47, OsWRKY51, OsWRKY53,

OsWRKY67 and OsWRKY89 are positive regulators of dis-

ease resistance against the causal agents of rice blast

(Magnaporthe oryzae) and/or bacterial leaf blight

(Xanthomonas oryzae pv. oryzae, Xoo; Qiu et al., 2007;

Shimono et al., 2007; Wang et al., 2007; Zhang et al.,

2008; Abbruscato et al., 2012; Wei et al., 2013; Chujo

et al., 2014; Hwang et al., 2016; Liu et al., 2018). Knock-

out of OsWRKY22 and RNA interference (RNAi)-based

silencing of OsWRKY67 compromise resistance against

incompatible strains of M. oryzae and Xoo, suggesting

that the major roles of these WRKY TFs are to promote

disease resistance (R) protein-mediated defense

responses. OsWRKY47 is strongly induced during incom-

patible rice–M. oryzae interactions, and its overexpression

increases resistance to a compatible strain of M. oryzae.

By contrast, OsWRKY62 and OsWRKY76 negatively regu-

late disease resistance (Peng et al., 2008; Yokotani et al.,

2013; Liu et al., 2016). Overexpression of OsWRKY62 or

OsWRKY76 reduces resistance to both compatible and

incompatible strains of M. oryzae and Xoo, even though

these genes are upregulated in response to the patho-

gens. OsWRKY28 was also identified as a negative regu-

lator of resistance to a compatible strain of M. oryzae

(Chujo et al., 2013). Therefore, the WRKY TFs have diver-

sified functions in disease resistance, such that they can

positively or negatively regulate defense responses to

compatible and incompatible pathogens.

Genes and defense responses involved in incompatible

interactions with R. solani are largely unknown because no

such interactions have been observed in any host plant,

including rice (Hashiba, 1984). However, some WRKY TFs

have been shown to modulate defense responses during

compatible interactions with R. solani. In cotton,

GhWRKY27a and GhWRKY39-1 may be related to basal

resistance, because their heterologous expression in Nico-

tiana benthamiana alters resistance against compatible

strains of R. solani (Shi et al., 2014; Yan et al., 2015). In

rice, overexpression of OsWRKY4, OsWRKY13, OsWRKY30

and OsWRKY80 increases the R. solani resistance of sus-

ceptible cultivars (Peng et al., 2012, 2016; Wang et al.,

2015; John Lilly and Subramanian, 2019). However, we

established that two accessions of B. distachyon, Bd3-1

and Gaz-4, exhibit strong resistance to R. solani (i.e. acces-

sion-specific resistance). Bd3-1 showed upregulation of SA

marker genes encoding WRKY TFs within 5 h post-inocula-

tion (hpi), and Gaz-4 did so at 24 hpi. By contrast, another

B. distachyon accession, Bd21, is susceptible to R. solani

and did not show induction of the SA marker genes up to

48 hpi (Kouzai et al., 2018). These findings imply that the

accession-specific R. solani resistance in B. distachyon

populations is governed by R protein(s) that mediate

incompatible interactions.

A comparison of the defense responses to R. solani

among B. distachyon accessions would be helpful to clarify

the molecular mechanisms underlying incompatible plant–
R. solani interactions. In this study, we characterized acces-

sion-specific R. solani resistance, and established that
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BdWRKY38 positively regulates this disease resistance by

mediating the SA signaling pathway.

RESULTS

Endogenous SA and its downstream WRKY TFs contribute

to Rhizoctonia solani resistance in Brachipodium

distachyon Bd3-1

To investigate accession-specific R. solani resistance in B.

distachyon populations, we assessed the involvement of

endogenous SA and SA-inducible WRKY TFs using trans-

genic plants. In our previous study, we had demonstrated

that, in contrast to the susceptible accession Bd21, B. dis-

tachyon accession Bd3-1 exhibits strong resistance to R.

solani isolate MAFF305230 (Kouzai et al., 2018). Moreover,

Bd3-1 upregulates two SA-inducible WRKY genes,

WRKY45L1 and WRKY45L2 (Kouzai et al., 2016), within 5

hpi, and that this response is not observed in Bd21. In this

study, to examine whether endogenous SA is required for

this R. solani resistance, we produced transgenic Bd3-1

plants heterologously expressing the bacterial SA-degrad-

ing enzyme NahG (NahG-ox; Figure S1a), following a strat-

egy frequently used to produce SA-deficient plants in

various species (Abreu and Munn�e-Bosch, 2009). We found

that both endogenous SA levels and R. solani resistance

were significantly lower in the NahG-ox plants (T2 genera-

tion) than in wild-type Bd3-1 (Figures S2 and 1), indicating

that the accession-specific R. solani resistance in Bd3-1 is

SA dependent.

We next investigated the contribution of two SA-in-

ducible WRKY genes to this resistance. In the B. distachyon

Bd21 reference genome, 88 genes encoding putative

WRKY TFs are present, according to PlantTFDB. We named

these genes based on their chromosome location and posi-

tion from the 50 end (Data S1). According to this nomencla-

ture, WRKY45L1 and WRKY45L2, which we had previously

designated based on their sequence similarities to rice

OsWRKY45 (Kouzai et al., 2016), were renamed BdWRKY38

and BdWRKY44, respectively.

To investigate whether BdWRKY38 and BdWRKY44 con-

tribute to the accession-specific R. solani resistance, we

analyzed transgenic Bd3-1 plants, in which the expression

of BdWRKY38 and BdWRKY44 was suppressed by RNAi-

based gene silencing. We confirmed the reduced expres-

sion of both genes in the transgenic plants by quantitative

reverse transcription polymerase chain reaction (qRT-PCR;

Figure S1b,c) and obtained two independent knockdown

lines (T2 generation) for each gene, which we refer to as

BdWRKY38-kd and BdWRKY44-kd, respectively. After inoc-

ulation with R. solani, foliar symptoms and fungal biomass

in BdWRKY38-kd plants were greater than those in wild-

type Bd3-1 (Figure 1), which were comparable to those in

the susceptible accession Bd21 at 3 days post-inoculation

(dpi). BdWRKY44-kd plants also exhibited compromised R.

solani resistance, but the degree of decreased resistance

was approximately 10 times lower than that in BdWRKY38-

kd plants (Figure 1). Thus, BdWRKY38 plays a major role in

the accession-specific R. solani resistance in Bd3-1.

Rhizoctonia solani infection on Brachipodium distachyon

Bd3-1 and Tek-3 is arrested at an early time point

Next, we investigated the infection behavior of R. solani

on B. distachyon accessions through microscopic obser-

vation and fungal biomass quantification. In this study,

we used Bd3-1 and a newly identified resistant accession,

Tek-3, because they showed stable and relatively stronger

R. solani resistance compared with the previously identi-

fied resistant accession, Gaz-4 (Kouzai et al., 2018). At 3

dpi, the foliar symptoms were much less pronounced in

Bd3-1 and Tek-3 than in the susceptible accession Bd21

(Figure 2a). In Bd21 at 1 dpi, R. solani had expanded its

mycelia throughout the leaf surfaces, and branched

hyphae had started to develop specialized infection struc-

tures, called infection cushions, that are visually recogniz-

able as aggregates of convoluted hyphae (Figure 2b). By

contrast, in Bd3-1 and Tek-3 at 1 dpi, the mycelial density

was clearly lower than in Bd21, and aggregated hyphae-

forming infection cushions were barely detectable. Foliar

fungal biomass in Bd21 increased continuously after

inoculation, as demonstrated in our previous report (Kou-

zai et al., 2018), whereas in Bd3-1 and Tek-3 it increased

very little, remaining significantly lower at all tested time

points (Figure 2c). Thus, the progression of R. solani

infection in Bd3-1 and Tek-3 was largely arrested at an

early time point.

Brachipodium distachyon accessions recognize

Rhizoctonia solani within 8 h of infection

We next performed a time-series transcriptome analysis of

Bd21, Bd3-1 and Tek-3 during R. solani infection to investi-

gate and compare their defense responses. First, we sam-

pled the R. solani-inoculated leaves of each accession at

five time points, 0, 4, 8, 16 and 24 hpi, with three biological

replicates (Figure S3a). Then, an Illumina-based RNA

sequencing (RNA-seq) analysis was performed for the 45

samples, and the obtained reads were mapped to the Bd21

reference genome (Table S1).

To explore the datasets, we generated a principal com-

ponent analysis (PCA) plot and a correlation matrix heat-

map. The PCA plot indicated that PC1 clearly separated the

time-series data of each accession, and the data from par-

ticular accessions were further separated by PC2 and PC3

(Figure S3b). The correlation matrix heatmap represented

the pairwise Pearson correlation coefficients based on the

gene expression profiles of each sample, and indicated

that transcriptome responses changed substantially

between 8 and 16 hpi in all three accessions (Figure S3c).

These transcriptome overviews suggest that each

© 2020 The Authors.
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accession recognized R. solani infection at between 4 and

8 hpi in our experimental conditions.

Both resistant and susceptible accessions change

expression of a similar set of genes during Rhizoctonia

solani infection

To identify B. distachyon genes that are differentially

expressed after R. solani inoculation in both susceptible

and resistant accessions, we examined dynamically

expressed genes (DYGs; Levin et al., 2016) using our tran-

scriptome datasets. In this study, we defined DYGs as fol-

lows: genes with minimum reads per million mapped

reads (RPM) ≥ 5, and a fold change during the time course

(maximum RPM/ minimum RPM) ≥ 2. We identified 4111,

3451 and 3608 genes as DYGs in Bd21, Bd3-1 and Tek-3,

respectively (Figure 3a; Data S2–S4). This indicated that

approximately 10% of B. distachyon genes were signifi-

cantly responsive to R. solani infection in our experimental

conditions. We then identified the DYGs that were shared

across all three accessions, and determined that 83.2% and

78.1% of the DYGs in Bd3-1 and Tek-3 overlapped with

those in Bd21 (Figure 3b). Thus, a similar set of genes was

responsive to R. solani infection in B. distachyon acces-

sions regardless of their level of resistance to the patho-

gen.

Resistant accessions rapidly induce putative WRKY-

dependent defense genes upon inoculation with

Rhizoctonia solani

To test the hypothesis that the timing of defense gene

expression is associated with R. solani resistance in Bd3-1

and Tek-3, we analyzed the expression patterns of DYGs

across Bd21, Bd3-1 and Tek-3. DYGs in each accession

were divided into six clusters by k-means clustering based

on the time-series gene expression data (Figure 4a; Data

S2–S4). We computed a gap statistic to assess the num-

bers of clusters and the goodness of clustering, and visual-

ized the DYG expression patterns as heatmaps (Figure 4b).

Figure 1. Disease resistance to Rhizoctonia solani

in BdWRKY38-kd, BdWRKY44-kd and NahG-ox

plants.

BdWRKY38-kd (knockdown), BdWRKY44-kd and

NahG-ox plants [the latter overexpressing the sali-

cylic acid (SA)-degradation protein NahG] were pro-

duced in a Brachipodium distachyon Bd3-1

background.

(a) Lesion formation caused by R. solani on

detached leaves of the three genotypes, along with

resistant Bd3-1 and susceptible Bd21 wild-type

(WT) plants, at 3 days post inoculation (dpi).

(b) Relative biomass of R. solani in detached leaves

at 3 dpi. Data are presented as means � SEM of

values relative to wild-type Bd3-1; ***P < 0.001,

n = 4, using Student’s t-tests. These experiments

were performed three times using the transgenic

plants at T2 generation, and a representative result

is presented.

© 2020 The Authors.
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These heatmaps clearly illustrated time-series transitions

in gene expression, whereby all three accessions clearly

switched their sets of abundantly expressed genes at 8 hpi.

These data were consistent with those in the correlation

matrix heatmap (Figure S3c).

To determine the timing of defense gene upregulation,

we performed a gene ontology (GO) enrichment analysis

for each cluster of DYGs (Data S5). From the over-repre-

sented GO terms, we selected defense-associated terms

using semantic-similarity-based clustering (Figure S4) and

examined their patterns of enrichment. In Bd3-1 and Tek-3,

defense-associated GO terms were significantly enriched

in clusters 3 and 4, which are composed of DYGs abun-

dantly expressed at 8 and 16 hpi. In Bd21, such GO terms

were enriched at later stages, including clusters 5 and 6,

which are composed of DYGs abundantly expressed at 16

and 24 hpi (Figure 5a).

To explore the TFs that potentially regulate the induction

of defense genes after R. solani inoculation, we investi-

gated the expression timing of genes encoding particular

Figure 2. Infection process of Rhizoctonia solani in

Brachipodium distachyon accessions.

The R. solani infection process was investigated

using the B. distachyon accessions Bd21, Bd3-1 and

Tek-3.

(a) Lesion formation due to R. solani on detached

leaves at 3 days post inoculation (dpi).

(b) Hyphal growth of R. solani on detached leaf sur-

faces. The inoculated leaves were collected at 1 dpi

and the hyphae were stained with trypan blue.

Scale bars: 200 lm.

(c) Relative biomass of R. solani in detached leaves

at the indicated time points. Inset shows the data

from 20 h post-inoculation (hpi) on an expanded

scale. Data are presented as means � SEM of val-

ues relative to Bd21 at 20 hpi; *P < 0.05, **P < 0.01,

***P < 0.001, n = 4, using Student’s t-tests. These

experiments were performed three times, and a

representative result is presented.

Figure 3. Dynamically expressed genes (DYGs) in Brachipodium distachyon after inoculation with Rhizoctonia solani.

(a) The numbers of DYGs in Bd21 (black), Bd3-1 (blue) and Tek-3 (red). DYGs: genes with minimum RPM ≥ 5 and a fold change during the time course (maxi-

mum RPM/minimum RPM) ≥ 2. Constitutive high: genes with minimum RPM ≥ 5 and a fold change < 2. Constitutive low: genes with maximum RPM < 5.

(b) Proportional Venn diagram showing the overlap of DYGs identified from each accession.

© 2020 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd,
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TFs, which often include regulatory factors involved in

plant immunity, such as AP2/ERF, bHLH, bZIP, MYB, NAC

and WRKY (Tsuda and Somssich, 2015). We assessed

expression timing through an enrichment analysis based

on hypergeometric tests, and established that the enrich-

ment patterns of WRKY genes were clearly correlated with

the enrichment patterns of defense genes in each acces-

sion (Figure 5b). In resistant accessions, WRKY genes were

over-represented among the DYGs from clusters 3, 4 and

6, whereas in Bd21 they were over-represented among the

DYGs from clusters 5 and 6. We also examined the enrich-

ment patterns of genes containing the W-box (TTGAC/T) in

their promoter regions (1 kb upstream of the open reading

frame [ORF]), because the W-box is the cognate cis-regula-

tory element for WRKY TFs (Phukan et al., 2016). As

expected, the enrichment patterns of W-box genes corre-

sponded to those of defense genes in each accession, and

the patterns also differed between resistant and suscepti-

ble accessions (Figure 5b). These results strongly suggest

that B. distachyon defense responses to R. solani are pri-

marily regulated by WRKY TFs, and they are activated fas-

ter in the resistant accessions Bd3-1 and Tek-3 than in the

susceptible accession Bd21.

BdWRKY38 consists of a hub specifically in the gene

regulatory networks (GRNs) of resistant accessions

To further characterize the differences in defense

responses to R. solani between the resistant and suscepti-

ble accessions, we performed a GRN analysis in Bd3-1,

Tek-3 and Bd21 by setting the DYGs encoding WRKY TFs

as potential regulators. GRNs in each accession were

inferred from the time-series gene expression datasets of

DYGs using a machine learning-based algorithm, followed

by computations of node degrees and betweenness cen-

tralities of WRKY genes (Figures S5–S7). In this study, we

defined the WRKY genes constituting hubs in GRNs as fol-

lows: betweenness centrality > 0.01 and potential target

genes > 5.

The GRNs in Bd21, Bd3-1 and Tek-3 were composed of

496, 692 and 532 nodes with 10, 8 and 16 hub WRKY

genes, respectively. In total, 20 WRKY genes were identi-

fied as GRN hubs (Figure 6a; Table S2). Among them,

eight WRKY genes were hubs in both susceptible and

resistant accessions, and four of these: BdWRKY5,

BdWRKY11, BdWRKY44 and BdWRKY76, were shared in

the GRNs of all three accessions. Two WRKY genes,

Figure 4. Expression patterns of dynamically expressed genes (DYGs).

(a) Time-series expression levels of DYGs in each cluster. DYGs were subdivided into six clusters based on k-means clustering of their Z-score-transformed

time-series expression levels in each accession. The expression levels in a particular cluster of each accession were averaged and are presented as line graphs.

(b) Expression patterns of DYGs. Z-score-transformed time-series expression data of DYGs are visualized by heatmaps in each accession. Yellow indicates posi-

tive values; blue indicates negative values; and black indicates zero.

© 2020 The Authors.
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BdWRKY21 and BdWRKY50, were hubs specifically in the

GRN of Bd21. Ten WRKY genes were hubs in the GRNs of

the resistant accessions, and two of these, BdWRKY36 and

BdWRKY38, were shared between Bd3-1 and Tek-3. Among

the remainder, BdWRKY25 was specific to Bd3-1, and the

remaining seven WRKY genes were specific to Tek-3.

We next investigated the SA responsiveness of these 20

hub WRKY genes using our previously reported transcrip-

tome dataset (Kouzai et al., 2018), based on the knowledge

that endogenous SA contributes to both basal and acces-

sion-specific resistance to R. solani (Figure 1). We estab-

lished that BdWRKY36, BdWRKY38, BdWRKY44 and

BdWRKY76 were SA-responsive (Figure 6b). In Bd3-1 and

Tek-3, BdWRKY38, BdWRKY44 and BdWRKY76 were

upregulated within 8 hpi (Figure 6a), whereas BdWRKY36

was upregulated at 16 hpi. In Bd21, only two WRKY genes,

BdWRKY44 and BdWRKY76, were identified as hubs and

upregulated at 16 and 24 hpi, respectively (Figure 6a).

These results suggest that BdWRKY38 is a major modula-

tor of the SA signaling pathway required for accession-

specific R. solani resistance in B. distachyon.

Overexpression of BdWRKY38 confers Rhizoctonia solani

resistance to Brachipodium distachyon Bd21

To further investigate the function of BdWRKY38 in R.

solani resistance, we generated transgenic plants overex-

pressing BdWRKY38 (BdWRKY38-ox) in the Bd21 (suscepti-

ble) background and obtained six transgenic lines (T1

generation) strongly expressing BdWRKY38 (Figure 7a). To

analyze transcriptome changes in BdWRKY38-ox plants,

we performed a 30 mRNA-seq-based transcriptome analy-

sis (Table S3), in which we identified 1164 differentially

expressed genes (DEGs) between BdWRKY38-ox and wild-

type Bd21. From the GRNs of Bd3-1 and Tek-3 during R.

solani infection, we identified a total of 180 genes that

were potential targets of BdWRKY38. Of these, 118 genes

were expressed (read counts > 50) at steady-state in both

BdWRKY38-ox and Bd21. A Venn diagram showed that 24

(20%) of these potential target genes were among the 1164

identified DEGs (Figure 7b; Table S4), suggesting that

BdWRKY38 regulates the expression of a portion of the

potential target genes in the GRNs at steady-state. Through

Figure 5. Timing of the expression of genes and

transcription factors (TFs) associated with defense

responses.

(a) Enrichment patterns of gene ontology (GO)

terms associated with defense and stress

responses. Heatmaps represent the P-values of

over-represented GO terms in each subdivided clus-

ter. The green gradient color scale indicates the

�log10-transformed P-value, and white indicates P-

values ≥ 0.001.

(b) Enrichment patterns of TFs and W-box ele-

ments. Heatmaps represent the P-values of over-

represented TFs and the W-box elements in each

cluster. Blue indicates P-values < 0.01; sky blue indi-

cates P-values ≥ 0.01 and < 0.05; and white indicates

P-values ≥ 0.05.
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Figure 6. Transcriptional responses of hub WRKY

genes to Rhizoctonia solani infection and salicylic

acid (SA) treatment.

(a) The heatmap represents Z-score-transformed

time-series expression levels of the WRKY genes

constituting hubs in the gene regulatory networks

(GRNs) of each accession. Yellow indicates positive

values, blue indicates negative values, and black

indicates zero.

(b) SA responsiveness of the hub WRKY genes

were visualized by a heatmap. The blue-red color

scale indicates log-transformed fold changes after

0.5 mM SA treatment in Bd21, based on data

retrieved from our previous transcriptome dataset

(Kouzai et al., 2018).

Figure 7. Transcriptional profiling and disease

resistance to Rhizoctonia solani in BdWRKY38-ox

plants.

BdWRKY38-ox (BdWRKY38-overexpressing) plants

were produced in a Brachipodium distachyon Bd21

background.

(a) Expression levels of BdWRKY38 were confirmed

by quantitative reverse transcription polymerase

chain reaction (qRT-PCR) in BdWRKY38-ox and

wild-type Bd21. Data are presented as

means � SEM of log2-transformed expression val-

ues relative to wild-type Bd21; **P < 0.01,

***P < 0.001, n = 4, using Student’s t-tests. The

BdUbi4 gene was used for normalization.

(b) Proportional Venn diagram showing the overlap

in the potential target genes of BdWRKY38 inferred

from the gene regulatory network (GRN) analysis

and the genes differentially expressed in

BdWRKY38-ox plants.

(c) Lesion formation caused by R. solani on

detached leaves at 3 days post inoculation (dpi).

(d) Relative biomass of R. solani in detached leaves

at 3 dpi. Data are presented as means � SEM of

values relative to wild-type Bd21. Different letters

above the bars indicate significant differences at

P < 0.05, n = 5, using Tukey’s test. These experi-

ments were performed twice, with similar results

using transgenic plants from the T1 generation, and

representative results are shown.
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the transcriptome analysis, we established that BdWRKY44

and BdWRKY76, the other SA-inducible hub WRKY genes

that were potential targets of BdWRKY38 in the GRNs,

were also among DEGs upregulated in BdWRKY38-ox

plants (Table S4).

We also evaluated R. solani resistance in BdWRKY38-ox

plants. At 3 dpi, foliar symptoms on the BdWRKY38-ox

plants (T1 generation) were relatively weaker than in wild-

type Bd21 but stronger than in wild-type Bd3-1 (Figure 7c).

We then quantified the fungal biomass in these plants at 3

dpi, and found that it was significantly lower in

BdWRKY38-ox plants than in wild-type Bd21 plants (Fig-

ure 7d). Although each of the BdWRKY38-ox lines had a

different level of fungal biomass reduction, lines #2 and #7

showed reductions as high as 80% compared with wild-

type Bd21, approaching that of wild-type Bd3-1. These

results demonstrated that overexpression of BdWRKY38

confers partial R. solani resistance to the susceptible B. dis-

tachyon accession Bd21.

DISCUSSION

The incompatible plant–Rhizoctonia solani interaction

could occur in Brachipodium distachyon

The identification of phenotypic variation in sheath blight

resistance in B. distachyon provides opportunities to eluci-

date plant defense responses as a mechanism to suppress

R. solani infection. We previously established that basal

resistance to this pathogen depends on endogenous SA,

and exogenously applied SA increases resistance in rice

and B. distachyon (Kouzai et al., 2018). In this study, we

demonstrated that the accession-specific R. solani resis-

tance found in Bd3-1 is also SA dependent (Figures 1 and

S2). In Bd3-1, the expression of two SA-responsive WRKY

genes, BdWRKY38 and BdWRKY44, was quickly upregu-

lated after pathogen challenge (Kouzai et al., 2018). Thus,

the present study clarified that BdWRKY38 has a major role

in this disease resistance (Figure 1). In Bd3-1 and a second

resistant accession, Tek-3, fungal propagation was sup-

pressed within 20 hpi (Figure 2c), and the subsequent

development of infection machineries at 1 dpi seen in sus-

ceptible strains did not occur (Figure 2b), indicating that

the infection process of R. solani halts at an early time

point in these resistant accessions. Because these

responses in Bd3-1, such as SA-dependent disease resis-

tance and rapid prevention of pathogen infection, are hall-

marks of defense responses mediated by R proteins, these

data suggest that the relationship between R. solani isolate

MAFF305230 and Bd3-1 (and probably also Tek-3) qualifies

as an incompatible plant–pathogen interaction.

We previously determined that endogenous SA levels in

Bd3-1 do not increase after inoculation with R. solani (Kou-

zai et al., 2018). Likewise, in rice and barley inoculated with

incompatible pathogens, no SA accumulation occurs in

local and systemic tissues, whereas hallmarks of incompat-

ible interaction, such as hypersensitive responses and

induction of SA-responsive genes, are observed (H€uckel-

hoven et al., 1999; Jiang et al., 2010; Takatsuji, 2014). More-

over, exogenous treatment with SA, or its functional

analogs, improves disease resistance to various compati-

ble pathogens, including R. solani, in rice, barley and B.

distachyon (Shimono et al., 2007; Walters et al., 2014; Kou-

zai et al., 2018; Zhou and Wang, 2018). In dicot plants, acti-

vation of the SA signaling pathway during incompatible

interactions is directly correlated with cellular accumula-

tion of free SA (Vlot et al., 2009; Noutoshi et al., 2012).

Therefore, activation of SA signaling might not be associ-

ated with a dramatic accumulation of endogenous SA in

grass plants. The molecular mechanisms underlying this

difference between dicot and monocot plants remain elu-

sive.

Our time-series comparative transcriptome analysis of

Bd21, Bd3-1 and Tek-3 demonstrated that all three acces-

sions underwent clear changes in their global gene expres-

sion patterns after 8 hpi, which included the induction of a

similar set of DYGs (Figures 3 and 4). These transcriptome

overviews suggest that each accession recognized R.

solani infection at between 4 and 8 hpi, and may have

shifted to a defensive mode. However, functional enrich-

ment analyses highlighted differences in transcription

between resistant and susceptible accessions, whereby

Bd3-1 and Tek-3 showed faster induction of defense genes

than Bd21 upon inoculation (Figure 5a). Different expres-

sion timing of defense gene activation between susceptible

and resistant plants has also been reported in Arabidopsis.

For example, in a study of interactions between Arabidop-

sis and the downy mildew fungus, Hyaloperonospora ara-

bidopsidis, Arabidopsis defense-associated genes were

upregulated rapidly (at 1 dpi) after inoculation with an

incompatible fungal strain, but more slowly (at 3–5 dpi)

after inoculation with a compatible strain (Asai et al.,

2014). In interactions between Arabidopsis and the bacte-

rial pathogen Pseudomonas syringae pv. tomato, Mine

et al. reported that inoculation of an incompatible strain

rapidly induces transcriptional reprogramming that

included defense-associated genes, whereas inoculation of

a compatible strain delayed the transcriptional response

(Mine et al., 2018). These findings support the idea that the

R. solani isolate MAFF305230 is incompatible with the B.

distachyon accessions Bd3-1 and Tek-3.

BdWRKY38 is a central positive regulator of an

incompatible host defense response to Rhizoctonia solani

in Brachipodium distachyon

The present study suggests that WRKY TFs have divergent

roles in compatible and incompatible interactions between

R. solani and B. distachyon. The GRN analysis associated

with WRKY TFs demonstrated that 20 WRKY genes
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constitute hubs in the GRNs of Bd21, Bd3-1 and Tek-3

(Figure 6a; Table S2). Among them, BdWRKY21 and

BdWRKY50 were GRN hubs specifically in the susceptible

accession, Bd21 (Figure S5), suggesting that they may be

involved in the host response to compatible pathogens.

OsWRKY53 and OsWRKY13 were identified as the closest

rice homologs of BdWRKY21 and BdWRKY50 (Data S1),

respectively. These rice WRKY genes are jasmonic acid

(JA)-responsive and contribute to disease resistance in rice

(Chujo et al., 2014). OsWRKY13 also can be induced by SA

and ethylene (Qiu et al., 2007). We previously reported that

Bd21, but not the resistant accessions, specifically acti-

vated the JA signaling pathway after R. solani inoculation

(Kouzai et al., 2018). Although the responsiveness of

BdWRKY21 and BdWRKY50 to phytohormones other than

SA remains unclear, they may be involved in JA-mediated

host responses, including wound responses.

The eight WRKY genes identified as common hubs in the

GRNs of both resistant and susceptible accessions may be

associated with basal resistance to R. solani (Figure 6a;

Table S2). Among these, BdWRKY44 and BdWRKY76 are

shared in all three accessions (Table S2; Figures S5–S7), and
BdWRKY44 contributes to R. solani resistance (Figure 1).

BdWRKY44 is one of the two B. distachyon homologs of rice

OsWRKY45 (Data S1), a positive master regulator of SA-de-

pendent disease resistance (Shimono et al., 2007).

BdWRKY76 is identified phylogenetically close to rice

OsWRKY76 (Data S1), a negative regulator of rice defense

responses (Yokotani et al., 2013; Liu et al., 2016). Thus, the

intensity and durability of defense responses during basal

resistance to R. solani may be both positively and negatively

regulated by these WRKY TFs. Although the OsWRKY4–
OsWRKY80 module regulates rice basal resistance to R.

solani (Peng et al., 2016), the putative counterparts of these

two proteins in B. distachyon, such as BdWRKY4 and

BdWRKY1 (Data S1), were not expressed during R. solani

infection. This implies that such WRKY module may not be

conserved between B. distachyon and rice.

The remaining 10 hub WRKY genes specific to the GRNs

of the resistant B. distachyon accessions may function in

the incompatible interactions with R. solani. Among them,

BdWRKY36 and BdWRKY38 were SA-responsive hubs in

both Bd3-1 and Tek-3 (Figure 6; Table S2). However, only

BdWRKY38 was highly expressed at 8 hpi during R. solani

infection (Figure 6a), and BdWRKY38-kd Bd3-1 plants

exhibited dramatically reduced resistance to this pathogen

(Figure 1). These results strongly suggest that BdWRKY38

is a central positive regulator of the incompatible plant–R.
solani interactions in B. distachyon. Given that both

BdWRKY38 and BdWRKY44 are putative orthologs of

OsWRKY45 (Data S1), the B. distachyon counterparts of

OsWRKY45 may have become sub-functionalized to play

different roles in compatible and incompatible defense

responses to R. solani.

Overexpression of BdWRKY38 increased R. solani

resistance in the susceptible B. distachyon accession Bd21

(Figure 7c,d). Contrary to an earlier report that overexpres-

sion of OsWRKY45, the closest homolog of BdWRKY38,

did not confer R. solani resistance in susceptible rice plants

(Shimono et al., 2012), our finding suggested that

BdWRKY38 positively regulates R. solani resistance even in

the susceptible B. distachyon accessions. This phenotypic

difference in the WRKY-ox plants between rice and B. dis-

tachyon might be the result of different plant species or

target genes due to the sub-functionalization of duplicated

OsWRKY45 orthologs in B. distachyon. Our transcriptome

analysis in the BdWRKY38-ox plants revealed that 20% of

potential BdWRKY38 target genes, as inferred based on

the GRN analysis, were differentially expressed in

BdWRKY38-ox plants at steady-state (Figure 7b), suggest-

ing that BdWRKY38 may regulate the expression of genes

that are responsive to R. solani infection. Intriguingly, the

expression of BdWRKY44 and BdWRKY76, the other SA-in-

ducible hub WRKY TFs in B. distachyon, was upregulated

by factors of 5.1 and 18.4 in BdWRKY38-ox plants, respec-

tively (Table S4). Taking our findings together—the associ-

ated upregulation of these three WRKY TFs in response to

R. solani infection in the resistant accessions (Figure 6a),

their SA responsiveness (Figure 6b), and the upregulation

of BdWRKY44 and BdWRKY76 in the BdWRKY38-ox plants

(Table S4)—led us to hypothesize that this trio of WRKY

TFs may together act as a regulatory module mediating

SA-dependent defense gene expression in the resistant B.

distachyon accessions.

Our characterization of accession-specific R. solani

resistance in B. distachyon illuminated the incompatible

plant–R. solani interaction. Such interactions may occur in

particular plant species even though R. solani is a necro-

trophic fungal pathogen with a broad host range, and thus

no rice cultivars are completely resistant to it (Hashiba,

1984). A similar interaction occurs between tomato (Sola-

num lycopersicum) and its pathogen Verticillium dahliae, a

soil-borne necrotrophic fungus that causes vascular wilt

disease in over 200 dicot plants. Verticillium dahliae shows

race-specific incompatible interactions with specific tomato

cultivars that have resistance genes encoding receptor-like

proteins (Kawchuk et al., 2001). Moreover, interfamily

transfer of the resistance genes conferred V. dahliae resis-

tance in Arabidopsis (Fradin et al., 2011). Necrotrophic

pathogens generally kill host plants and obtain nutrients

from dead tissues, whereas biotrophic pathogens deprive

nutrients from living host cells (Glazebrook, 2005). Hemi-

biotrophic pathogens are initially biotrophic and then shift

to necrotrophic, with the durations of biotrophy and

necrotrophy being dependent on the pathogens. Thus,

some necrotrophic pathogens would be expected to

employ effector proteins not only to form necrotic lesions

but also to suppress host immunity early in infection.
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Indeed, various small secretory effector-like proteins are

detected in the R. solani AG-1 1A genome (Zheng et al.,

2013). Genetic exploration of B. distachyon populations

may make it possible to uncover R gene(s) for R. solani,

which can be utilized as genetic resources to improve

sheath blight resistance in grass species.

EXPERIMENTAL PROCEDURES

Plant and fungal materials

The B. distachyon accessions Bd21, Bd3-1 and Tek-3 were origi-
nally obtained from the National Plant Germplasm System of the
USDA-ARS. Brachipodium distachyon seeds of wild-type and
transgenic plants were germinated on a moist filter paper and 1/2
MS medium containing 1% (w/v) agar and hygromycin B
(25 lg ml�1), respectively. The germinated seedlings were grown
in a growth chamber at 23°C under a 20 h:4 h light/dark photope-
riod, as described previously (Kouzai et al., 2018). Rhizoctonia
solani AG-1, 1A isolate MAFF305230, was obtained from Gene-
bank of the National Agricultural Research Organization (NARO) in
Japan and cultivated on potato dextrose agar plates at 23°C, as
described previously (Kouzai et al., 2018).

Vector construction and plant transformation

For BdWRKY38 and BdWRKY44 knockdown plants, a cDNA frag-
ment located in the 30 region of each WRKY mRNA was used to
trigger RNAi. The fragments were amplified by PCR using the
primers listed in Table S5 and cloned into the pENTR/D-TOPO
vector. Then, the fragments were inserted into the pANDA desti-
nation vector through an LR clonase reaction with the Gateway
cloning system (Miki et al., 2005). For the overexpression of
NahG, its full-length sequence from Pseudomonas putida was
retrieved from NCBI and synthesized de novo with codon usage
optimization. For the overexpression of BdWRKY38, its full-
length cDNA sequence (Bradi2g30695) was used. These frag-
ments were amplified by PCR using the primers listed in
Table S5, and cloned into the pCAMBIA binary vector between
the B. distachyon ubiquitin promoter and the nopaline synthase
terminator. The vectors for both knockdown and overexpression
were transformed into B. distachyon Bd3-1 or Bd21 using the
Agrobacterium tumefaciens-mediated method, as described pre-
viously (Alves et al., 2009).

Gene expression analysis

Total RNA was extracted from B. distachyon leaves using the
Nucleospin RNA Plant kit (Takara Bio, Shiga, Japan). cDNA was
synthesized using the ReverTra Ace qPCR RT Master Mix with
gDNA Remover (TOYOBO, Osaka, Japan). qRT-PCR was per-
formed using SYBR Premix Ex Taq II (Takara Bio) with the Applied
Biosystems 7500 System. A semi-quantitative RT-PCR analysis
was performed using PrimeSTAR Max DNA Polymerase (Takara).
The data were normalized based on the expression of the BdUbi4
gene (Bradi3g04730; Chambers et al., 2012). Primers are listed in
Table S5.

Phytohormone measurement

Brachipodium distachyon seedlings were cultivated in a growth
chamber for 3 weeks. Samples of approximately 400 mg of the
aerial parts of the seedlings were used for phytohormone extrac-
tion. The content of each phytohormone was quantified by liquid

chromatography–tandem mass spectrometry (LC-MS/MS), as pre-
viously reported (Mikami et al., 2016).

Inoculation tests

Detached leaves of B. distachyon were used for R. solani inocula-
tion tests, as described previously (Kouzai et al., 2018). Briefly, the
leaves were inoculated with columnar mycelial plugs hollowed
out with a biopsy trepan (diameter 3 mm) from the edge of R.
solani mycelia growing on PDA plates. Fungal propagation in the
inoculated leaves was evaluated by quantifying the fungal bio-
mass using qPCR according to previous reports (Sayler and Yang,
2007). BdFIM (Bradi2g13800) was used for normalization, and the
primers used for qPCR are listed in Table S5. The infection behav-
ior of R. solani on inoculated leaf surfaces was observed after try-
pan blue staining using an optical microscope, as previously
reported (Kouzai et al., 2018).

Time-series RNA-seq analysis

Total RNA was extracted from R. solani-inoculated B. distachyon
leaves using the Nucleospin RNA Plant kit (Takara Bio) at 0, 4, 8,
16 and 24 hpi with three biological replicates. The quality and
quantity of the extracted RNA were evaluated using the NanoDrop
OneC (Thermo Fisher Scientific, Waltham, MA, USA) and the 2100
Bioanalyzer (Agilent, Santa Clara, CA, USA). Library preparation
for RNA-seq was performed using the TruSeq RNA library prepa-
ration kit (Illumina, San Diego, CA, USA), according to the manu-
facturer’s instructions. Prepared libraries were sequenced using
the HiSeq 4000 sequencer (Illumina). The obtained sequence reads
were trimmed using Trimmomatic (Bolger et al., 2014) and
mapped to the B. distachyon Bd21 reference genome (Bdis-
tachyon_314_v.3.0) using TopHat v2.1.1 with Bowtie v2.2.6 as its
mapping tool (Langmead and Salzberg, 2012). The number of
reads mapped to each gene was calculated using FeatureCounts
and normalized based on RPM. Genes with minimum RPM ≥ 5
and a fold change during the time course (maximum RPM/mini-
mum RPM) ≥ 2 were defined as DYGs in each accession. k-means
clustering of DYGs was performed using the Z-score-transformed
expression datasets with Multiple Experiment Viewer (MeV, 4.9.0)
software (Howe et al., 2011). The number of clusters and good-
ness of the clustering were determined based on the gap statistic,
which was calculated using the clusGap function of the R package
cluster.

Functional enrichment analysis

Gene ontology enrichment analysis for a set of DYGs was per-
formed as follows. GO terms were assigned to B. distachyon
genes based on the GO annotations of their closest homologs in
Arabidopsis, identified based on a blastp analysis with a threshold
E-value < 1e-5. Significantly over-represented GO terms catego-
rized to ‘biological process’ with a threshold P-value < 0.001 were
identified using the R package GOstats (Falcon and Gentleman,
2007). The over-represented GO terms were summarized and
depicted in a scatter plot based on their semantic similarities
using REVIGO (Supek et al., 2011). GO terms related to defense
and stress response were identified via hierarchical clustering of
the summarized GO terms based on their semantic similarities.
Enrichment analyses for TFs and the W-box elements for a set of
DYGs were performed based on a hypergeometric test using the R
function phyper. The B. distachyon genes encoding particular TF
families, such as AP2/ERF, bHLH, bZIP, MYB, NAC and WRKY,
were retrieved from the PlantTFDB (V5.0) website (Jin et al., 2017).
The promoter region (1 kb upstream of the ORF) sequences of B.
distachyon genes were extracted using BEDtools getfasta (version
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2.25.0; Quinlan and Hall, 2010). Identification of the W-box
(TTGAC/T) element in each sequence was performed using a cus-
tom Perl script.

GRN analysis

A GRN analysis was performed using the R package GENIE3,
which can infer GRNs using a tree-based machine learning algo-
rithm from gene expression data (Huynh-Thu et al., 2010; Mochida
et al., 2018). GRNs associated with WRKY genes were constructed
using time-series expression datasets of the DYGs upregulated
after R. solani inoculation (Clusters 3–6), specifying WRKY genes
as candidate GRN regulators. The top-1000 ranked putative regula-
tory links were visualized as network graphs using Cytoscape (ver-
sion 3.7.0), as previously reported (Shannon et al., 2003). The
centralities of WRKY genes were calculated with Cytoscape, and
WRKYs with betweenness centrality > 0.01 and node degree > 5
were defined as hubs in each GRN. The SA responsiveness of B.
distachyon WRKY genes was retrieved from our previously
reported transcriptome dataset (Kouzai et al., 2018). Log-trans-
formed fold changes of RPMs in B. distachyon Bd21 after treat-
ment with 0.5 mM SA were presented as a heatmap.

Phylogenetic analysis

Protein sequences of WRKY TFs in B. distachyon were obtained
from Phytozome (https://phytozome.jgi.doe.gov/pz/portal.html).
The closest homologs of these WRKY TFs in rice and Arabidopsis
were identified based on a blastp analysis with a threshold E-
value < 1e-5.

30 mRNA-seq analysis

Total RNA was extracted from fully expanded leaves of plants
overexpressing BdWRKY38 (BdWRKY38-ox) and wild-type Bd21
plants using a Nucleospin RNA Plant Kit (Takara Bio) at the 4th-
leaf stage with three biological replicates. Quality and quantity
of the extracted RNA were evaluated using the NanoDrop OneC
(Thermo Fisher Scientific) and the 2100 Bioanalyzer (Agilent).
Library preparation was performed using the QuantSeq 30

mRNA-Seq Library Prep Kit (Lexogen, Vienna, Austria), accord-
ing to the manufacturer’s instructions. Prepared libraries were
sequenced using the Ion Proton system (Thermo Fisher Scien-
tific). The obtained sequence reads were trimmed using Trim-
momatic (Bolger et al., 2014) and mapped to the B. distachyon
Bd21 reference genome (Bdistachyon_314_v.3.0) using BWA
MEM as its mapping tool (Li and Durbin, 2009). The number of
mapped reads to each gene was calculated using FeatureCounts
and normalized based on RPM. A DEG analysis was performed
using the R package edgeR (Robinson et al., 2010), and the
genes with a false discovery rate from Fisher’s exact test of <
0.05 and a log2-transformed fold change of > 0.5 or < �0.5 were
identified as DEGs.

DATA ACCESSION NUMBER

The RNA-seq dataset of the Illumina reads has been sub-

mitted to the DNA Data Bank of Japan Sequence Read

Archive (https://www.ddbj.nig.ac.jp/dra/index-e.html) under

the accession number DRA008911.
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