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The phenomenon of oxidative stress, characterized as an imbalance in the production of reactive oxygen species and antioxidant
responses, is a well-known inflammatory mechanism and constitutes an important cellular process. The relationship of viral
infections, reactive species production, oxidative stress, and the antiviral response is relevant. Therefore, the aim of this review is
to report studies showing how reactive oxygen species may positively or negatively affect the pathophysiology of viral infection.
We focus on known respiratory viral infections, especially severe acute respiratory syndrome coronaviruses (SARS-CoVs), in an
attempt to provide important information on the challenges posed by the current COVID-19 pandemic. Because antiviral
therapies for severe acute respiratory syndrome coronaviruses (e.g., SARS-CoV-2) are rare, knowledge about relevant
antioxidant compounds and oxidative pathways may be important for understanding viral pathogenesis and identifying possible
therapeutic targets.

1. Introduction

1.1. Oxidative Stress and Reactive Oxygen Species. The
concept of oxidative stress, an established term widely used
in scientific and medical niches, was proposed in 1985 by Sies
[1, 2]. Oxidative stress is a biological process that occurs
naturally during metabolism and plays several roles, such as
maintaining the balance between oxidant and antioxidant
molecules and the homeostasis of cells, tissues, and organs
[3, 4]. The main elements involved in oxidative stress are
reactive oxygen species (ROS), characterized as reactive
chemical species containing oxygen, such as superoxide
anion (O2

•−), hydrogen peroxide (H2O2), hydroxyl radical
(•OH), and singlet oxygen (O2) [5].

Through the adenosine triphosphate (ATP) synthesis
process of ATP synthase, a concentration gradient of protons
is established in mitochondria. In situations of cellular stress,
this gradient may collapse the electron transport chain

formed with electrons donated mainly from the reduced
form of nicotinamide adenine dinucleotide (NADH), leading
to the formation of ROS [6, 7]. In the transfer of electrons to
molecular oxygen, 1 to 5% of electrons in the respiratory
chain are lost, resulting mostly in the formation of superox-
ides (O2

•−). Therefore, any molecular process that decreases
the proficiency of electron chain transport may increase the
production of O2

•− and consequently the formation of other
ROS if more electrons are integrated into the O2

•− molecule
(Figure 1) [8]. Among the ROS-producing enzymes,
NADPH oxidase (NOX), an important immune mediator
enzyme highly expressed in granulocytes and monocytes/-
macrophages, has been reported to produce ROS more than
any other enzyme, including lipoxygenase [9]. However,
inducible nitric oxide synthase (iNOS) is capable of producing
nitric oxide (NO), a molecule involved in host defense and
immune regulation [10]. Under an inflammatory state, the
combination of nitric oxide and superoxide in large amounts
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results in the formation of peroxynitrite, which is produced by
immune cells and is a strong oxidant agent [11, 12].

The most common issue caused by the overproduction of
superoxide and hydrogen peroxide lies in the tissue damage
that these molecules may induce, which frequently involves
the generation of highly reactive hydroxyl radicals [13].
ROS produced in excessive amounts may be deleterious.
However, their production is indispensable for important

immunological responses against viruses and bacteria, estab-
lishing healthy cellular growth and differentiation processes
and modulating the gene expression of downstream targets
involved in DNA repair [14–16].

1.2. Antioxidant Response and Nrf2. ROS production, and
thus oxidative stress, is crucial for many biological processes,
including metabolism. However, it simultaneously induces
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Figure 1: The process of reactive oxygen species formation in SARS-CoV-2 infection. The virus is able to enter the cell through the ACE2
receptor, and the serine protease TMPRSS2 is located on the membrane of some cell types. This leads to the recognition of the pathogen
by a PRR, the recruitment of immune cells, and an increase in proinflammatory cytokines, thus leading to the production of reactive
oxygen species and oxidative stress, representing an important immune response of the host cell. In parallel to these processes, regulation
of the renin-angiotensin system (RAS) is also demonstrated, which, in this case, contributes to the increased inflammatory response and
the production of ROS. NADPH oxidase (NOX), the main enzyme expressed by granulocytes and macrophages, induces the production of
ROS, starting with reactive oxygen species formed from two oxygen molecules and an unpaired electron, superoxide anion (O2

-). From
there, the decreased proficiency of electron chain transport leads to the generation of other ROS in sequence, such as H2O2 and OH-. In
response to the peroxidation of polyunsaturated fatty acids and tissue damage generated by oxidative stress, expression of the nuclear
factor Nrf2 occurs along with the sMAF proteins, leading to the expression of antioxidant response elements (AREs) and consequently the
production of antioxidant enzymes, such as superoxide dismutases (SODs), in response to exacerbated O2

- production. Glutathione
peroxidases (GPXs) and catalase (CAT) act mainly by converting ROS into molecular water. Under homeostatic conditions, KEAP1
represses Nrf2 activity by marking Nrf2 for rapid degradation through the ubiquitin-proteasome system, thus preventing Nrf2 from
reaching the cell nucleus and transcribing antioxidant response genes.

2 Oxidative Medicine and Cellular Longevity



an antioxidant response, primarily represented by antioxi-
dant enzymes: superoxide dismutase (SOD), responsible for
the catalysis of the conversion of superoxide radicals (O2

•−)
to hydrogen peroxide (H2O2), which is then converted into
molecular water (H2O) by glutathione peroxidase (GPx)
and by catalase (CAT) [17]. Importantly, three isoforms of
SOD have been described in humans to date, and they are
characterized by different locations: cytosolic Cu/Zn-SOD
(SOD1), mitochondrial Mn-SOD (SOD2), and extracellular
SOD (SOD3). These enzymes have the potential to neutralize
superoxide ions by engaging in successive oxidative and
reductive cycles in conjunction with transition metal ions
[18]. Similarly, mammals express eight isoforms of GPx,
but only GPx1, GPx2, GPx3, GPx4, and GPx6 are selenopro-
teins in humans [19]. Curiously, antioxidants may be
recruited as direct scavengers of ROS or even as inhibitors
of primary superoxide formation (and that of other individ-
ual ROS) [20].

Glutathione (GSH), a well-described intracellular antiox-
idant, is a potential redox regulator molecule and is responsi-
ble mostly for cellular protection from damage by free
radicals, peroxides, and toxins [21]. In this context, glutathi-
one is a potential target for investigation regarding SARS-
CoV-2 infection.

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a
master transcription regulator of genes related to the antiox-
idant response [22]. Nrf2 is involved in a system associated
with Kelch-like ECH-associated protein 1 (Keap-1). In this
system, environmental stresses, including ROS production
and electrophiles, lead to the decoupling of Keap-1. This pro-
cess therefore allows Nrf2 accumulation in the cell nucleus
and the formation of a heterodimer with small musculoapo-
neurotic fibrosarcoma (sMAF) proteins, which bind to a cis-
acting element named the antioxidant responsive element
(ARE), thus conferring protection against oxidative insults
and cytotoxic molecules [23].

Nrf2 may prevent tissue and cell damage and decrease the
production of danger-associated molecular patterns
(DAMPs), which are released by necrotic cells and are immu-
nologically important for amplifying the inflammatory
response [24]. Nrf2 is an important regulator of inflamma-
tion, an essential part of innate immunity induced by infec-
tion and/or tissue injury. Protective responses are induced
by Nrf2 to remove deleterious signals and initiate wound
healing by the coordinated delivery of blood components
(plasma and leukocytes) to the location of infection or injury
caused by viruses, bacteria, or parasites [25]. However, in
exacerbated inflammatory responses, the production of dele-
terious free radicals begins in an unbalanced way, leading to
oxidative stress and the activation of different cell signaling
pathways [26].

1.3. Oxidative Stress in Respiratory Viral Infections. Viruses
are obligate intracellular parasites and hijack host cell
machinery to replicate. Viral infection causes a substantial
imbalance in the intracellular microenvironment, which
affects, among other systems, the redox system [27]. Previous
studies have already discussed the damage caused by oxida-
tive stress in pulmonary diseases and the repercussions that

develop in SARS-CoV-2 infection, showing the importance
of this topic in relation to COVID-19 [28, 29], as well as apo-
ptosis and autophagy in the same background [12].

Respiratory viruses, comprising human respiratory syn-
cytial virus (RSV), influenza (IV), human rhinovirus
(HRV), human metapneumovirus (HMPV), parainfluenza,
and adenoviruses and coronaviruses (CoVs), may infect the
upper and/or lower respiratory tract in humans and are the
causes of the common cold (the most prevalent disease in
the world). In some cases, the disease can worsen and cause
other complications, such as fever and pneumonia, especially
in high-risk populations, such as elderly individuals, chil-
dren, and immunosuppressed patients [30].

Respiratory viruses induce ROS-generating enzymes,
such as nicotinamide adenine dinucleotide phosphate oxi-
dases (NADPH oxidase, Nox) and xanthine oxidase (XO),
while creating unbalanced antioxidant levels. Murine cells
infected in vitro with IV show a reduction in ROS production
after NOx inhibition [31].

Depending on their production, ROS may play ambigu-
ous roles during viral infections. Excess ROS, namely, super-
oxide and its derivatives, is the main cause of lung injury
caused by influenza virus infection. Nox1 or Nox2 is also
important for inducing epithelial apoptosis and lung damage
by the virus [32]. Oxidative imbalance, in addition to causing
tissue damage, can contribute to cell-to-cell viral transmis-
sion [33] and robust cytokine and chemokine production,
leading to cytokine storms [34].

The increase in ROS production during influenza infec-
tion can activate the JNK/ERK/p38 MAPK and NF-κB path-
ways and lead to lung damage [35]. Furthermore, an increase
in nitric oxide synthase 2 (iNOS) has also been found in the
lungs of patients who died from IV [33].

Increased ROS production is also observed in RSV, which
causes the accumulation of lipid peroxidation products and
oxidized glutathione (GSH) in the plasma of children with
RSV-induced acute bronchiolitis [35, 36]. In HRV, this
ROS increase is induced by enhanced O2 production and
depleted intracellular GSH levels [37–39]. Antioxidant
capacity is also suppressed in RSV-infected children and in
HMPV-infected respiratory cells [40, 41].

RSV decreases Nrf2 mRNA levels in respiratory epithelial
cells [42]. In addition, RSV is capable of inducing Nrf2 dea-
cetylation and subsequent proteasomal degradation, which,
in turn, leads to the downregulation of antioxidant enzyme
expression [43].

The expression of antioxidants varies according to the
stage of infection. In a cell culture model, during the first
hours after infection, SOD1, SOD2, glutathione S-
transferase (GST), CAT, and GPx are induced. With the evo-
lution of the infection, only SOD2 continues to increase,
resulting in enhanced H2O2 production, whereas other anti-
oxidant enzymes, including those that are critical for neutral-
izing H2O2, are suppressed [42, 44]. The antioxidant system
is also affected by IV infection, showing a decrease in SOD
expression mediated by the proteasomal degradation of tran-
scription factors that drive SOD production [45, 46]. How-
ever, no differences in SOD, CAT, or IDO expression
during IV infection have been described [47]. There are,
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however, reports of increased SOD expression in asymptom-
atic IV-infected individuals [48].

Few studies have evaluated the role of the redox system in
infection with HRV or human metapneumovirus (HMPV).
HMPV has been shown to increase SOD2 levels and decrease
SOD3, CAT, glutathione S-transferase, and peroxiredoxin 1,
3, and 6 levels [49]. HRV increases the levels and activity of
SOD1 but does not affect the activity of SOD2, catalase, or
GPx [50].

Antioxidant capacity is also suppressed in RSV-infected
children and in HMPV-infected respiratory cells [40, 41].
In a recent study involving RSV, which promotes an infec-
tion largely related to oxidative lung injury, the degradation
of Nrf2, and consequently decreased levels of antioxidant
enzymes, researchers found that single-nucleotide polymor-
phisms (SNPs) in the catalase enzyme promoter gene
provided antioxidant protection against severe RSV bronchi-
olitis in samples of nasopharyngeal secretions from children
with the disease [51]. In agreement, in vivo models of RSV-
infected mice treated with polyethylene glycol-conjugated
catalase showed increased catalase activity and reduced
H2O2 damage, neutrophil elastase, and inflammation in the
airways. RSV decreases Nrf2 mRNA levels in respiratory epi-
thelial cells [42]. In addition, RSV is capable of inducing Nrf2
deacetylation and subsequent proteasomal degradation,
which in turn leads to the downregulation of antioxidant
enzyme expression [43].

In viral infection, Nrf2 exerts multiple effects. Nrf2 has
been described as having protective and antioxidant potential
against virus-induced cell damage and viral replication of
influenza A in vitro [52]. In contrast, Nrf2 was also described
as being a negative regulator of the stimulator of IFN
(STING) gene, a critical signaling molecule involved in the
innate response to cytosolic nucleic acid ligands in human
cells. STING is an important molecule that is also a focus of
our group studying the innate immunity of HIV-infected
mothers [53, 54].

1.4. Oxidative Stress in SARS-CoV Infections. Coronaviruses
(CoVs) constitute a single-stranded RNA virus family with
the largest viral genome ever described (approximately
30,000 nucleotides) [55]. Severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2) is the newest member of the
coronavirus family. Reported as a zoonotic virus, it likely
emerged in China in the province of Hubei, where it jumped
from bats and/or pangolins to humans [56]. Three months
after the first reports of human infection, SARS-CoV-2 infec-
tion became a pandemic and proved to be far more lethal
than its predecessors, killing more than 1.2 million people
in eleven months [57].

In addition to SARS-CoV-2, six other coronaviruses can
cause respiratory and intestinal diseases in humans. Four
coronaviruses induce mild respiratory disease in immuno-
suppressed individuals or severe respiratory disease in chil-
dren and elderly individuals (HCoV-NL63, HCoV-229E,
HCoV-OC43, and HKU1). Two others, Middle East respira-
tory syndrome coronavirus (MERS-CoV) and severe acute
respiratory syndrome coronavirus-1 (SARS-CoV-1), cause
more severe respiratory disease and have led to major out-

breaks in recent decades that combined to kill approximately
2,000 people [58, 59]. SARS-CoV-2 shares genetic similarities
with SARS-CoV-1 and MERS, with 79% and 50% similarity,
respectively, and all three cause respiratory disease [60].

Coronavirus disease 2019 (COVID-19) is caused by
SARS-CoV-2 infection and mainly affects the respiratory
system, but COVID-19 is also capable of inducing damage
to other organs. Viral transmission between humans occurs
by direct contact or by contact with droplets produced by
coughing or sneezing. In the lung, the virus targets type 2
alveolar cells with an affinity tenfold greater than that of
SARS-CoV-1. The new coronavirus enters the host cell
through the angiotensin-converting enzyme 2 (ACE2) recep-
tor [61] (Figure 2).

Cellular invasion is also dependent on the serine protease
TMPRSS2, which primes the viral spike protein [62, 63].
Cells in other organs can also express the ACE2 receptor,
such as cells in the esophagus and kidneys and enterocytes
in the small intestine and heart [64, 65]. ACE2 deficiency
impairs endothelial function in cerebral arteries and is related
to oxidative stress and aging in cerebrovascular dysfunction
[66]. Angiotensin-converting enzyme 2 also has protective
effects on endothelial cells through the miR-18a/Nox2/ROS
pathway, as shown by ROS overproduction and the upregu-
lation of Nox2 related to the downregulation of ACE2 [67].
Similar results have been found in renal ACE2 deficiency,
which was related to increased superoxide generation [68].
Considering these findings, the relationship between the
ACE2 receptor, oxidative stress, and coronaviruses should
be further investigated.

After virus recognition by a pattern recognition receptor
(PRR), the intracellular signaling cascade leads to type I IFN
production, which in turn induces the expression of sev-
eral antiviral factors that stop viral replication [54, 69].
Coronaviruses, such as SARS-CoV-1 and MERS, employ
escape mechanisms to suppress the response of cytosolic
and type I IFN sensors, promoting ubiquitination, inhibit-
ing nuclear factor translocation, and/or decreasing STAT1
phosphorylation [70].

Faced with an aggressive agent, such as infection or
trauma, the body may produce an exaggerated response in
an attempt to locate and eliminate the damage. This process
is known as systemic inflammatory response syndrome
(SIRS) or, if the source is infection, sepsis [71]. Moreover,
several immunological, hematological, and endocrine
changes are initiated that lead to acute-phase protein release
and cytokine storms. Although the objective is to eliminate
the offending agent, this exacerbated response can lead to tis-
sue damage and death [72].

The increases in several cytokines (such as IL-6, TNF,
and IL-10), neutrophils, and C-reactive protein are correlated
with disease severity. Increased inflammatory cytokine levels
are correlated with CD4+ and CD8+ T lymphocyte decreases
and decreased IFN-γ production [73]. This immunological
profile observed in patients indicates that COVID-19, like
SARS, is caused by an intense inflammatory process and that
this increase in cytokine levels may be involved in disease
pathogenesis [56]. A recent study proposed that the devastat-
ing production of ROS, increased formation of neutrophil
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extracellular traps (NETs), and, consequently, the suppres-
sion of the adaptive immune system are major causes of local
or systemic tissue damage that leads to severe COVID-19
[74]. Complementing this hypothesis, another study sug-
gested that impaired redox balance, and thus excessive ROS
production, leads to red blood cell membrane peroxidation,
which in turn perpetuates neutrophil activation [75].

Taking oxidative stress into consideration, granulocytes
play a relevant role in viral infections, even COVID-19
[76]. Neutrophils may represent the most important cell type
in this context, since they produce significant superoxide free
radicals and H2O2, constituting an important mechanism in
the elimination of pathogens [77]. However, the overproduc-
tion of reactive oxygen species leads to tissue damage and
consequently denotes the severity of viral infections, as
previously mentioned. The activation of agranulocytes,
such as macrophages, leads to a respiratory burst in
response to infection with SARS-CoV-2 and may also
induce ROS production and therefore tissue oxidative
damage, contributing to the severity of the disease and a
chronic stage of infection [78].

In the lung, cytokine storms are produced mainly by
highly activated macrophages and can cause complications,
such as acute respiratory distress syndrome (ARDS) and
respiratory and cardiac failure [79, 80]. Studies in mice
infected with SARS-CoV-1 have demonstrated that cytokine
storms also dampen adaptive immunity [81].

During SARS-CoV-1 infection in mice, the imbalance in
antioxidant production and ROS is exacerbated [82]. Some
viral proteases are able to stimulate ROS production, which
in turn activates NF-κB [83]. Mitogen-activated protein
kinases (MAPKs) constitute a family of serine/threonine
kinases that are activated (phosphorylated) during SARS-
CoV-1 infection. As previously described, this activation is
dependent on the cellular microenvironment state, and
oxidative stress can be one of the triggers for MAPK pathway
activation [27]. Moreover, in vitro assays have shown that
SARS-CoV-1 replication is inhibited by NO in a
concentration-dependent manner [84].

Although the focus of this review is pulmonary disease
and its sequelae mainly caused by oxidative stress, cardiac
manifestations in COVID-19 are systemically relevant and
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most affected by infection, the virus enters alveolar and epithelial cells through the ACE2 receptor and the TMPRSS2 serine protease,
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NOX enzyme activation. The cytokine storm can lead to the activation of MAPKs and therefore the activation of NFκB, the major nuclear
factor related to inflammatory responses. All of these activation pathways lead to mitochondrial dysfunction and excessive ROS production.
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represent a result of cytokine storms in response to viral
infection. Oxidative stress also plays an important role in this
regard considering the direct viral invasion of cardiomyo-
cytes, as well as typical respiratory damage from the virus
that causes hypoxia and leads to redox imbalance and injury
to cardiomyocytes [85]. Cardiologically, another significant
consideration refers to NADPH oxidase-2 (NOX-2), which
is one of the most important sources of superoxide anion
in humans, appears to be increased in patients with pneu-
monia and is associated with an increase in troponin. These
data involving the NOX-2 enzyme have been suggested as a
possible cause of myocardial damage, even for COVID-19
patients [86, 87].

Several factors can contribute to disease severity, such as
hypertension, asthma, heart disease, diabetes, obesity, and
age [88]. The COVID-19 mortality rate is higher in elderly
individuals for several reasons, such as negative ACE2 regu-
lation; homeostatic maintenance of the renin-angiotensin
system (RAS) as a negative regulator; and immunosenescent
status, which consists of a loss of replicative capacity, cell
apoptosis, and adverse structural changes in immune cells
[89]. Although ACE2 expression is necessary for viral entry
into the host cell, ACE2-knockout mice are resistant to
SARS-CoV infections [90, 91], and an increase in or
unchanged level of expression of this enzyme has been asso-
ciated with a protective role against disease severity. In fact,
ACE2 downregulation after viral entry may be involved in
the pathogenesis of COVID-19. In an animal model, ACE2
depletion or inactivation after SARS-CoV infection pro-
moted greater severity of the respiratory syndrome than that
observed in wild-type animals. The loss of ACE2 led to
increased vascular permeability, lung edema, and neutrophil
accumulation. However, when treated with catalytically
active recombinant ACE2 protein, these symptoms were
ameliorated [92].

ACE2 is a component of the RAS, which regulates blood
pressure as well as inflammation and oxidative stress [93, 94].
RAS regulation is initiated when angiotensinogen (Ang),
produced by the liver and adipocytes, is cleaved by renin to
form angiotensin I. The cleaved form may follow two main
axes: the first is dependent on ACE and leads to Ang II for-
mation, and the second depends on both ACE and ACE2
and leads to Ang1-7 formation. Ang II may act by binding
to two receptors, the Ang II type 1 receptor (AT1R) and
Ang II type 2 receptor (AT2R). AT1R signaling induces
mechanisms that increase blood pressure and inflammation,
while AT2R induction has the opposite effect. On the other
hand, Ang1-7 binds to the receptors AT2R, MasR, and
MRgD, resulting in antagonistic effects on the Ang II/AT1R
axis [95]. The relationship between the RAS, mainly the
ACE/Ang II/AT1R axis, and ROS production has been
described. Ang II may indirectly increase ROS production
by the induction of proinflammatory cytokines, such as
TNF-α, IL-1β, and IL-6. Furthermore, Ang II binding to
AT1R promotes ROS production by NOX protein activation
through the mediators protein kinase C (PKC) and Src
kinases. In turn, ROS cause mitochondrial dysfunction and,
consequently, further ROS production [94, 96]. Ang II also
inhibits antioxidant molecules. The treatment of rat cardiac

fibroblasts with Ang II increased the production of superox-
ide ions and decreased the activity of Mn-SOD and Cu/Zn-
SOD [97]. Supporting these findings, fimasartan, an AT1R
blocker, inhibits Nox expression and increases the expression
of Nrf2 and antioxidant enzymes, such as CuSOD, Mn-SOD,
and catalase [98].

Since the global spread of COVID-19, several reports
about neurological symptoms have emerged [99, 100]. The
detection of SARS-CoV [101] and SARS-CoV-2 [102] in
cerebrospinal fluid has confirmed that coronaviruses can
invade the central nervous system (CNS). Some mechanisms
have been proposed to explain CNS damage by SARS-CoV-2,
such as hypoxia, direct viral injury, immune-mediated dam-
age, and ACE2 shedding [103]. It is possible that oxidative
stress is elicited at least in the proposed mechanisms of
immune-mediated damage and ACE2 shedding. In fact,
because of the large amounts of polyunsaturated fatty acids,
the brain is particularly vulnerable to ROS [104], and oxida-
tive stress is suggested to be involved in several neurodegen-
erative and neuropsychiatric disorders, ranging from
depression to Alzheimer’s disease [105]. Again, imbalanced
RAS activation in the brain may be related to encephalopathy
in COVID-19. The ACE2/Ang1-7/Mas axis is reported to
confer protection against cerebrovascular diseases, such as
ischemic stroke, eliciting antithrombotic, anti-inflammatory,
and antioxidative effects [106]. In an experimental model of
Ace2-knockout mice infused with Ang II, gene therapy with
an adenovirus vector expressing ACE2 in the hypothalamus
was able to reduce NOX activity and normalize autonomic
function [107]. Furthermore, another study showed that
treatment with Ang1-7 attenuated neuronal apoptosis, which
was accompanied by elevated SOD activity and reduced
NOX gp91phox levels in the brains of spontaneously hyper-
tensive rats [108].

1.5. Therapeutic Strategies. Cytokine storms lead to leukocyte
accumulation and activation in the lungs; thus, ROS and
proteases are produced in large amounts, leading to damage
to the capillary endothelium and alveolar epithelium [109].
Many studies have shown that natural products, vitamins,
and compounds are important agents with anti-
inflammatory and antioxidant properties that might provide
promising treatment and/or prevention of the progression of
COVID-19 [110–112].

In the immune system, vitamins, such as C, D, and E,
seem to play an important role against SARS-CoV2 infection.
Vitamin D (25-hydroxyvitamin D (25(OH)VD) comprises a
number of fat-soluble secosteroids and has been increasingly
described due to its anti-inflammatory and epigenetic regula-
tor potential [113–115]. In immune cells, vitamin D is able to
regulate effector T cell differentiation by modulating antigen-
presenting dendritic cells (DCs) and by decreasing the syn-
thesis of IL-12, a cytokine that promotes Th1 cell responses
[116]. Additionally, this component showed the ability to dif-
ferentiate naive T cells into the Th17 cell type [117], as well as
potential to stimulate the production of IFN-I and cathelici-
dins and defensins (AMPs), which are molecules with impor-
tant antiviral action in this context [118, 119]. Previous
studies have shown positive associations between vitamin D
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deficiency and mortality in subjects with severe forms of
pneumonia [120] and with the severity of COVID-19 [121],
especially in elderly individuals [122, 123]. In this regard,
vitamin D supplementation promotes binding of the SARS-
CoV-2 cell entry receptor ACE2 to AGTR1 (angiotensin II
receptor type 1), thus creating fewer opportunities for the
virus to attach to ACE2 and enter the cell [124]. Considering
oxidative stress, vitamin D also has relevance. The antioxi-
dant enzyme glutathione (GSH) is required to maintain cir-
culating levels of 25-hydroxyvitamin D (25(OH)VD) [125].
Therefore, viral infection-mediated excess oxidative stress
might be considered a relevant target in this therapeutic
approach.

Vitamin E is a lipid-soluble compound with relevant
antioxidant properties and has eight distinct groups, known
as α-, β-, γ-, and δ-tocopherols and α-, β-, γ-, and δ-tocotrie-
nols [126]. The most biologically available isoform is α-
tocopherol, which is found in hazelnuts, peanuts, and avo-
cado, among other foods. This micronutrient is described
as an effective antioxidant considering its capacity to coun-
teract free radicals and ROS by donating a hydrogen ion from
its chromanol ring [127]. One of the most damaging effects of
ROS is lipid peroxidation of the cell membrane, and vitamin
E plays an important role in this regard by protecting polyun-
saturated fatty acids in the membrane from oxidation [128,
129]. Immunologically, α-tocopherol plays many roles in dif-
ferent cell types. Considering the importance of pulmonary
diseases in coronaviruses, the immunomodulatory effects
highlighted are decreased production of prostaglandin E2
(PGE2), cyclooxygenase 2 COX2, and nitric oxide (NO) by
macrophages; increased T cell proliferation and natural killer
cell (NK) activity; and the intensification of the antibody
response by B cells [130].

Moreover, a study involving a murine model showed that
vitamin E (α-tocopherol) in combination with oseltamivir
(neuraminidase inhibitor) reduced the mortality rate of
infection with influenza virus, decreased infectious virus con-
tent when analyzing lung parameters and showed a marked
diminishment in the lung index and pathology [131]. L-
ascorbic acid (vitamin C) showed antiviral immune
responses against IV in a mouse model through increased
production of IFN-α/β [132].

Resveratrol is a polyphenolic compound found in red
wine, grapes, cocoa, and other foods. It presents anti-
inflammatory properties by interfering with immune cell reg-
ulation and proinflammatory cytokine synthesis. In addition,
resveratrol has a protective role against several diseases, such
as cancer, cardiovascular disease, and respiratory illness
[133–136]. In a mouse model, resveratrol administration
resulted in ACE2 dysregulation and abdominal aortic aneu-
rysm growth inhibition [137]. Moreover, resveratrol treat-
ment resulted in significantly improved survival and
decreased pulmonary viral titers in IV-infected mice [138].

GSH has also shown promise in assays conducted with
mice in vitro. The addition of GSH to drinking water
decreased the viral titers in the lung and trachea in animals
infected with IV [139]. Glutathione assumes a protective role
against peroxynitrite-mediated DNA damage during acute
inflammation, supporting a potential therapeutic strategy in

severe COVID-19 cases [140]. Ebselen, an organoselenium
compound, mimics glutathione peroxidase and peroxire-
doxin enzyme activity [141]. This compound protects the
lung against oxidative stress-induced lung inflammation
in vivo, mainly caused by the enhanced presence of neutro-
phils and macrophages, proteolytic burden, and IL-17
expression in bronchoalveolar lavage fluid [142]. Ebselen
uses a glutathione peroxidase-1 (GPx1) mimetic to reduce
influenza A virus-induced lung inflammation [143]. Given
that GSH is important for immune responses due to the acti-
vation of antioxidant mechanisms and optimal functioning
of lymphocytes and other immune cells [144], natural com-
pounds that activate the Nrf2-antioxidant response element
(ARE) pathway and thus glutathione and other antioxidant
elements may be promising targets.

Naringenin is a flavonoid abundantly found in citrus
fruits and has shown prominent therapeutic potential in a
variety of diseases, especially due to its anti-inflammatory
and antioxidant activities [145]. A study using lipopolysac-
charide- (LPS-) induced injury in a normal human bronchial
epithelium model indicated that naringenin was able to
attenuate mitogen-activated protein kinase (MAPK) activa-
tion by inhibiting the phosphorylation of ERK1/2, c-Jun
NH(2)-terminal kinase (JNK), and p38 MAPK. These
findings suggest that naringenin reduces secretion of the pro-
inflammatory cytokines TNF-α and IL-6 and mRNA expres-
sion, likely by blocking activation of the NF-κB and MAPK
pathways [146]. Furthermore, naringenin is capable of
activating Nrf2 and consequently inducing the production
of antioxidant enzymes, including GPX [147].

Most studies involving antioxidant therapeutic
approaches are directed against IV and HSRV in cell or
mouse models. N-acetylcysteine (NAC), an analog and pre-
cursor of reduced glutathione, has shown promise against
the effects of IV infection. Long-term treatment (6 months)
with NAC resulted in a significant decrease in the frequency
of influenza-like episodes, the severity of the symptoms, and
the length of time confined in bed [148]. In another in vitro
assay, adding zinc to the culture medium after RSV infection
led to significant inhibition of RSV titers [149].

Another antioxidant with antiviral activity is CAT. In
mice, CAT was able to suppress the inflammatory response
by promoting a protective role against pneumonia [150].
The survival time and rates of mice with H1N1-induced
pneumonia were increased by treatment with recombinant
human CAT [151].

Thioredoxin (Trx) is a ubiquitous thiol oxidoreductase
system that has different isoforms: thioredoxin, thioredoxin
reductase, and NADPH. This system plays a role in a variety
of biological processes related to defense against oxidative
stress [152]. Trx is widely expressed in type II pneumocytes,
macrophages, and bronchial epithelial cells and may be regu-
lated by Nrf2 and thus express AREs [153]. In patients with
acute lung injury, extracellular thioredoxin levels were
increased, indicating acute lung injury [154]. A study involv-
ing a murine model of influenza pneumonia showed that
Trx-1 significantly enhanced the survival rate and attenuated
lung histological changes, suggesting a pharmacological
strategy for severe influenza virus infection [155]. A

7Oxidative Medicine and Cellular Longevity



recombinant human serum albumin-thioredoxin 1 (Trx)
fusion protein has also been demonstrated as an interesting
therapeutic approach by inhibiting inflammatory cell
responses and suppressing the overproduction of NO in the
lung [156].

Protein disulfide isomerases (PDIs) constitute a super-
family of redox chaperones that participate in important cel-
lular redox state processes, such as the modulation of cellular
oxidative stress mediating homeostasis of the antioxidant
glutathione [157], modulation of endoplasmic reticulum
stress, the unfolded protein response, communication
between endoplasmic reticulum and mitochondria, and the
balance between cell proliferation and apoptosis [158]. A
pulmonary fibrosis study showed that a domain of PDI
(TXNDC5) was highly upregulated in patients with idio-
pathic pulmonary fibrosis as well as a mouse model of this
injury, suggesting that this protein could be a novel therapeu-
tic target in the treatment of pulmonary fibrosis [159]. There
are currently no studies showing the effects of PDIs on
COVID-19. However, the deletion of PDIA3 (a member of
the PDI family) in mice is associated with decreased viral
burden and proinflammatory responses from lung epithelial
cells in influenza A virus infection [160].

Our suggestion, therefore, is to evaluate foods that con-
tain these antioxidants and vitamins as both nutrients and
quality agents for preventing severe SARS-CoV-2 infection,
since prevention through balanced eating and healthy habits
is more important than therapeutic treatment. Considering
critically ill patients, we consider a potential therapeutic
strategy for COVID-19 to include compounds that have
anti-inflammatory and antioxidant actions, highlighting
those capable of decreasing the effects of the cytokine storm,
activating Nrf2-ARE and blocking activation of the NF-κB
pathway, as well as presenting antiviral activity by enhancing
the production of IFN-I. Nevertheless, taking into consider-
ation that some compounds may increase the production of
antibodies, their use or vitamin supplementation may be a
strategy to enhance vaccine efficacy.

2. Conclusion

Respiratory viruses lead to many deaths and can spread
worldwide. In addition to pronounced inflammation, they
also cause changes in the redox system. Little is known about
the mechanisms involved in this imbalance, but oxidative
stress likely contributes to the increased inflammation and
tissue damage caused by the infection. The roles of antioxi-
dants may be instrumental in balancing the expression of
ROS and regulating inflammation. However, tests to prove
the effectiveness of antioxidants are limited to in vitro and
animal models. Clinical studies are required to try to restore
the oxidative system in humans with viral infections.
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