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Co-crystal Prediction by Artificial Neural Networks**

Jan-Joris Devogelaer, Hugo Meekes, Paul Tinnemans, Elias Vlieg, and René de Gelder*

Abstract: A significant amount of attention has been given to
the design and synthesis of co-crystals by both industry and
academia because of its potential to change a molecule’s
physicochemical properties. Yet, difficulties arise when search-
ing for adequate combinations of molecules (or coformers) to
form co-crystals, hampering the efficient exploration of the
target’s solid-state landscape. This paper reports on the
application of a data-driven co-crystal prediction method
based on two types of artificial neural network models and co-
crystal data present in the Cambridge Structural Database. The
models accept pairs of coformers and predict whether a co-
crystal is likely to form. By combining the output of multiple
models of both types, our approach shows to have excellent
performance on the proposed co-crystal training and valida-
tion sets, and has an estimated accuracy of 80 % for molecules
for which previous co-crystallization data is unavailable.

Introduction

Molecular solids!'! appear in many different ways, and the
solid-state landscape of a molecule may cover various
crystalline forms, ranging from polymorphs and hydrates to
more complex multicomponent crystals.’* In the latter, the
formation of new intermolecular interactions between the
target and an auxiliary compound has proven to be an
excellent tool to modify physico-chemical characteristics of
a target compound, such as the (aqueous) solubility, bio-
availability, density, and melting point.""”) Multicomponent
crystals therefore find their application in various fields (e.g.
fertilizers,'*!l pigments'>™¥! and medicine™'), and play
a pivotal role in the effective formulation of pharmaceuticals.

The design of multicomponent crystals is non-trivial and
new forms are often identified via trial and error. Unlike salts,
where proton transfer leads to strong ionic/coulombic inter-
actions, solvates and co-crystals are assembled through
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weaker, non-covalent interactions (e.g. hydrogen bonding,
7-1t interactions,...). Such intermolecular interactions be-
tween functional groups are often used to rationalize the
possibility of aggregation,'”! but with no guarantee that the
postulated interactions will emerge.

Whereas polymorphs, salts and solvates are commonly
screened using automated high throughput systems,’® 52" the
experimental screening of co-crystals remains labour-inten-
sive and time-consuming. In order to shorten this process,
a variety of computational tools, based on hydrogen-bond
propensities,?' ¥ statistical analysis and modeling of molec-
ular descriptors,?" electrostatic potential maps,**=? crystal
structure prediction,*> COSMO-RS,F"*¥ molecular dy-
namics,?” or PIXEL calculations“**! and Hirshfeld surface
analysis!*! (as for instance implemented in the Crystal Explor-
er software package!™), have been developed to aid in the
discovery of adequate combinations of the constituents or
coformers. Although these computer-aided methods have
succeeded in enhancing co-crystal screening protocols, some
of the shortcomings include their bias towards small or
structurally related datasets, oversimplified assumptions re-
garding the mechanisms of interaction, and, in some cases,
their computational costs.

Recently, we introduced a holistic approach to study co-
crystallization using network science and link prediction.*++!
Analysis of a network of coformers extracted from the
Cambridge Structural database (CSD)! shows that, rather
than being a random assembly of coformers, it represents
a rational source of co-crystal information that can form
a basis for prediction. Therefore, it would be very appealing to
develop a method that utilizes all this co-crystal information,
and is able to predict co-crystals for coformers lacking any
experimental data on co-crystal formation. Such a tool would
for instance enable the evaluation of the co-crystal formation
propensity for in silico determined drug candidates (prior to
their actual synthesis), or aid in the (co-)crystallization of
molecules that are amorphous in their pure form.

Atrtificial neural networks, and in particular deep learn-
ing,"! have emerged as promising tools for data-driven
prediction. Given an adequate molecular representation,
artificial neural networks can be used to, for example, predict
physico-chemical properties (e.g. solubility) or classify mol-
ecules, hereby assigning the input to a certain class (e.g. toxic
or non-toxic).

Driven by the recent advances in artificial neural net-
works and the promising source of co-crystal information
present in the CSD, we introduce a new approach to predict
co-crystal formation using neural networks. Two neural
network model types are introduced that each accept a pair
of coformers as input and classify the combination as
a possible co-crystal or not. By optimizing the configuration
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of each model type, we obtain several equally performing
models, which are stored in model ensembles to make
a combined prediction.®! We will demonstrate the excellent
performance of the model ensembles by repredicting all
available binary co-crystal data in the CSD via cross-
validation. In a case study involving carbamazepine, we
further validate the approach by analyzing the predictions for
known and experimentally tested combinations.*® Finally, we
compiled predictions for ketoprofen, a compound unknown
to form co-crystals, and present its first drug-drug co-crystal
with carbamazepine.

Results and Discussion
Overview of Model Design and Selection

Two neural network model types are proposed to classify
pairs of coformers as possible co-crystals (Figures1a,b),
differing in their required molecular representation as input
and the initial pre-processing step (blue modules in Figure 1).
A wide variety of molecular representations exist, and in an
effort to encode both the functionalities and size/shape of the
coformers, we opted for circular (or extended-connectivity)
fingerprint vectors®”! and molecular graphs®™ as input
formats (Figure 2). Although playing an important role in
co-crystal formation and synthesis, the stoichiometry of each
individual co-crystal was not incorporated as a model param-
eter, as this was not found to influence the predictive
performance. The stoichiometry of a predicted coformer pair
is therefore not determined by the models, but should rather
be explored experimentally.

Conceptually, both model types pre-process each co-
former in an equivalent manner before combining them
together to make the final prediction. Whereas the initial pre-
processing step of the molecular fingerprint-based model type
(FP; Figure 1a) consists of traditional hidden layers, the
molecular graph-based model type uses graph convolutional
layers®>* (GCN; Figure 1b). Due to their wide applicability
and strong performance,” ! graph convolutional neural
networks have gained much popularity in recent years, as
they can learn specific molecular fragments and variations
thereof that are decisive for the prediction of a property,*”
rather than relying on statically defined atom combinations
such as in circular fingerprints. A similar methodology could
be used for the prediction of solvates, and it could be
extended to applications involving two or more atomic or
molecular species (e.g. metal-organic frameworks).

The transformation of a pair of coformers to a prediction
of co-crystal formation is learned using the co-crystal data
available during model training. By adjusting the neural
network’s internal parameters, the loss parameter, related to
the misclassification error on the available training data, is
minimized. For the present research, 8050 binary co-crystals
were extracted from the CSD and their constituents were
converted to molecular graphs and fingerprint vectors. For the
successful application of deep learning, however, a data set of
invalid coformer combinations is also needed. A common
issue with databases is their recording of successful cases only,
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Figure 1. Model types and ensembles for the prediction of co-crystal
formation. (a) FP: Fingerprint-based model type. (b) GCN: Graph
convolution-based model type. (c) Model ensembles return the aver-
age of the predictions of their constituents.
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Figure 2. Featurization of aspirin (acetylsalicylic acid) as a circular
fingerprint vector and molecular graph. (top right) Circular or extend-
ed-connectivity fingerprints (ECFP2r, where r is the radius) store
substructures around each atom up to a certain radius r in a binary
vector. The presence or absence of these substructures are encoded as
1 or O, respectively. (bottom right) Molecular graphs store the
connectivities between the molecule’s atoms in an N, ms X Noioms
adjacency matrix, and their features (such as atom type, hybridization
etc.; Table ST) in an N oms X Neawres feature matrix. Explicit zeros are
omitted for clarity.
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not taking failed experiments into account. Therefore, it is
impossible to directly extract an evidence-based list of invalid
coformer combinations from the CSD, nor is screening
literature for invalid combinations a feasible and unbiased
option. To cope with this issue, we generated an equally large
invalid co-crystal set using our link-prediction method,*!
assigning a statistical likelihood to the existence of a co-
crystal for two coformers based on network science. By
restricting the sampled invalid co-crystals to highly unlikely
combinations of coformers that each have at least 5 co-
crystals in the CSD, a balanced invalid co-crystal set is found,
showing a substantial overlap with coformers present in the
valid co-crystal set.

The two model types introduced above are subject to
a vast number of adjustable configurational parameters, such
as the number of layers, layer sizes, activation function of the
layers etc. (Table S2). As each parameter greatly influences
the performance of the model types on the data set, it is of
paramount importance to tune the model configurations in
order to achieve the optimal predictive performance. How-
ever, because the space imposed by these configurational
parameters is extremely large, it is impossible to manually
tune the model configuration and we therefore resorted to
using Bayesian Optimization.[” By iteratively assessing the
performance of possible configurations on validation sets that
are set aside (using the loss parameter), an optimizer
constructs a surrogate model, which is used to seek the most
optimal configurations for each model type. Fifty such
iterations were performed, producing a ranked list of possible
model configurations and their associated performance on
validation data sets for each type.

Although being architecturally different, the performance
of the five best-performing FP models and GCN models
differs only slightly, and each model has at least an accuracy
value of 96% on its respective validation set (Tables S3 and
S4). Moreover, as small differences in the produced validation
sets would lead to small changes in performance metrics and
hence a different ranking, it is imprudent to select only
a single model per type as final predictor. To solve this issue,
we decided to group five models of each type with the lowest
losses in separate model ensembles (FP ensemble and GCN
ensemble; Figure 1¢). These composite models return the
average of their individual constituents’ predictions and are
likely to improve the overall robustness of the predictor by
cancelling out erroneous mispredictions of single models.
Furthermore, in an effort to include a larger and more
differentiated amount of molecular information for the final
prediction, we also combined the results of both model
ensembles in a ten-membered model ensemble (FP + GCN
ensemble; Figure 1c).

Details on the model implementation, dataset generation,
model selection and model ensembling procedures are
described in the Supporting Information.

In Silico Validation of the Approach

An evaluation of how well the three model ensembles (FP,
GCN, and FP + GCN ensembles) can repredict co-crystals
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from the data set is obtained with cross-validation. In such
a test, the data set is divided in ten equally large random parts,
and each part (serving as a validation set) is, in turn,
repredicted by the model ensembles that were trained on
the remaining nine parts. This test therefore serves as an
internal validition check and first step towards model
validation.

All three ensembles demonstrate exceptionally high
accuracy values (>97% averaged over ten validation sets;
Figure S2), revealing the large potential of deep learning for
multicomponent crystal prediction. These findings support
the notion that rules for co-crystal formation are encoded in
the internal parameters of the neural network models, which
in fact define relevant combinations of atomic and molecular
fragments. In practice, the reported accuracy suggests that on
average more than 19 out of 20 co-crystals from a random
subset are classified correctly based on the information of the
remaining co-crystals in the data set. As differences in
performance for the three model ensembles are small and
within one another’s standard deviations, the FP + GCN
ensemble was chosen as final predictor for overall robustness.

The high accuracy values obtained with cross-validation
are only applicable when significant overlap between the
coformers in the training and validation sets is present. To
mimic the situation in which the target compound is
completely absent in the co-crystal data available from the
CSD, we manually removed all valid and invalid co-crystals
for carbamazepine (Figure 1c¢) from our data set and trained
the FP + GCN ensemble on the remaining data. By
comparing the model ensemble’s output to the experimental
outcome for this substantial set of co-crystals of carbamaze-
pine together with an additional set of 20 experimentally
tested combinations by Roca-Paixdo etal.® (out of 75
studied compounds), we then are able to evaluate the
performance of our approach for its intended purpose.

Because the ensemble consists of ten members, its output
is no longer binary (i.e. 0 or 1) but continuous and can be
interpreted as the percentage of models voting for a positive
outcome. For the purpose of prediction, values larger than 0.5
are classified as valid and vice versa. Comparison between the
true and predicted labels for the structures in Figure 3 leads to
an accuracy of 80% and a precision value of 79 %, again
confirming that relevant patterns for co-crystallization can be
learned from co-crystal data in the CSD, and that these
patterns are transferable to unseen cases.

Co-crystals of carbamazepine that were previously veri-
fied, were all correctly repredicted with mostly scores of 1.00
and at least 0.78. Invalid combinations (slashed zeros) that
were present in the data set are given substantially smaller
values, with the emergence of two false positives (coformers
44 and 45). We also compiled the predictions for an additional
67 invalid combinations for carbamazepine (Figure S3) and
found that approximately 78 % of invalid co-crystals scored
lower than 0.5. An important result is therefore that the
ensemble can discriminate potential coformer couples from
combinations that are unable to interact. Yet, some combi-
nations for carbamazepine that were not experimentally
found by Roca-Paixdo et al.”® (crosses) are still given large
values. This may indicate that the experimental conditions
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Figure 3. Model output for the coformers in combination with carbamazepine. (checkmark): Experimental proof available. (cross): Not found by
Roca-Paixdo et al.?® (slashed zero): Invalid combination from the data set. True positives (TP): 38. True negatives (TN): 2. False positives (FP):
10. False negatives (FN): 0. The color around the coformer number is related to the error between true and predicted value (continuous spectrum
from green (error=0) to red (error=1)). (*): Co-crystal determined in this work.

were possibly not optimal to yield co-crystalline material for  sized the co-crystal of carbamazepine with ketoprofen (co-
these combinations. On the other hand, although being former 42, vide infra). Moreover, co-crystals for the combi-
considered as a “bullet-proof” method to synthesize thermo-  nation of carbamazepine with ibuprofen (coformer 41) have
dynamically stable co-crystals, Bucar et al.l”! demonstrated  also been reported.l In addition to a positive prediction, the
that also nucleation issues can potentially hamper co-crystal  identification of a real co-crystal thus also requires the search
formation during grinding. We therefore extended the for and fine-tuning of the experimental conditions for its
experimental search for these co-crystals and have synthe-  actual synthesis.
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Application to an Active Pharmaceutical Ingredient (API)

The intended purpose of our approach is to predict
co-crystals of molecules for which experimental data is
unavailable. Ketoprofen (see Figure 1¢) is such a case,
as it has no co-crystals in the CSD (and hence our dataset),
making it a challenging and perfect candidate to test the
approach.

The scoring spectrum of the FP + GCN ensemble for
ketoprofen was evaluated for predictions with the 75 most
popular coformers as found in the CSD. To gain insight in the
correlation between the various coformer types among these
75 molecules and their prediction values, we clustered the
coformers based on their number of common co-crystalliza-
tion partners. By drawing co-crystals in the CSD as a physical
network,* with coformers as its nodes and their co-crystals as
its edges, the similarity between two coformers can be
expressed as the number of shared partners (or common
neighbors) divided by the combined number of co-crystal-
lization partners. Coformers that are highly similar are then
merged in clusters using Ward’s hierarchical grouping meth-
0d.) The result of the clustering is presented as a dendrogram
(Figure 4, left), showing the distances at which coformers are
merged, where higher distances correspond to more dissimilar
coformers (or clusters thereof). The actual coformers in these
clusters and their respective predicted values are shown in
Figure 5. Additional details are available in the Supporting
Information.

Members of the green, pink and blue clusters are classified
as co-crystals with a high likelihood of actual formation, and
relatively strong intermolecular interactions can indeed be
imagined with ketoprofen. In fact, although lacking a full
structural characterization, it was reported by Perpétuo
etal.’ that ketoprofen and nicotinamide (green cluster,
prediction value of 0.996) form a co-crystal using the Koffler
method (as analyzed by polarized light thermal microscopy
and FTIR), supporting the validity of our predictions. Smaller
prediction values are found for the cyan cluster (on average
0.75). While the majority of the models of the ensemble

il

2.0 15 1.0 0.5 00 02 04 06 08 1
Cluster distance Prediction

Figure 4. (left) Dendrogram of the 75 most popular coformers in the
CSD clustered by Ward'’s hierarchical method. (right) Predicted values
for co-crystal formation propensity with ketoprofen by the 10-mem-
bered FP + GCN ensemble.
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recognize m-r-interactions between the cluster’s molecules
and ketoprofen, predictions with a smaller confidence are
returned. This is likely due to an underpresentation of co-
crystals bonded solely through m-m-interactions in the CSD,
resulting in less exposure of such cases during training. The
smallest likelihoods of co-crystal formation are given to the
aliphatic dicarboxylic acids in the yellow cluster. Although
being omnipresent in other co-crystals, the ensemble recog-
nizes that pairing the structural features of ketoprofen with
two carboxylic acid functionalities is not likely to result in
a co-crystal, as this is unusual in the training data. Our
approach can thus identify plausible coformer combinations,
and can additionally make suggestions regarding shape and
size (decreasing scores in the yellow cluster). Very similar
compounds can exhibit distinct/opposite co-crystallization
behaviour as a result of different substitution patterns, which
was reported by, for example, Corpinot et al.”! The question
is whether our method shows this level of sophistication. For
derivatives of hydroxy- and aminobenzoic acids in the red
cluster, we observe that the method distinguishes between the
relative positions of the substituents.

An eye-catching prediction is the drug-drug co-crystal of
ketoprofen with carbamazepine (P cnsempie = 0.983, Figure 5).
This combination was given only a modest likelihood of
formation by COSMO-RS and was not found by liquid-
assisted grinding in methanol.’® We also made an attempt to
synthesize this co-crystal, and by grinding equimolar mixtures
of both racemic and enantiopure ketoprofen with carbama-
zepine in the presence of a few drops of acetonitrile, two new
phases were found (Figures S4 and SS5). Crystals obtained
from slow evaporation were analyzed with single-crystal X-
ray diffraction and both proved to be binary co-crystals
(Figures S6 and S7). Not only are these the first reported co-
crystal structures of ketoprofen, but also two of the rare cases
where two drugs are found in the same crystal.’”!

Conclusion

This article introduced a new approach for the prediction
of binary co-crystal formation using an ensemble of artifical
neural networks. By combining the available binary co-crystal
data in the CSD with a large set of invalid combinations of
coformers, it becomes possible to train the neural networks
for the prediction of co-crystal formation. The approach uses
the molecular structures of two coformers, and outputs
a likelihood for co-crystal formation based on information
extracted from the data set.

In silico validation of the approach demonstrated its
excellent performance (accuracy >97%), and accuracy
values around 80 % are to be expected for cases where one
of the molecules is not found in co-crystals in the CSD.
Ketoprofen is such a case, and an analysis of its predictions
highlighted the relation between structural features and
model output, and lead to the discovery of a new drug-drug
ketoprofen-carbamazepine co-crystal.[”

The approach is applicable to virtually any molecule (even
prior to actual synthesis), and is therefore envisaged to be an
attractive tool for drug design and optimization in the
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Figure 5. Overview of the molecular structures from Figure 4 and their corresponding prediction values. The structures are ordered from left to
right based on their appearance in the dendrogram, and values larger than 0.8 are emphasized.

pharmaceutical industry. Predictions can be made as soon as
the molecular structure of for instance an active substance is
proposed or identified, making it useful in the most early

stages of the drug pipeline.
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