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Abstract

Antibody-drug conjugates are important molecular entities in the treatment of cancer, with 8 antibody-drug conjugates approved by the US Food
and Drug Administration since 2000 and many more in early- and late-stage clinical development. These conjugates combine the target specificity of
monoclonal antibodies with the potent anticancer activity of small-molecule therapeutics. The complex structure of antibody-drug conjugates poses
unique challenges to pharmacokinetic (PK) and pharmacodynamic (PD) characterization because it requires a quantitative understanding of the PK and
PD properties of multiple different molecular species (eg, conjugate, total antibody, and unconjugated payload) in different tissues. Quantitative clinical
pharmacology using mathematical modeling and simulation provides an excellent approach to overcome these challenges, as it can simultaneously
integrate the disposition, PK, and PD of antibody-drug conjugates and their components in a quantitative manner. In this review, we highlight diverse
quantitative clinical pharmacology approaches, ranging from system models (eg, physiologically based pharmacokinetic [PBPK] modeling) to mechanistic
and empirical models (eg, population PK/PD modeling for single or multiple analytes, exposure-response modeling, platform modeling by pooling data
across multiple antibody-drug conjugates). The impact of these PBPK and PK/PD models to provide insights into clinical dosing justification and inform

drug development decisions is also highlighted.
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Antibody-drug conjugates are an important class of
anticancer therapeutic agents that combine the antigen-
targeting specificity and favorable pharmacokinetic
properties of monoclonal antibodies (mAbs) with
the cytotoxic potential of small-molecule chemo-
therapeutics.! An antibody-drug conjugate typically
consists of 3 components, namely, a mAb to determine
which cells are to be targeted, a cytotoxic drug to
determine the mechanism of action by which cells
are killed, and a chemical linker that attaches these
2 components together to determine how the drug is
released. The mAb component of the antibody-drug
conjugate specifically targets cell surface antigens over-
expressed in tumor cells. Upon binding, the antibody-
drug conjugate is internalized by the tumor cell, in
which it undergoes lysosomal degradation, leading to
the release of the cytotoxic drug and thus cell death.
Antibody-drug conjugates have complex molecular
structures, combining the molecular characteristics
of small-molecule drugs and those of large-molecule
biotherapeutics. The conjugation of the cytotoxic drug
to the mAb often results in a heterogeneous mixture
of antibody-drug conjugate species, which differ not
only in the number of cytotoxic drugs attached to the

antibody (ie, drug-to-antibody ratio species), but also
in the different attachment locations on the antibody.”
For example, T-DM]1, which is conjugated at lysine
residues, and brentuximab veodtin which is conjugated
via cysteines derived from reduced interchain disulfides,
both have a drug-to-antibody ratio ranging from
0 to 8, with an average drug-to-antibody ratio of
approximately 3.5. With recent advances in antibody
engineering and conjugation chemistry, the implemen-
tation of site-specific conjugation, in which conjugation
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occurs only at engineered cysteine residues or unnatural
amino acids, for example, has resulted in more
homogeneous antibody-drug conjugate production.”?
Even for more homogeneous antibody-drug conjugates,
it is still expected that biotransformation (eg, antibody-
drug conjugate catabolism and deconjugation) in vivo
changes the concentration and relative fractions of
individual drug-to-antibody ratio species with time, by
converting high drug-to-antibody ratio species to low
drug-to-antibody ratio species, resulting in a gradual
decrease in average drug-to-antibody ratio over time.
Considering the heterogeneity and complex changes
in antibody-drug conjugate concentration and compo-
sition after antibody-drug conjugate administration,
3 different analytes, namely, conjugate (measured as
conjugated payload or conjugated antibody), total
antibody (fully conjugated, partially conjugated, and
unconjugated antibody), and unconjugated payload,
are typically measured in preclinical and clinical studies
to characterize the pharmacokinetic (PK) properties
of an antibody-drug conjugate.*>

To date, 8 antibody-drug conjugates have received
US Food and Drug Administration (FDA) approval
in various oncology indications.! In addition, several
antibody-drug conjugates showed promising clinical
activities and have received a breakthrough therapy
designate, with FDA approvals expected in the next 1
or 2 years. These antibody-drug conjugates prove that
the therapeutic index of otherwise untenable cytotoxic
drugs can be improved to a therapeutically beneficial
level by conjugating it to an antibody. Despite the

great success of antibody-drug conjugates, it is worth
noting that the therapeutic window for antibody-drug
conjugates remains relatively narrow, with the maximal
tolerated dose often reached before antibody-drug
conjugates achieve the maximal efficacious dose. In
addition, the toxicities associated with the antibody-
drug conjugates might dictate the number of treatment
cycles that the patients can tolerate and often result in
dose delay, dose reduction, or study discontinuation.’
In an attempt to optimize the benefit/risk profile
of antibody-drug conjugates, a great amount of
effort has been made to understand the absorption,
distribution, metabolism, and elimination (ADME),
PK, and pharmacodynamics (PD) of antibody-drug
conjugates through development of quantitative
physiologically based pharmacokinetic (PBPK) and/or
PK/PD models using various quantitative approaches.
This review summarized diverse PBPK and PK/PD
modeling approaches for antibody-drug conjugates and
highlighted their impacts through the life cycle of drug
development (Figure 1). Figure 2 illustrates our overall
strategy, which comprehensively uses quantitative clin-
ical pharmacology to support antibody-drug conjugate
discovery and development by integrating preclinical
and clinical PK, biomarker, safety, and efficacy data.

PBPK Modeling of Antibody-Drug
Conjugates

The PBPK model has become an important tool in
drug development to understand and mechanistically
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characterize the exposure of the drug in different tis-
sues. Typically, PBPK models are primarily composed
of 2 types of parameters’: (1) system parameters based
on the information related to the conserved anatomical
and physiological structure of the body (eg, organ
volume, blood flow, surface area, and expression level),
which are usually obtained from the literature or deter-
mined a priori; (2) drug parameters that are specific for
drugs under evaluation, including information related
to physicochemical properties (eg, molecular weight,
lipophilicity, and solubility) that are fully independent
of physiology of the organism and drug-biological
properties (eg, fraction of unbound drug and tissue-
plasma partition coefficient) that are dependent on the
interaction between drug and the physiology of the
organism.

Antibody-drug conjugates are designed to specifi-
cally target cancer cells by conjugating the highly potent
small-molecule chemotherapeutic agent (ie, payload) to
a targeting mAb, for which efficacy is driven by the
targeted delivery of a payload to the site of action in
tumor, whereas toxicity is driven by unwanted tissue
exposure to the cytotoxic payload. Therefore, under-
standing the tissue PK of an antibody-drug conjugate
and its components in different tissues becomes crit-
ical in understanding exposure-response relationships
and predicting the potential of drug-drug interaction
(DDI). Depending on the objectives of the PBPK
modeling, 2 distinct PBPK models for antibody-drug
conjugates have been developed: PBPK modeling of
the cytotoxic payload to inform DDI potential of
the payload released from an antibody-drug conjugate
and PBPK modeling of antibody-drug conjugates to
provide enhanced mechanistic insight into the deter-

minants of antibody-drug conjugate and unconjugated
payload disposition and to understand tissue exposure
of antibody-drug conjugates and released payloads.

PBPK Modeling of Cytotoxic Payloads

Upon formation via proteolytic degradation and/or
deconjugation, the unconjugated cytotoxic payloads
are expected to undergo enzyme and/or transporter-
mediated clearance mechanisms consistent with small
molecules. Therefore, DDI may occur through modula-
tion of these clearance pathways. Hence, evaluation of
DDI potential associated with unconjugated cytotoxic
payload is an important aspect of risk assessment to
support clinical development of antibody-drug conju-
gates.

Monomethyl auristatin E (MMAE) is one of the
most commonly used cytotoxic payloads for auristatins
antibody-drug conjugates (~50% of the antibody-drug
conjugates in clinical development).® The majority of
the auristatin antibody-drug conjugates use a dipep-
tide (valine-citrulline [vc]) linker conjugated to cy-
totoxic payload MMAE via solvent-accessible thiols
present in mAb cysteines (ve-MMAE antibody-drug
conjugates).’ For most ve-MMAE antibody-drug con-
jugates, conjugate (measured as conjugated antibody
or antibody conjugated MMAE [acMMAE]) and un-
conjugated MMAE in systemic circulation are usually
monitored in the clinic, and MMAE was found to be
the major circulating catabolite in humans. In vitro data
suggest that MMAE is a substrate of cytochrome P450
(CYP) 3A and P-glycoprotein, and also an inhibitor
of CYP3A. A clinical DDI study showed that bren-
tuximab vedotin, a ve-MMAE antibody-drug conju-
gate, did not affect the PK of midazolam, a sensitive



S108

The Journal of Clinical Pharmacology / Vol 60 No S| 2020

Development of acMMAE —-MMAE linked PBPK model
using a mixed ‘bottom-up’ and ’top-down’ approach

|

acMMAE (parent)

CL and Vss obtained from Clearance

|

Unconjugated MMAE (metabolite)
$ Formation rate-limited by acMMAE

the observed clinical data
(anti-CD-22-vc-MMAE
ADC)

|

Validation of acMMAE and MMAE PK
model using brentuximab vedotin clinical

data

\/

Validation of MMAE-drug interaction

CL; MMAE CL and Vss predicted
using in silico/in vitro and in vivo
ADME data

Single Adjusting
compartment (SAC)

unconjugated
MMAE in systemic
compartment

Hepatic CL
(CYP3A metabolic CL + biliary CL)

prediction using brentuximab vedotin clinical

DDI data (MMAE as CYP3A substrate and

CYP3A inhibitor)

\4

Application of acMMAE —MMAE linked PBPK
model to predict DDI for other ve-MMAE ADC:

polatuzumab vedotin (PBPK prediction in

labeling to replace clinical DDI study)

Figure 3. PBPK modeling approach to predict the payload-mediated DDI risk for an antibody-drug conjugate.

CYP3A substrate.! Concomitant administration of
rifampin (a strong CYP3A4 inducer) and ketoconazole
(a strong CYP3A inhibitor) did not alter the PK of
the antibody-drug conjugate measured as conjugated
antibody. However, exposure of unconjugated MMAE
was reduced ~46% by rifampin and increased ~34%
by ketoconazole coadministration.'” As most of the
ve-MMAE antibody-drug conjugates have similar PK
characteristics for both conjugated and unconjugated
MMAE,'""!? it is conceivable that we could leverage
the information learned from the brentuximab vedotin
DDI study to inform DDI risk assessment for other vc-
MMAE antibody-drug conjugates in clinical develop-
ment.

For the first time, Chen et al proposed a novel
approach using mechanistic PBPK modeling to
enable the extrapolation of clinical observations
with brentuximab vedotin to inform the prediction of
the magnitude of DDIs for other ve-MMAE antibody-
drug conjugates.’* A PBPK model linking acMMAE
as a parent drug to the catabolite unconjugated
MMAE (cytotoxic payload) was developed using in
vitro parameters and preclinical and clinical data
(anti-CD22-ve-MMAE antibody-drug conjugate), a
mixed bottom-up and top-down approach (Figure 3).
Subsequently, model performance was verified by
comparing predicted MMAE PK profiles with

observed data from another ve-MMAE antibody-
drug conjugate, that is, brentuximab vedotin.
Finally, the validated model successfully predicted
the clinically observed DDIs between brentuximab
vedotin and midazolam, ketoconazole, and rifampin
(Figure 3).

The main challenge in leveraging PBPK modeling
to inform DDI risk assessment is the prediction of the
PK profile of MMAE (the main driver of DDIs). This
prediction relies on good mechanistic understanding of
the relevant in vivo data about the formation and de-
position of MMAE from an antibody-drug conjugate
in humans, which can be limited. A mixed bottom-up
and top-down approach allows using both preclinical in
vitro and in vivo and clinical data in the PBPK model
development. ForacMMAE, accurate prediction the of
acMMAE PK profile is critical because it determines
the level of MMAE formation. The model built (top
down) using acMMAE clinical PK parameters (CL,
V,s) in combination with PBPK distribution model best
simulated the PK profile of acMMAE. The PK of
MMAE treated as a metabolite of acMMAE in the
model was determined simultaneously by its formation,
clearance, and volume of distribution. The formation
kinetic of MMAE was determined by acMMAE CL,
which was calculated based on clinical PK data. The
parameters of CL and Vi for MMAE were predicted
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based on in silico, in vitro data and preclinical in vivo
information.

Prediction of MMAE clearance in humans is an-
other critical component in the PBPK modeling of
antibody-drug conjugates. A mechanistic approach us-
ing all available data from in vitro hepatocyte incuba-
tion and preclinical and clinical mass-balance studies
was applied. By adding metabolic CL scaled using in
vitro to in vivo extrapolation and nonmetabolic CL
(biliary and urine, which are assumed to account for
~50% of MMAE excretion based on mass-balance
study), the MMAE CL (~8 L/h) was predicted, and
the model was able to describe very well the PK of
MMAE from dosing anti-CD-22-ve-MMAE antibody-
drug conjugate and brentuximab vedotin. In an effort
to understand the disposition of cytotoxic payload (eg,
MMAE) after release from an antibody-drug conju-
gate in humans, preclinical PK studies with MMAE
were conducted in cynomolgus monkeys. Using single-
species allometric scaling, MMAE CL, and Vs were
predicted, which were 2- to 4-fold higher than the
predicted values using mechanistic approaches in the
PBPK modeling. Using the CL and Vg values pre-
dicted from cynomolgus monkey, the simulated PK
underpredicted the observed data, indicating that the
disposition of MMAE in humans is different from that
obtained from preclinical PK studies, especially when
MMAE is administered as preformed catabolite instead
of its conjugated form (antibody-drug conjugate). Al-
though the PBPK model was built using mechanistic
approaches based on current knowledge of antibody-
drug conjugates, acMMAE was eventually catabolized
to the unconjugated form of MMAE before being
metabolized and/or excreted.

Nevertheless, the best utilization of existing clinical
data for both model building and validation increased
our confidence in using the model to evaluate the DDI
risk for other ve-MMAE antibody-drug conjugates.
Recently, this PBPK model-based approach was
applied to predict the CYP3A-mediated DDI potential
for polatuzumab vedotin, a ve-MMAE antibody-drug
conjugate similar to brentuximab vedotin, with the
ultimate goal of using PBPK simulations to support
drug labeling without conducting any clinical DDI
trials. Overall, the PBPK model-based assessment
showed that, polatuzumab vedotin has a limited drug
interaction potential with strong CYP3A inhibitors
(eg, predicted unconjugated MMAE AUC and Ciax
ratios of 1.48 and 1.18, respectively, with/without
ketoconazole) and strong inducers (eg, predicted
unconjugated MMAE AUC and C,,y ratios of 0.49
and 0.69, respectively, with/without rifampin). The
administered polatuzumab vedotin and the resulting
unconjugated MMAE levels neither inhibit nor induce
CYP3A. As aresult, a dedicated clinical CYP3A-based

DDI study for polatuzumab vedotin is not warranted.
Importantly, DDI results predicted by the PBPK model
were included in polatuzumab vedotin US prescribing
information (USPI). The health authority’s acceptance
of using PBPK modeling to replace dedicated clinical
trials for antibody-drug conjugate DDI assessment
enabled accelerated drug approval without postmarket
commitment. To our knowledge, this is the second
biologic-related PBPK submission to the FDA and the
first PBPK application for an antibody-drug conjugate.

Impact on Decision-Making in Drug Development

Here we used a case study to illustrate how PBPK mod-
eling impacts the late stage of the clinical development
of an antibody-drug conjugate. Instead of conducting
a dedicated clinical DDI study, simulation results from
the validated PBPK model can be used to inform the
antibody-drug conjugate prescribing information (ie,
USPI or SmPC for European Medicine Agency). Given
that many antibody-drug conjugates may be against
different targets and tumor indications but otherwise
share the same payload and linker, it is conceivable that
a PBPK model could be developed and validated for
the entire platform and used to predict the magnitude
of a DDI once clinical DDI data are available for one
of the antibody-drug conjugates. The PBPK model
is extremely valuable, especially when the PK profiles
of the unconjugated payload are different across the
platform antibody-drug conjugates because of different
antibody-drug conjugate doses and schedules and/or
conjugation chemistry. For a novel payload, however,
PBPK modeling might not be robust enough to inform
drug labeling, given that there is no clinical DDI
data to validate the model, but DDI risk assessment
using the PBPK models with the novel payload could
be used to support key discovery and development
decision such as payload selection and concomitant
medications permitted or prohibited in the clinical
studies. By integrating the in silico, in vitro, and in vivo
ADME and PK data and knowledge, PBPK models will
inform overall risk-based DDI strategy for an antibody-
drug conjugate, including the decision about whether a
dedicated clinical DDI study is warranted.

PBPK Modeling of Antibody-Drug Conjugates

Characterizing the ADME of an antibody-drug con-
jugate is not a straightforward process, as both small-
molecule and mAb components have unique attributes
to the antibody-drug conjugate construct (eg, hy-
drophobicity of the small molecule, FcRn, and tar-
get binding of mAb). Furthermore, the conjugation
of the payload to mAb as well as the selection of
payload, linker, and site of conjugation all introduces
new physicochemical properties and drug-biological
properties that need to be taken into account when
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characterizing the ADME of an antibody-drug con-
jugate. Once released from the antibody-drug conju-
gate, the small-molecule chemotherapeutic agent may
be further eliminated via enzyme- and/or transporter-
mediated clearance. Given the complex molecular
structure and ADME properties of an antibody-drug
conjugate, PBPK modeling provides a great oppor-
tunity and platform to incorporate the in vitro, in
vivo, and clinical results to understand the whole-
body disposition of an antibody-drug conjugate and its
implications for efficacy/safety.

Several efforts have been made to develop a PBPK
model for an antibody-drug conjugate. Zhao et al first
developed the PBPK models to characterize plasma,
tissue, and tumor PK of a dual radiolabeled SGN-
75, an anti-CD70 maleimidocaproyl-MMAF antibody-
drug conjugate (*H on the antibody backbone and
4C on MMAF) in tumor-bearing mice."* Although
the study provided the initial framework for PBPK
modeling, many parameters associated with system and
drug properties were estimated (eg, vascular and lymph
reflection coefficients, clearance of an antibody-drug
conjugate in tissue, target densities in tumor [CD70
and tubulin], K4 between payload and tubulin) and
thus limited its application. Later, Khot et al devel-
oped a PBPK model for T-DM1, with the platform
PBPK model for the mAbD linked to the small-molecule
PBPK model for the payload through the proteolytic
degradation and deconjugation processes of antibody-
drug conjugates.”” The degradation and distribution
of the antibody-drug conjugate were assumed to be
similar to the backbone mAb (ie, trastuzumab), and
the deconjugation of DM1 from T-DMI1 over time was
estimated using plasma PK of total trastuzumab and
T-DM1. The DM released from T-DM1, through ei-
ther proteolytic degradation or deconjugation, was then
served as input of the small-molecule PBPK model,
which was established using biodistribution data of
radiolabeled small-molecule [PH]JDM1 in rats. Several
assumptions were made in this model: (1) antibody-
drug conjugate and backbone mAb share similar tissue
distribution, FcRn binding, and intracellular degrada-
tion rate; and (2) the deconjugation rate is the same
in both plasma and tissue. Overall, the model was
able to describe the biodistribution of radiolabeled T-
[PH]DMI in rats reasonably well. Beyond characteriz-
ing the plasma and tissue PK in rats, a translational
effort was made to scale up the model for humans by
simply replacing with the platform PBPK model for
human mAbs as well as allometric scaling or using clin-
ical reported values for parameters associated with the
payload and deconjugation. Although the translated
human PBPK model was able to capture the serum PK
of total trastuzumab and conjugated antibody (ie, T-
DM1) reasonably well, the PK of DM1 was not cap-

tured well, indicating the potential to further improve
the model.

Recently, Li et al developed a whole-body PBPK
model for ve-MMAE antibody-drug conjugates in
rats.'® Similar to the PBPK model for T-DMI, the
model was built on the platform PBPK model for
mAb and linked to the small-molecule PBPK model
developed by Chen et al'? through proteolytic degra-
dation and deconjugation processes of an antibody-
drug conjugate (Figure 4). Antibody-drug conjugate
and backbone mAb were also assumed to have the
same tissue distribution properties, FcRn binding, and
intracellular degradation rate. Despite the similarity of
overall model framework, Li et al used a variety of in
vitro and in vivo data, and took a stepwise approach to
characterize the model parameters: (1) rat IgG plasma
and tissue profiles in rats were used to calibrate model
parameters for rat IgG kinetics; (2) PK data of human
IgG in rats were used to fine-tune the parameters
associated with rat FcRn binding and pinocytosis of
human IgG; (3) the drug-to-antibody ratio-dependent
deconjugation rates in plasma were derived from in
vitro rat plasma stability studies with antibody-drug
conjugates, and the deconjugation rates in tissue in-
terstitial spaces were scaled down by taking 20% of
plasma deconjugation rates given less tissue proteins
(ie, albumin); and (4) drug-to-antibody ratio-dependent
plasma clearance of conjugated mAbs were derived
using plasma profiles for the conjugated MMAE.!® The
model was validated using radiolabeled anti-CD79b vc-
MMAE[*H] antibody-drug conjugate and was capa-
ble of predicting both conjugated and unconjugated
MMAE in both plasma and tissue in rats.'®

Both PBPK models for T-DM1 and ve-MMAE
antibody-drug conjugates, developed by Khot et al'®
and Li et al,'® respectively, provided a “workflow” to de-
rive parameter values associated with proteolytic degra-
dation and deconjugation processes based on in vitro
or in vivo data. Although this allows extrapolation of
the models to other antibody-drug conjugate molecules,
it is important to bear in mind the strength and lim-
itation of each derivation. For the proteolytic degra-
dation process, it has been shown that higher drug-
to-antibody ratio species exhibited faster clearance,
which is closely related to the hydrophobicity of the
payload and the amount of the payload conjugated to
the backbone mAb.!” In the PBPK model for T-DM1,
proteolytic degradation of T-DM1 was assumed to be
the same as backbone mAb, and there is no additional
antibody-drug conjugate-specific or drug-to-antibody
ratio-dependent clearance included. Despite a lack of
antibody-drug conjugate-specific clearance, the model
was able to capture the PK profiles of T-DMI1 in both
blood and tissue reasonably well. It is likely that the
deconjugation parameter of the model is a composite
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Figure 4. PBPK model of a ve-MMAE antibody-drug conjugate. (A) Structure of PBPK model at whole-body level. Organs are represented by black
rectangle and connected by blood flow (red and purple lines) and lymphatic flow (orange dashed line). (B) Structure of PBPK model at tissue level.
Each tissue consists of vascular space, endothelial layer, and interstitial space. The distribution of antibody-drug conjugate and unconjugated MMAE
between vascular and interstitial space through convection, diffusion, or transcytosis is simplified and represented by the black double arrow. The
formation of unconjugated MMAE from an antibody-drug conjugate is linked by IgG proteolysis, drug-to-antibody ratio-dependent deconjugation, and

drug-to-antibody ratio-dependent plasma clearance (vascular space only).

parameter not only representing the deconjugation
process but also accounting for additional clearance
because of the change of hydrophobicity of the whole
antibody-drug conjugate molecule. In the PBPK model
for ve-MMAE antibody-drug conjugates, additional
drug-to-antibody ratio-dependent plasma clearance in
a linear relationship was introduced in the model,
which allows for flexibility of the model to dissect the
contribution of linker and payload on antibody-drug
conjugate clearance. For the deconjugation process, the
PBPK model for T-DM1 used the in vivo PK profile
of total trastuzumab and conjugated antibody (ie, T-
DM1) to characterize the parameter. However, because
of the format of the bioanalytical assay for conju-
gated antibody, both high and low drug-to-antibody
ratio species were detected, and thus the deconjugation
from high drug-to-antibody ratio species (eg, drug-
to-antibody ratio of 4 — drug-to-antibody ratio of
3) cannot be captured for the parameter derivation.
Therefore, the parameter only reflects the complete
deconjugation of payload (ie, drug-to-antibody ratio
of 1 — drug-to-antibody ratio of 0) and likely the
additional clearance of antibody-drug conjugate as
mentioned above. In the PBPK model for ve-MMAE
antibody-drug conjugates, the deconjugation process
was characterized using in vitro plasma stability data
with the deconjugation rate of each drug-to-antibody
ratio species derived. Although this approach allows
for distinguishing the deconjugation process from the
antibody-drug conjugate-specific clearance in the body,

the data being used were not able to discriminate
loss of payload from different drug-to-antibody ratio
species (eg, drug-to-antibody ratio of 8 — drug-to-
antibody ratio of 7 vs drug-to-antibody ratio of 7 —
drug-to-antibody ratio of 6). Indeed, several drug-to-
antibody ratio-dependent deconjugation relationships
were described previously,'®!” and the choice of the
relationship would most likely depend on the properties
of individual antibody-drug conjugate (eg, linker and
site of conjugation) and the observed data.

Impact on Decision-Making in Drug Development

PBPK models could be a very valuable tool for
antibody-drug conjugate drug development. First,
antibody-drug conjugates are designed to maximize
the exposure in tumor tissues while minimizing the
exposure in normal tissues. Target expression has been
shown to correlate with tumor uptake and the efficacy
of an antibody-drug conjugate in preclinical imaging
studies.”’ Although characterizing the exposure to vari-
ous tissues is desired, direct measurement of tissue con-
centration in clinical studies is not feasible, and imaging
approaches such as immunoPET are often used to
provide semiquantitative information of whole-body
distribution of an antibody-drug conjugate.’! To ensure
high probability of success in clinical development of
an antibody-drug conjugate, a quantitative tool such as
PBPK modeling represents a useful approach to accu-
rately project human tissue exposure. Combined with a
preclinical and clinical imaging study, the PBPK model
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could facilitate the selection of a dose regimen that
optimizes the exposure difference between tumor and
normal tissues. In addition, alternatives to conventional
antibody-drug conjugate dosing strategies, such as pre-
dose of unconjugated antibody to block undesirable
uptake in nonmalignant tissues and potentially improve
safety profile, can also be quantitatively evaluated.??
Second, an antibody-drug conjugate consists of various
active moieties (eg, antibody-drug conjugate with dif-
ferent drug-to-antibody ratios, payload, and sometimes
the naked mAb) with the metabolism, elimination, and
potency of each moiety differing significantly from the
others. However, the bioanalytical methods commonly
used only provide the quantitative information that
represents a mixture of them, which sometimes limits
the ability to characterize exposure-response relation-
ships for the key active moiety (eg, individual drug-to-
antibody ratio species). By leveraging in vitro and in
vivo data, the PBPK model provides a complementary
tool to dissect and provide the full spectrum of dynamic
change of each active moiety. The 3 publications dis-
cussed above illustrate the initial effort and different
approaches to develop a PBPK model for an antibody-
drug conjugate. Learning from their modeling process,
the drug developer of antibody-drug conjugates will
have an opportunity to collect the critical data package
and develop the PBPK modeling strategy suited for
individual antibody-drug conjugate. It is also noted
that the Simcyp Simulator has recently adapted the
antibody-drug conjugate module based on the model
structure of ve-MMAE antibody-drug conjugates de-
scribed above. Therefore, it is foreseeable that more
applications of PBPK models will be seen in the near
future.

Population PK/PD and
Exposure-Response Modeling for
Antibody-Drug Conjugates

Population PK Modeling

It is unique for an antibody-drug conjugate that mul-
tiple analytes are quantified using various validated
analytical methods after antibody-drug conjugate dos-
ing in both preclinical and clinical settings.” These
analytes include conjugate, total antibody and uncon-
jugated payload. Various modeling approaches, includ-
ing a l-analyte model (eg, conjugate alone), 2-analyte
linked model (eg, conjugate-unconjugated payload, to-
tal antibody-conjugate), and multiple-analyte modeling
(eg, total antibody-conjugate-unconjugated payload or
PK modeling including individual drug-to-antibody
ratio species) have been performed using preclinical or
clinical PK data. The strategies of PK modeling for
antibody-drug conjugates are in general dependent on

the objectives and questions to be addressed at different
stages of the antibody-drug conjugate development.

Single-analyte population PK models of antibody-
drug conjugates published up-to-date are all focused
on the conjugate (measured as conjugated antibody or
conjugated payload),?*>* which is considered one of the
important analytes to drive both efficacy and safety,
based on the mechanism of actions (MOA) of the
antibody-drug conjugates. It was found that in general
the conjugate PK is mainly driven by its antibody
component instead of the payload. This single-analyte
population PK approach was often used to support
regulatory interactions and filing of antibody-drug
conjugates, such as Kadcyla.>>**

There are various types of 2-analyte integrated pop-
ulation PK models. As summarized in Figure 5, 4
types of 2-analyte integrated population PK models
were reported in the literature, including integrated
models of total antibody-conjugated payload® (Fig-
ure 5A), total antibody-conjugated antibody” (Fig-
ure 5B), conjugated payload-unconjugated payload®’
(Figure 5C), and conjugated antibody-unconjugated
payload®® (Figure 5D). The first 2 types are integrated
models for the large-molecule component-related an-
alytes after antibody-drug conjugate dosing (eg, to-
tal antibody and conjugate). These models are often
used to quantify the correlations among large-molecule
component-related analytes (eg, correlation between
total antibody and conjugated antibody or conjugated
payload), infer the deconjugation rate, and inform the
reduction of PK sampling for one of the large-molecule
component-related analytes in late-stage clinical trials.
For example, in a total antibody-conjugated payload
integrated population PK model for 2 MMAE-
containing antibody-drug conjugates (pinatuzumab ve-
dotin and polatuzumab vedotin),”® the deconjugation
rate was estimated based on phase 1 intensive PK
sampling of total antibody and conjugated MMAE.
Based on the established model, removing the majority
or all total antibody serum PK samples in phase 2,
but keeping the original plasma PK sampling schedule
of the conjugated payload, would not compromise the
ability of the model to precisely estimate total anti-
body PK exposure parameters. The remaining 2 types
are modeling the conjugate and unconjugated payload
simultaneously. Unconjugated payload is considered a
catabolite of its parent antibody-drug conjugate and
usually follows formation-rate-limited kinetics and may
correlate with some safety events. This type of inte-
grated model can not only characterize the conjugate
PK and the impact of clinically relevant covariates
but also the formation and elimination of unconju-
gated payload and the impact from the covariates.
For polatuzumab vedotin, the conjugated payload-
unconjugated payload integrated model®” was applied
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containing antibody-drug conjugate to cynomolgus monkeys).'8

to support global regulatory filings: (1) to assess the
impact of intrinsic factors (eg, body weight, sex, age,
hepatic and renal impairment, ethnicity, line of ther-
apy) and extrinsic factors (eg, drugs in combination,
material manufacturing process) on PK; (2) to pro-
vide exposure metrics for subsequent exposure-efficacy
and exposure-safety analyses for both conjugated and
unconjugated payload; and (3) to justify label dose
in special populations without conducting dedicated
studies.”

In addition, semimechanistic multiple-analyte
integrated PK models were also applied to understand
the quantitative relationship of multiple analytes

and to infer the mechanism and kinetic parameters
related to proteolytic degradation, deconjugation, and
unconjugated payload formation. These models are
often built based on preclinical data, may include all
3 analytes (total antibody-conjugate-unconjugated
payload), and may explicitly represent various drug-to-
antibody ratio species.!®!?3% The model structure
may include drug-to-antibody ratio-dependent
sequential deconjugation of the drug, resulting in
the conversion of higher drug-to-antibody ratio to
lower drug-to-antibody ratio species and proteolytic
degradation of the antibody component. Mechanistic
insights were generated from these models regarding
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antibody-drug conjugate disposition. For example, in a
semimechanistic integrated 3-analyte PK model for an
MMAE containing antibody-drug conjugate based on
cynomolgus monkey data'® (Figure SE), it was found
that conjugate is lost via both proteolytic degradation
and deconjugation, whereas unconjugated MMAE in
systemic circulation appears to be mainly released via
proteolytic degradation instead of deconjugation.

Impact on Decision-Making in Drug Development

The considerations of which population PK approach
to use and which analyte(s) to model depend on the
objectives of the modeling, the questions to answer
by the model applications, the clinical relevance of the
analytes quantified (ie, which analyte is the key driver of
efficacy and safety), and the bioanalytical assay format
that determines what are measured. If the population
PK estimated exposures are used for exposure-response
analysis, the decision of the selection of analyte(s)
for exposure-response analysis, which are related to
the clinical relevance of these analytes, is one of the
key considerations to decide which analyte(s) to be
included for the population PK analysis. The popula-
tion PK-derived exposure metrics of each analyte after
antibody-drug conjugate dosing are considered better
for exposure-response analysis than the observed expo-
sure metrics that are often impacted by PK sampling
schedule differences across trials and the variability of
actual PK sampling time across individual patients.

Among the several types of population PK mod-
els discussed above, 1 analyte (conjugate alone) or
2-analyte population PK models that link the par-
ent antibody-drug conjugate with the unconjugated
payload (eg, conjugate-unconjugated payload), which
allow comprehensive covariate assessment and generate
exposure metrics of key analyte(s) for exposure-efficacy
and exposure-safety analyses, are favored in supporting
the selection of phase 2/3 doses and regulatory sub-
missions to support the dose selection in the pivotal
study and label dose justification and inform the dosing
strategy in a subgroup of patients based on intrinsic and
extrinsic factors. At the labeling stage, the key regula-
tory questions may include justification of body weight-
based dosing and whether a dose capping should be
applied for patients with body weight above a certain
threshold, ethnic sensitivity analysis, dosing strategy
in a specific population (geriatric population, patients
with hepatic or renal function impairment), DDI risk
assessment to inform the dosing strategy when the drug
is given in combination, and the impact of material
manufacturing process on PK.

For other types of multiple-analyte PK models
discussed above, such as the 2-large-molecule analyte
(eg, total antibody-conjugate) integrated model, and
the multiple-analyte integrated models are considered

valuable in the context of answering specific questions
and are often favored in the stages of preclinical
development, preclinical to clinical translation, and
early-stage clinical development. By using the total
antibody-conjugate integrated model established
from early-stage clinical development data, the total
antibody PK can be predicted from the conjugate, and
thus PK sampling of total antibody in late-stage clinical
development can be reduced. The semimechanistic
multiple-analyte PK models provide valuable tools for
the exploration of mechanisms governing disposition
of antibody-drug conjugates, the dynamic changes
of high drug-to-antibody ratio species to low drug-
to-antibody ratio species, and the formation of an
unconjugated payload. These types of models are often
built based on preclinical data; especially in some cases,
the individual drug-to-antibody ratio species measure-
ments were available to enable translational prediction
of clinical disposition of antibody-drug conjugates.

Exposure-Response and PK/PD Modeling

As multiple analytes are quantified in antibody-
drug conjugate clinical studies, PK/PD and exposure-
response analysis are generally performed for the most
relevant analyte(s) that are related to efficacy and safety
based on the MOA of the antibody-drug conjugates.
The efficacy for antibody-drug conjugates is driven by
targeted delivery of payload by antibody to the site of
action in tumor, whereas the toxicity is driven by un-
wanted tissue exposure to cytotoxic payload. In general,
conjugate is considered the key analyte correlating with
both efficacy and safety outcomes, for which exposure
is often highly correlated with the antibody-drug con-
jugate dose. Because there is a high correlation between
conjugate exposure and total antibody exposure, ' it is
of limited value to perform exposure-response analysis
using both total antibody and conjugate. Thus, the key
analyte for exposure-response analysis is usually the
conjugate.’!-¥?

A recent publication showed that for multiple vc-
MMAE antibody-drug conjugates, efficacy (objective
response rate [ORR]), and safety (grade 2+ peripheral
neuropathy [PN]) end points appeared to correlate
well with conjugate (acMMAE) exposure, but not with
unconjugated MMAE over the doses tested in the phase
1 studies.'” Similar exposure-response findings were
also observed for brentuximab vedotin.** Theoretically,
the payload in the tissues can come from circulat-
ing antibody-drug conjugate and/or payloads, but the
exposure-response results suggest that the circulating
antibody-drug conjugate appears to play a more impor-
tant role in delivering payloads to the tissues compared
with circulating payloads, and thus its exposure cor-
related better with the efficacy and safety outcomes.'?
Given the high potency of the payloads, unconjugated
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payload exposures may correlate with some safety end
points in some cases and may be included in exposure-
safety analysis.

The efficacy end points often include ORR,
progression-free survival (PFS), and overall survival
(OS), as all antibody-drug conjugates approved up-
to-date are for anticancer treatments. The safety
end points of clinical relevance vary depending on
different payloads. For example, for polatuzumab
vedotin and brentuximab vedotin, the major safety
end points include incidence of certain hematological
adverse events (neutropenia) and PN.*3* For T-
DM1, the major safety end points include incidence
of thrombocytopenia and alanine aminotransferase
(AST)/alanine aminotransferase (ALT) elevation. In
addition to the selection of which analyte(s), the
methodologies, concepts, and interpretations of the
exposure-response results of antibody-drug conjugates
often follow a strategy similar to that of other mAbs.
The approaches for the empirical exposure-response
models depend on the type of end points. For binary
end points, such as the specific adverse events of special
interest, grade > 3 treatment-emergent adverse events,
and dose modification because of adverse events (AEs)
for safety and the response rate for efficacy, logistic
regression is used to assess the correlations between
the exposure metrics (eg, AUC or Cp,,x) and the end
point and the impact of covariates. For time-to-event
end points such as OS, PFS, and time to the occurrence
of delayed AEs (eg, grade > 2 PN for polatuzumab
vedotin), multivariate Cox proportional-hazards
model, and/or the time-to-event analysis could be used
to assess the exposure-response relationship.?-31:3234 It
is worth noting that logistic analysis for the exposure-
safety assessment typically does not take the time
component (eg, treatment duration) into account,
which could be important in some cases if the AE
of interest has a cumulative effect. In the case of
polatuzumab vedotin, time-to-event PN modeling was
conducted to assess the impact of treatment duration
on the PN risk.’** Although not routinely used, the
longitudinal PK/PD analysis can be used to provide
supporting evidence to justify dosing and schedule (eg,
once every 3 weeks vs once weekly), or to evaluate
the dosing regimens by the simulations with dose
modification rules incorporated.’>-¥’

The key strategies and findings of exposure-response
analysis for T-DM1 (a DMI-containing antibody-
drug conjugate) and polatuzumab vedotin (an MMAE-
containing antibody-drug conjugate) were summarized
below as examples. For T-DM1, the exposure-response
analysis was based on the conjugated antibody expo-
sures. Although an apparent positive exposure-efficacy
response relationship was observed for the conjugated
antibody within the exposure range of 3.6 mg/kg T-

DMI1 dose, the patients at the lowest exposure quar-
tile had numerically similar or better OS and PFS
compared with the control group after adjustment of
confounding covariates.>> The analysis supported the
approved T-DM1 dose (3.6 mg/kg once every 3 weeks),
which demonstrated a positive benefit/risk ratio versus
control, even for the patients in the lowest exposure
quartile. It is worth noting that the exposure-efficacy
relationship for antibody-drug conjugates might be
confounded (especially conducted at a single dose level)
by prognostic factors similar to other mAbs, for which
the conjugate exposure tends to be lower in patients
with poor prognostic factors who generally also have
poor efficacy because of their sicker disease status.*®
Although it is not considered a key analysis to sup-
port T-DM1 dose, exposure-response analysis with the
unconjugated payload (DM1) exposures showed that
no significant relationship was observed between these
observed exposure metrics and efficacy or safety end
points at the 3.6 mg/kg T-DM1 dose.’> Semimechanis-
tic longitudinal PK/PD analysis of linking the conju-
gated antibody PK profile with the time course of PD
end points (eg, platelet count decrease®> or ALT/AST
elevation®®?") provided additional insight to support
3.6 mg/kg every 3 weeks as a well-tolerated dose with
minimal dose delays or reductions for thrombocytope-
nia, AST, and ALT, based on the rigorous simulations
with the dose modification rules incorporated for T-
DMI1.

The exposure-response analysis for polatuzumab
vedotin provided a strategy for how to leverage the
exposure-response outcome from the early studies (with
the wider dose range and longer treatment duration,
but different drug combinations from the pivotal study)
and the observed risk-benefit profile in the pivotal
study (with 1 dose level) to justify the recommended
dosing regimen for the pivotal study of 1.8 mg/kg up
to 6 cycles given in combination with rituximab and
bendamustine and supported the approved label dose.*
In addition, the time-to-event analysis of delayed grade
> 2 peripheral neuropathy provided the rationale of
capping the treatment duration to 6 to 8 cycles, as
the capped duration is associated with an acceptable
incidence of grade > 2 peripheral neuropathy.**

Impact on Decision-Making in Drug Development

Given a relatively narrow therapeutic window of the
antibody-drug conjugates® compared with mAbs,
exposure-response analysis often plays a critical role
for supporting phase 2/3 dose selection, label dose
justification, and guidance of dose adjustment for
antibody-drug conjugates. The empirical models are
routinely used, but the longitudinal PK/PD model
might bring additional insight for the dose and regimen
selection through mechanistic understanding and
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scenario simulation with adaptive dose modifications.
Selecting the right analyte(s) as the driving force of
responses (based on the MOA and bioanalytical strat-
egy) for exposure-efficacy and exposure-safety analyses
is often the most critical strategic consideration for
antibody-drug conjugates to inform its dosing strategy.
The exposure-response analysis conducted over a range
of doses in the early clinical trials is critical to support
the dose selection in the pivotal study, which is often
conducted at a single dose. The outcomes of exposure-
response analysis are often important to infer the clini-
cal relevance of PK exposure differences in a subgroup
of patients based on intrinsic and extrinsic factors
derived from the population PK analysis to support
the justification of the dosing strategy in these patients.

Platform PK/PD Modeling of
Antibody-Drug Conjugates

Antibody-drug conjugates may have different targets
but otherwise share an identical construct (mAb, linker,
and cytotoxic payload). The pharmacokinetics of these
agents sharing the same construct is expected to be
similar unless they undergo target-mediated disposition
to a significant extent.

ve-MMAE antibody-drug conjugates constitute the
largest group of antibody-drug conjugates that have
been clinically tested.’ To assess differences and similar-
ities in the PK between different ve-MMAE antibody-
drug conjugates with different targets, a platform
population PK model was developed.'! The increased
sample size with a pooled data set also enabled a more
robust assessment of covariate effects. The PK of all vc-
MMAE antibody-drug conjugates was described by a
2-compartment model with time-dependent clearance.
The results suggest that the PK was remarkably similar
among the ve-MMAE antibody-drug conjugates, with
a variability between compounds of 15% for clearance
and 5% for central volume of distribution. It also
showed that clearance and volume of distribution
increased with body weight and that volume was
higher for males.!! This platform model can be applied
to analyze and predict PK properties of a novel vc-
MMAE antibody-drug conjugate under development.

Efficacy will be molecule specific because the vc-
MMAE antibody-drug conjugates have different tar-
gets and are aiming to treat different cancer types.
However, some safety events may be independent of
target and hence shared across these antibody-drug
conjugates with the same cytotoxic payload. PN is a
common nonhematological adverse event associated
with a number of effective chemotherapeutic agents
and is also the most frequent adverse event resulting in
dose modifications and/or discontinuation of treatment
for ve-MMAE antibody-drug conjugates.*’ To assess

risk factors for developing PN and to evaluate if drug
target plays a role, a pooled time-to-event analysis
across 8§ ve-MMAE antibody-drug conjugates (~700
patients) was performed to evaluate the relationship
between the antibody-drug conjugate exposure and the
risk for developing a clinically significant (grade > 2)
PN (Figure 6).*! The analysis suggested that the risk for
developing PN was largely independent of target and
cancer type but increased with antibody-drug conjugate
exposure and treatment duration. In addition, large
body weight and previously reported PN increased
the risk for developing PN (Figure 6). Importantly,
the effect of body weight did not appear to primarily
be related to PK but rather to an inherent increased
risk in heavy patients, likely because of larger nerve
surface area in heavy patients. The derived relationship
between treatment duration, dose, body weight, and
prior PN, illustrated in Figure 6, can be used to optimize
dosing regimen for new antibody-drug conjugates, such
as capping the treatment duration or adjusting dose
based on body weight in drug development.

Impact on Decision-Making in Drug Development
Platform modeling integrated data across multiple
antibody-drug conjugate molecules that shared the
same linker and cytotoxic payload. This approach
significantly increased sample size and enabled a more
robust population PK and PK/PD evaluation. This
knowledge integration is especially impactful in the
early phase of clinical development, when a small
sample size from an individual phase 1 study may
significantly limit capability for covariate evaluation
and exposure-response assessment. The similarity in
PK between ve-MMAE antibody-drug conjugates sug-
gests that the developed platform PK model can be
applied to predict PK properties of a novel ve-MMAE
antibody-drug conjugate under development, estimate
individual exposure for the subsequent PK/PD analysis,
and project optimal dosing regimens and PK sampling
times. Given that the risk for PN appears to be inde-
pendent of target and cancer type, the platform model
provides a means to predict the peripheral neuropathy
risk at an early stage of clinical development of a
new ve-MMAE antibody-drug conjugate. The platform
modeling combined with exposure-efficacy analysis for
individual antibody-drug conjugate can provide valu-
able information for the dose and regimen selection.

Conclusions

In this review, we have summarized diverse PBPK and
PK/PD modeling for antibody-drug conjugates includ-
ing highlights of their impact through the drug devel-
opment life cycle (Figure 1). The complex structure
of antibody-drug conjugates poses unique challenges
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PN, peripheral neuropathy.

to PK and PD characterization because it requires
quantitative understanding about the PK and PD prop-
erties of multiple active molecular species in systemic
circulation and/or tissues of interest (eg, tumors). In-
tegration of diverse quantitative clinical pharmacology
approaches, ranging from systems models (eg, PBPK
modeling) to mechanistic and/or empirical models (eg,
population PK modeling for single or multiple analytes,
exposure-response modeling) can provide insights into
the PK, PD, and ADME properties of an antibody-
drug conjugate and inform drug development decisions
and clinical dose selection. PBPK modeling of cyto-
toxic payloads can be used to predict DDI potential and
ultimately inform drug labels if the model is validated
with the clinical DDI data for the same payload.
Conversely, full PBPK modeling of an antibody-drug
conjugate that integrates the in silico, in vitro and
in vivo ADME data/knowledge could help to predict
the tissue exposure to the antibody-drug conjugate
and payload and thus inform the potential safety risk
for the tissues of interest. Clinical population PK/PD
and exposure-response models play a crucial role in
optimizing the dose and schedule to maximize the
therapeutic window of an antibody-drug conjugate in
the target population. Platform modeling by pooling
the clinical data across antibody-drug conjugates with
the same payload-linker offers unique value that max-
imized learning and quantitative knowledge integra-
tion across multiple molecules in the portfolio to best
inform decision-making for individual antibody-drug
conjugate molecules given clinical data were rather
limited for each antibody-drug conjugate in the early
stage of clinical development. Although the present
review focuses on the clinical application of PBPK and

PK/PD modeling for antibody-drug conjugates, it is
worth emphasizing that PBPK and PK/PD modeling
could start as early as the preclinical discovery stage.
The models could be gradually improved by integrating
more data and knowledge to inform decision-making
throughout development cycles of antibody-drug con-
jugates. With more than 80 antibody-drug conjugates
tested in clinical development in nearly 600 clinical
trials,’ the PBPK and PK/PD learning and impact we
summarized in this review could be leveraged to shed
light on further optimization of M&S strategy and
future development strategy for the next-generation
antibody-drug conjugates.
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