Table 4.
No. | Software | MHC Type | Core network model | Framework | Group | Data Typea) | Input encoding | Usability b) | Year | Reference |
---|---|---|---|---|---|---|---|---|---|---|
1 | ConvMHC | MHC Class I | CNN | Keras | Pan‐specific | BA | Handcrafted features | W,P | 2017 | [142] |
2 | HLA‐CNN | MHC Class I | CNN | keras/Theano | Allele‐specific | BA | Word embedding | O,C,T | 2017 | [143] |
3 | DeepMHC | MHC Class I | CNN | ‐ | Allele‐specific | BA | One‐hot | ‐ | 2017 | [144] |
4 | DeepSeqPan | MHC Class I | CNN | Keras/Tensorflow | Pan‐specific | BA | One‐hot | O,C,P,T | 2019 | [145] |
5 | AI‐MHC | MHC Class I/II | CNN | TensorFlow | Pan‐specific | BA | Word embedding | W,P | 2018 | [155] |
6 | DeepSeqPanII | MHC Class II | CNN+RNN | PyTorch | Pan‐specific | BA | One‐hot + BLOSUM | O,C,P,T | 2019 | [154] |
7 | MHCSeqNet | MHC Class I | RNN | Keras/Tensorflow | Pan‐specific | BA | Word embedding | O,C,P,T | 2019 | [146] |
8 | MARIA | MHC Class II | RNN | Keras/Tensorflow | Pan‐specific | BA + MS | One‐hot | W,P | 2019 | [138] |
9 | MHCflurry | MHC Class I | CNN | Keras/Tensorflow | Allele‐specific | BA + MS | BLOSUM | O,C,P,T | 2018 | [147] |
10 | DeepHLApan | MHC Class I | RNN | Keras/Tensorflow | Pan‐specific | BA + MS | Word embedding | O,C,W,P | 2019 | [148] |
11 | ACME | MHC Class I | CNN | Keras/Tensorflow | Pan‐specific | BA | BLOSUM | O,C,P,T | 2019 | [149] |
12 | EDGE | MHC Class I | DNN | Keras/Theano | Allele‐specific | MS | One‐hot | O | 2019 | [137] |
13 | CNN‐NF | MHC Class I | CNN | MXNet | Allele‐specific | BA + MS | Handcrafted features | O | 2019 | [150] |
14 | MHCnuggets | MHC Class I/II | RNN | Keras/Tensorflow | Allele‐specific | BA + MS | One‐hot | O,C,P,T | 2019 | [156] |
15 | DeepNeo | MHC Class I | CNN | Theano | Pan‐specific | BA | 2D interaction map | ‐ | 2020 | [151] |
16 | DeepLigand | MHC Class I | CNN | PyTorch | Pan‐specific | BA + MS | Word embedding + BLOSUM + One‐hot | O,C,P,T | 2019 | [152] |
17 | PUFFIN | MHC Class I/II | CNN | PyTorch | Pan‐specific | BA | One‐hot + BLOSUM | O,C,P,T | 2019 | [157] |
18 | NeonMHC2 | MHC Class II | CNN | Keras/Tensorflow | Allele‐specific | MS | Handcrafted features | O,C,W,P,T | 2019 | [139] |
19 | USMPep | MHC Class I/II | RNN | PyTorch | Allele‐specific | BA | Word embedding | O,T | 2020 | [158] |
20 | MHCherryPan | MHC Class I | CNN+RNN | Keras/Tensorflow | Pan‐specific | BA | BLOSUM | ‐ | 2019 | [153] |
21 | DeepAttentionPan | MHC Class I | CNN | PyTorch | Pan‐specific | BA | BLOSUM | O,C,P,T | 2019 | [141] |
BA, binding assay data; MS, eluted ligand data from mass spectrometry experiments;
O, open‐source; C, command line; P, provide trained model for prediction; W, web interface; T, provide option for model training. The link of each tool could be found at https://github.com/bzhanglab/deep_learning_in_proteomics.