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Classification of parotid gland tumors by using multimodal MRI
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Various MRI sequences have shown their potential to discriminate parotid gland

tumors, including but not limited to T2-weighted, postcontrast T1-weighted, and

diffusion-weighted images. In this study, we present a fully automatic system for the

diagnosis of parotid gland tumors by using deep learning methods trained on multi-

modal MRI images. We used a two-dimensional convolution neural network, U-Net,

to segment and classify parotid gland tumors. The U-Net model was trained with

transfer learning, and a specific design of the batch distribution optimized the model

accuracy. We also selected five combinations of MRI contrasts as the input data of

the neural network and compared the classification accuracy of parotid gland tumors.

The results indicated that the deep learning model with diffusion-related parameters

performed better than those with structural MR images. The performance results

(n = 85) of the diffusion-based model were as follows: accuracy of 0.81, 0.76, and

0.71, sensitivity of 0.83, 0.63, and 0.33, and specificity of 0.80, 0.84, and 0.87 for

Warthin tumors, pleomorphic adenomas, and malignant tumors, respectively.

Combining diffusion-weighted and contrast-enhanced T1-weighted images did not

improve the prediction accuracy. In summary, the proposed deep learning model

could classify Warthin tumor and pleomorphic adenoma tumor but not malignant

tumor.
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1 | INTRODUCTION

Parotid gland tumor (PGT) is the most common type of salivary gland tumor. Major PGT types include pleomorphic adenoma (PMA), Warthin

tumor (WT), and malignant tumor (MT). Determination of the type of PGT is crucial for clinical diagnosis and subsequent treatment. Imaging
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modalities, such as MRI and computed tomography, are useful to identify the location and size of PGTs. Fine-needle aspiration biopsy is the

primary method for identifying the tumor type, but its sensitivity is low (70%-80%) for recognizing malignant PGTs.1,2

MRI can be useful for tumor classification. For example, T1- and T2-weighted images clearly present the texture of tumors, including areas of

normal and lesion tissues.3 High-grade malignant salivary gland tumors are distinguished on routine MR images by ill defined borders, cystic

components, low T2 signal intensity, necrosis, and invasion of surrounding tissues. However, MRI is often unable to distinguish between benign

and malignant salivary tumors.4–6 The apparent diffusion coefficient (ADC) derived from diffusion-weighted imaging (DWI) has been shown to be

associated with tumor cellularity, and MTs exhibit hyperintensity in DWI.7,8 The ADC value of a PGT region is useful for differentiating between

WTs and PMAs.9–12 However, the mean ADC values of WTs and MTs are not significantly different.8,10,13 The ADC has a sensitivity of 50%-60%

in distinguishing MTs.9,14 Therefore, identifying MTs through MRI remains a challenge.

Recently, deep learning methods, particularly convolution neural network (CNN)-based models, have demonstrated effectiveness in image

recognition tasks. CNN methods for pixel-wise classification, also referred to as semantic segmentation, are now widely employed in computer-

vision applications, such as robotics and self-driving cars.15,16 The semantic segmentation method has also been used in MRI applications. For

example, in the global competition of the Multimodal BrainTumor Segmentation Challenge (BraTS),17,18 researchers achieved an accuracy of more

than 80% for the pixel-wise classification of brain gliomas. In addition, deep-learning-based tumor segmentation and classification have been

investigated for several cancers, including breast cancer,19,20 liver tumor,21–23 and nasopharyngeal carcinoma.24 We hypothesize that the deep

learning method on MRI data can also help detect and distinguish PGTs. In this study, we implemented a semantic segmentation method of

multimodal MRI images for the segmentation of PGTs and classification of tumor types.

2 | METHODS AND MATERIALS

2.1 | The patient cohort and MRI protocol

The Institutional Review Board of Tri-Service General Hospital approved the study and waived the requirement of written informed consent for

this retrospective study. Eighty-five consecutive patients with PGT (54 men and 31 women; age 49.6 ± 15.6 years) who underwent MRI examina-

tion were enrolled. Their PGTs were of the types WT (n = 27), PMA (n = 33), and MT (n = 25) according to histologic findings. All MRI examina-

tions were performed on a 1.5 T MRI system (Signa HDx, GE Healthcare) with an eight-channel neurovascular head-and-neck array coil. Before

contrast administration, the scanning protocol included T2-weighted and DWI sequences. Acquisition parameters for T2-weighted imaging were

slice orientation axial, TR 3150 ms, TE 77.3 ms, number of excitations 2, and slice number 32. Moreover, the single-shot echo-planar DWI with

parameters (slice orientation axial, TR 7000 ms, TE 72.2 ms, number of excitations 4, slice number 18, and fat saturated) were acquired with diffu-

sion gradients b = 0 and 1000 s/mm2 applied in each of three orthogonal directions. After contrast administration (gadolinium-DTPA,

0.1 mmol/kg), we acquired T1-weighted images by using fat-saturated fast spin-echo with the following parameters: slice orientation axial, TR

616.7 ms, TE 12 ms, number of excitations 0.5, and slice number 32. Thus, we collected datasets containing four MRI contrasts for each patient,

namely T2 weighted, T1 weighted with contrast enhancement, b0 (DWI, b = 0 s/mm2), and b1000 (DWI, b = 1000 s/mm2).

2.2 | Data conversion and image registration

After data acquisition, we collected all DICOM image files and sorted them by identifying DICOM tags. Next, the procedure converted files into

NIfTI format files with the dcm2niix software (https://github.com/rordenlab/dcm2niix). We transferred them to a workstation for further

processing. A board-certified radiologist (CJJ), with more than 15 years of experience in head-and-neck MRI, manually outlined the region of the

tumor on contrast-enhanced T1-weighted images and constructed another three-dimensional (3D) volume with pixels labeled as 0, nontumor (NT;

including background), 1, WT, 2, PMA, and 3, MT, according to histological records. Finally, the procedure saved the 3D volume with the tumor

labels into another NIfTI file.

The subsequent step was to co-register the four volumes by using the Advanced Normalization Tools (ANTs) software package

(http://stnava.github.io/ANTs/). We registered the T2 volume to the contrast-enhanced T1-weighted volume. Subsequently, we used deform-

able registration to obtain the coordinate transformation between the b0 and T2 volumes and used the transformation to obtain the registered

b0 and b1000 volumes. Using the obtained diffusion-weighted volumes, we calculated ADC maps using the equation ADC = ln[(SI0/

SI1000)]/1000, where SI0 and SI1000 are the signal intensities of the b0 and b1000 volumes, respectively.25 The ADC maps subsequently under-

went median filtering with a 3 × 3 kernel. Therefore, we had six 3D volumes, including the contrast-enhanced T1, T2, b0, b1000, ADC, and

tumor label volumes. They were presented as cT1 , cT2 , bb0 , db1000 , dADC and dSEG, respectively. The matrix size of each volume was 256 × 256 × 32.

For the upcoming deep learning procedures, we normalized the pixel values of cT1 , cT2 , bb0 , and db1000 based on the maximum intensity of each

volume. Finally, we extracted two-dimensional (2D) slices from the 3D volumes for further usage in the deep learning training procedures. For
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every slice, we merged cT1 , cT2 , bb0 , db1000 , and dADC data into a 256 × 256 × 5 matrix. This matrix was termed a five-channel “stack.” We collected

2726 stacks from the 85 patients, including 463 stacks covering PGTs and 2263 stacks without PGTs. Figure 1A shows an example stack of the

five modalities of MRI. Figure 1B presents the examples of the manually outlined region of the three tumor types (red, WT, green, PMA, and blue,

MT). Because of the restriction of the input layer of the implemented neural network, which will be discussed later, the input stack size was fixed

to a four-channel stack (256 × 256 × 4). To compare the relation between classification accuracy and MR contrasts, we generated the following

types of four-channel stack: sT2 combining four identical images (cT2 , cT2 , cT2 , and cT2 ), sT1 combining (cT1 , cT1 , cT1 , and cT1 ), sT1T2 combining (cT1 , cT1 ,
cT2 , and cT2 ), sDWI consisting of (zeros, bb0 , db0100 , and dADC), sALL consisting of (cT1 , cT2 , bb0 , and db1000 ), and sALL2 consisting of (cT1 , cT2 ,
db1000 ,and dADC).

2.3 | Deep learning: U-Net and transfer learning

We used 2D U-Net for pixel-wise tumor classification.26 The network consisted of encoding and decoding paths with convolutional blocks. Each

of the blocks consisted of a 3 × 3 convolution layer followed by a rectified linear unit and a dropout layer. In the encoding path, the output of

each block was down-sampled with a max-pooling operation with a stride of 2. In the decoding path, the input of each block was concatenated

with the corresponding feature maps obtained in the encoding path, and the output of each block was up-sampled using a transpose convolution.

The final output layer of the U-Net was connected to a multiclass softmax classifier.

To initialize U-Net, we used transfer learning, which refers to transferring network weights from a pretrained model to another model. In

general, the pretrained models are trained with immense numbers of datasets. With the same architecture of the deep learning network, the

weights of the pretrained model can be utilized as the initial values of the weights for the new model. Because the weights are linked to the

process of extracting and filtering features, most deep learning machines are specialized in a particular field or task. Therefore, we adapted a

method that won the third prize in BraTS 2017 to produce the pretrained model.27 In that model, a four-channel input layer was implemented,

and the U-Net was pretrained with four types of brain MR image (ie T2, FLAIR, T1, and contrast-enhanced T1) and three tumor labels

(1, necrotic and nonenhancing tumor, 2, peritumoral edema, and 3, gadolinium-enhanced tumor). The training set of BraTs 2017 included

285 patients with gliomas. The matrix size of the BraTs 2017 dataset was 240 × 240 × 155. We extracted 155 2D slices from each dataset

and interpolated their matrix size into 256 × 256. The total number of images and steps for training the BraTS model were 155 × 285 = 44

175 and 600 000, respectively.

After constructing the pretrained model, we transferred its weights to initialize the training procedure in our current study for classifying

PGTs. The training parameters of U-Net were the following: optimizer, Adam, batch size, 6 or 8, loss, cross-entropy, beta of L2 regularization,

F IGURE 1 A, An example stack consisting of five types of MRI image. From left to right and top to bottom, they are contrast-enhanced T1,
T2, b0, b1000, and ADC images. The ADC map was reconstructed from b0 and b1000 images. We had 2726 stacks from 85 patients. B, Manually
drawn regions of interest of the three types of tumor: NT areas are indicated in black, WT in red, PMA in green, and MT in blue. In the stored file,
we used numbers 0 to 3 for NT, WT, PMA, and MT pixels, respectively
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10−7, and training steps, 10 000. We employed image augmentation methods, including random image up-down and left-right flipping, rotation

(ranging from 15� to −15�), and contrast adjustments (ranging from 0.6 to 1.4), in the training procedures to enhance the variability of the images.

The U-Net was implemented with the TensorFlow framework (v1.8) under the Python (v3.6) environment and was trained on a home-built

workstation with a 1080 GPU (1080 Ti, Nvidia Corporation, Santa Clara, CA, USA).

2.4 | Cross-validation, prediction, and performance assessment

We distributed the 2726 stacks into three groups by using stratified random sampling to conduct a threefold cross-validation of the U-Net

model.26 All the stacks of one patient were dispatched into the same group, and every group had a proportional allocation of the three tumor

types. The number of patients in the three groups was (WT 9, PMA 8, WT 8), (9, 8, 8), and (9, 8, 9), respectively. We performed eight trials of

random sampling and U-Net training. After the training stage, we built U-Net models for the pixel-wise classification of 2D MR images. Because

the PGT datasets were 3D volumes with a matrix size of 256 × 256 × 32, we split each 3D volume into 32 images, obtained the model inferences

of the images, and then merged them back into a 3D volume. This volume is termed the predicted dSEG. The matrix size of the predicted dSEG was

the same as the input volume (ie 256 × 256 × 32), and pixel values presented classification results (ie 0 for background, 1 for WT, 2 for PMA, and

3 for MT). Subsequently, for each predicted dSEG, we counted the pixel numbers of three tumor types in it, identified the tumor type with the

largest pixel number, and unified the tumor category for all slices. Finally, we stored the predicted dSEG in a NIfTI file format. We then evaluated

segmentation results by using Dice coefficients and calculated the accuracy of tumor classification results.

2.5 | Comparing training schemes: transfer learning and input batches

During the preliminary investigation stage, we evaluated four training schemes to determine a scheme that optimized the tumor classification

performance. In Scheme 1, the input batch size was six, and transfer learning was not applied. The training procedure randomly selected six stacks

from the training stacks containing all three PGTs. Scheme 2 was the same as Scheme 1 but with transfer learning. Scheme 3 was the same as

Scheme 2 except that the input batch was not a random mix of three tumor types but comprised exactly two WT, two PMA, and two MT stacks.

In Scheme 4, transfer learning was applied, and all stacks, including both tumor and NT stacks, were used to train the U-Net model. The batch size

was eight stacks—two WT, two PMA, two MT, and two NT stacks. To select the optimized training scheme, we trained the U-Net model by using

the sDWI stacks and the four schemes, and the training scheme that yielded the best results was then chosen to evaluate the segmentation and

classification performance.

3 | RESULTS

3.1 | Visualization of training procedures

Figure 2 displays intermediate results obtained during the training process of sALL. The first column presents all input images, including cT1 ,
cT2 , bb0 , and bbk . The following three columns demonstrated the outputs of different convolutional layers. The features were extracted layer by

layer in the encoding path, and the output of the fifth layer was found to have the lowest spatial resolution. Next, an up-sampling (decoding)

path was started. The output of the seventh layer demonstrated a higher spatial resolution than that of the fifth layer. The network generated

softmax values for each class of each pixel. The value presented the probability distribution of the four categories (ie NT, WT, PMA, and MT) for

each pixel.

3.2 | Training scheme comparison

Figure 3 compares Schemes 1 and 2. Figure 3A shows the input DWI stack. This patient had one WT in the right parotid gland. Figure 3B presents

predicted dSEG after different training steps for Scheme 1 (upper row) and Scheme 2 (lower row), respectively. The tumor was clearly outlined

after 5000 training steps for Scheme 1 and 1000 for Scheme 2. After 5000 steps, the Dice coefficient of the Scheme 2 result was considerably

higher than that of Scheme 1. This suggested that applying transfer learning in Scheme 2 not only accelerated the convergence of U-Net optimi-

zation but also improved the prediction accuracy. Table 1 presents the group analysis of the four training schemes for the recognition of PGTs.

Scheme 1 exhibited the poorest prediction performance; Scheme 4 displayed the best prediction results, with accuracy values for WT, PMA, and

MT being 0.81, 0.76, and 0.71, respectively.
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3.3 | Comparing multimodal MRI

Next, we used the Scheme 4 method to obtain models with six types of stack. Each model underwent a threefold cross-validation with eight trials,

with 680 (85 patients × 8 trials) predicting dSEG results for each type of stack. Figure 4 demonstrates predicted results obtained from three

patients having WT, PMA, or MT. For the patients with WT or PMA, the results of the five stack types were comparable to the true label. For the

F IGURE 2 Visualization of the output images of the intermediate and softmax layers of the sALL U-Net model. Layers 1 to 5 are in the
encoding path, and output images are down-sampled with max-pooling to reduce feature numbers. The pixel values of the output images of the
softmax layer present the probability distribution (white for 1, black for 0) of four categories (ie NT, WT, PMA, and MT). As an example, the large
region of white color in the upper-right image (the NT image from softmax output) means that these white pixels likely belong to the NT
category, except for the small dark region, likely belonging to a pleomorphic tumor (cf. the PMA image from softmax output)

F IGURE 3 Demonstration of the PGT segmentation of an image
containing a WT on the right side. The input is an sDWI stack (A), and
WT regions are predicted using models trained with Scheme 1 (B) and
Scheme 2 (C). The WT regions are presented as red pixels overlaying
the ADC images. After 1000, 3000, and 5000 training steps, the WT
region became progressively more accurate. The number beneath each
image is the Dice coefficient between the predicted and actual tumor
regions. This example demonstrates the advantage of using transfer
learning in Scheme 2
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patient with MT, the segmentation results of all the types of stack, except sT2, were close to the correct label. However, only results obtained

from sT1, sT1T2, and sDWI classify PGT into the correct category (ie MT, blue color). Table 2 presents the group statistics of the recognition of

PGTs. For segmentation results, the PGT region obtained using sALL produced the highest average Dice coefficient (0.48 ± 0.01). For tumor

classification, PGT types predicted using sDWI yielded the highest average accuracy. The group analysis revealed that the performance of sT2

was the poorest. Combining DWI and structural images did not improve the outcome. Among all models, classifying WTs exhibited the highest

accuracy. Table 3 presents the complete results of classification using sDWI. The sensitivity of WT, PMA, and MT was 0.83, 0.67, and 0.33,

respectively, suggesting that the obtained U-Net model was not sensitive to classify MTs.

TABLE 1 Results of the methods used for the identification of PGTs

Batch size/input data Transfer

Accuracy of each scheme

WT (n = 27) PMA (33) MT (25)

Scheme 1 6, random (WT, PMA, MT) O 0.73 ± 0.05 0.69 ± 0.04 0.64 ± 0.04

Scheme 2 6, random (WT, PMA, MT) ✓ 0.77 ± 0.03 0.74 ± 0.01 0.69 ± 0.04

Scheme 3 6, WT × 2, PMA × 2, MT × 2 ✓ 0.78 ± 0.02 0.74 ± 0.03 0.67 ± 0.03

Scheme 4 8, WT × 2, PMA × 2, MT × 2, NT × 2 ✓ 0.81 ± 0.02 0.76 ± 0.02 0.71 ± 0.04

F IGURE 4 Three selected slices of the predicted PGT regions (red, WTs, green, PMAs, and blue, MTs). For WT and PMA slices, the U-Net
models trained using different stacks correctly classified the tumor class. However, for the MT example, the sT2 and sALL models misidentified
MTs as WTs

TABLE 2 Results of the identification of PGTs using various combinations of MR images

Input Dice

Accuracy of each type

WT (n = 27) PMA (33) MT (25)

sDWI 0.46 ± 0.03 0.81 ± 0.02 0.76 ± 0.02 0.71 ± 0.04

sT1 0.44 ± 0.01 0.79 ± 0.02 0.66 ± 0.03 0.68 ± 0.04

sALL 0.48 ± 0.01 0.75 ± 0.04 0.70 ± 0.03 0.62 ± 0.03

sALL2 0.40 ± 0.02 0.83 ± 0.03 0.67 ± 0.01 0.68 ± 0.02

sT1T2 0.42 ± 0.02 0.72 ± 0.04 0.65 ± 0.04 0.62 ± 0.04

sT2 0.38 ± 0.02 0.67 ± 0.05 0.63 ± 0.04 0.62 ± 0.04
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4 | DISCUSSION

In this study, we describe a fully automatic system for the detection and classification of PGTs. We used a 2D U-Net CNN for multiclass segmen-

tation. To investigate a suitable training procedure, we proposed and compared four training schemes for U-Net. We found that transfer learning

and manipulations of training batches gradually improved the classification accuracy. Unlike Scheme 1, we applied transfer learning in Scheme

2, which improved performance; this suggests that the network weights pretrained with 44 175 stacks in the BraTs dataset may lead the U-Net

model closer to the optimal solution because filters for the detection of the brain and PGTs in convolutional layers could be similar. In Schemes

3 and 4, the training batch for the forward path of U-Net was a fixed structure. Each batch in Scheme 3 comprised two stacks of each tumor type,

with class balance maintained during the training stage. Although this setup improved the classification accuracy, a nonignorable number of NT

pixels were misclassified into PGTs (ie false positives). In Scheme 4, we added two stacks generated from image slices without PGTs in each batch.

The performance of Scheme 4 was the best. Thus, we fixed the training procedure to that used for Scheme 4 and kept exploring the model

efficiency with various combinations of MRI images to identify PGT types.

We used six types of stack as input to the U-Net model and obtained the corresponding models. The Dice coefficient results revealed that

sALL and sDWI models produced better segmentation results than the other models. The sDWI model outperformed the others in accuracy.

Among the stacks consisting of only structural images, the sT1 model performed better than the sT2 or sT1T2 models. As for sALL and sALL2, we

assembled it with all available MR modalities, such as T1, T2, and DWI, and assumed that the U-Net training procedure could derive the optimal

combination of all MR information. However, neither model was better than the sDWI model. This could be for two reasons: image registration

and data size. For example, the four-channel sALL stack (matrix size 256 × 256 × 4) was constructed from four images (cT1 , cT2 , bb0 , and db1000 ), with

the assumption of multichannel deep learning that all the channels were aligned pixel by pixel. Although we used deformable registration to

amend the misalignment between spin-echo-based structural images and echo-planar imaging (EPI)-based DWI images, residual image distortion

along the phase-encoding direction in DWI images was inevitable, thereby impairing registration precision. The misregistration between channels

in the sALL-based U-Net model could have reduced the accuracy of PGT recognition. We merged all MR information in the input layer and tested

whether the training procedure could select dominating image channels and exclude less useful ones. In theory, if the training procedure achieves

the optimal solution, the sT1T2 model should be at least comparable to the sT1 model under equal computation power. However, our limited data

size (2726 stacks) could have restricted model optimization, and more information did not produce better results.

Among all the models investigated in this study, the sDWI model provided the best PGT classification results. The accuracy results were 0.81,

0.76, and 0.71 for WT, PMA, and MT, respectively. The classification performance of WT is comparable to that reported in a previous study,

which required sex and age information in addition to MRI images.12 The sensitivity results were 0.83, 0.63, and 0.33 for WT, PMA, and MT,

respectively. The results suggest that our current model was insensitive to MTs. This critical limitation originates from the fact that malignant

PGTs in humans are related to deeper structures, such as the parapharyngeal space, adjacent muscles, and bony tissues, which are not clearly

presented in MRI.28 In addition, among WT, PMA, and MT, the ADC values of PMAs are higher than those of MTs and WTs. In previous studies

on PGTs, ADC values were used to differentiate PMA or WT.10,12,29 However, MTs with increased cellularity and WTs containing lymphoid

tissues both present lower ADC values. Consequently, when only ADC values are used, an overlap of ADC values between WTs and MTs impedes

the effective differentiation of MTs. Studies have suggested that fraction anisotropy values obtained using diffusion tensor imaging30 and the

wash-out pattern of dynamic contrast imaging31 improve diagnostic accuracy. Additional studies should combine them into the deep learning

framework to potentially improve sensitivity to distinguish MTs.

Compared with radiomics-based machine learning methods,32,33 the proposed algorithm both outlines the tumor region and identifies the

tumor type. It does not need region of interest drawing once the training is completed. It is therefore fully automatic and beneficial in the clinical

setting. Furthermore, the procedures for the generation of image features are different in the machine and deep learning methods. CNN learns

image features according to the training dataset, whereas machine learning methods use predefined features. If the training procedure of a deep

learning method achieves the optimal solution with sufficient training data, the obtained image features could outperform predefined ones.

However, features generated by the “black box” deep learning methods are more difficult to interpret than predefined features (eg gray-level

texture features in radiomics) in machine learning models. If explainable features are desirable, machine learning algorithms may be used for this

application instead of deep learning.

TABLE 3 Classification results of sDWI

Accuracy Sensitivity Specificity PPV NPV

WT 0.81 ± 0.02 0.83 ± 0.03 0.80 ± 0.03 0.66 ± 0.03 0.91 ± 0.01

PMA 0.76 ± 0.02 0.62 ± 0.07 0.84 ± 0.03 0.72 ± 0.02 0.78 ± 0.03

MT 0.71 ± 0.04 0.33 ± 0.07 0.87 ± 0.04 0.53 ± 0.12 0.76 ± 0.02
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One study limitation is the small data size, which hampers the optimization of the large segmentation network. Although transfer learning

improves the classification accuracy, deep learning models with a larger dataset are warranted. Another study limitation is the alignment of DWI,

T1-weighted, and T2-weighted images. Although we retrospectively performed deformable registration of all images, the residual misregistration

may have reduced the classification performance. Reducing EPI distortion or acquiring all images with the same type of MR sequence, such as the

multishot EPI,34 may be a solution.

In summary, we assessed the PGT classification performance of a U-Net method combined with multimodal MRI. The U-Net model based on

DWI information outperformed contrast-enhanced T1- and T2-weighted images. Combining all available modalities did not improve accuracy. The

U-Net model could simultaneously outline the tumor region and identify the tumor type. The U-Net model can be practical to use in the clinical

setting to detect WTs and PMAs, but it is not sensitive for MTs.
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