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A B S T R A C T

We investigate adaptive strategies to robustly and optimally control the COVID-19 pandemic via social
distancing measures based on the example of Germany. Our goal is to minimize the number of fatalities over
the course of two years without inducing excessive social costs. We consider a tailored model of the German
COVID-19 outbreak with different parameter sets to design and validate our approach. Our analysis reveals
that an open-loop optimal control policy can significantly decrease the number of fatalities when compared to
simpler policies under the assumption of exact model knowledge. In a more realistic scenario with uncertain
data and model mismatch, a feedback strategy that updates the policy weekly using model predictive control
(MPC) leads to a reliable performance, even when applied to a validation model with deviant parameters.
On top of that, we propose a robust MPC-based feedback policy using interval arithmetic that adapts the
social distancing measures cautiously and safely, thus leading to a minimum number of fatalities even if
measurements are inaccurate and the infection rates cannot be precisely specified by social distancing. Our
theoretical findings support various recent studies by showing that (1) adaptive feedback strategies are required
to reliably contain the COVID-19 outbreak, (2) well-designed policies can significantly reduce the number of
fatalities compared to simpler ones while keeping the amount of social distancing measures on the same level,
and (3) imposing stronger social distancing measures early on is more effective and cheaper in the long run
than opening up too soon and restoring stricter measures at a later time.
. Introduction

Social distancing is an effective way to contain the spread of a
ontagious disease, particularly when little is known about the virus
nd no vaccines or other pharmaceutical interventions are available.
ocial distancing and isolation (together with other non-pharmaceutical
easures such as hygiene and face masks) have a direct influence on

he infection rates and hence on the spread of the virus (Kissler, Tedi-
anto, Lipsitch, & Grad, 2020; Maharaj & Kleczkowski, 2012; Maier &
rockmann, 2020). While this combination has proven effective during
he last weeks, e.g. in the German outbreak of COVID-19, strict social
istancing is also very costly in terms of economical and psychological
amage, which naturally leads to a multi-objective decision problem.

There have been numerous approaches to model the COVID-19 out-
reak and to predict future behavior for different distancing policies in
imulation studies. The most commonly used modeling approaches are
ifferent extensions of the SIR (susceptible–infected–removed) model

✩ This work was supported by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Grants GRK 2198/1 - 277536708, AL 316/12-2
279734922. The authors thank the International Max Planck Research School for Intelligent Systems (IMPRS-IS) for supporting Lukas Schwenkel, Anne Koch,
ulian Berberich, and Patricia Pauli.
∗ Corresponding author.
E-mail addresses: johannes.koehler@ist.uni-stuttgart.de (J. Köhler), lukas.schwenkel@ist.uni-stuttgart.de (L. Schwenkel), anne.koch@ist.uni-stuttgart.de

formulated either as system dynamics or as agent-based simulations
(e.g. for Germany (Barbarossa et al., 2020; Dehning et al., 2020;
German, Djanatliev, Maile, Bazan, & Hackstein, 2020)). In many such
studies, different policies are simulated and compared with respect to
the goals that both the health care system is not overwhelmed such
that every patient in need receives treatment and the mortality rate is
kept low, and also such that the majority of people can resume social
interaction as soon as possible. However, in line with Alleman, Torfs,
and Nopens (2020) and others, we advocate to go from mere model
predictions to (model predictive) control, since control generally offers
the theory to develop and apply optimal or robust decision making
under uncertainties.

While mathematical modeling and control of epidemics is a topic
with rich history (see, e.g., the survey in Nowzari, Preciado, and Pappas
(2016) and the references therein), there have also been numerous
approaches to apply control theory to the COVID-19 spread. In Casella
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(2021), the author applies control theoretic principles and insights to
a simple model of the outbreak to point out the difficulties of the
system at hand: fast unstable dynamics with significant delays. In more
recent literature, multiple works have addressed the problem of open-
loop optimal control for the COVID-19 pandemic. In Bin et al. (2020),
Tsay, Lejarza, Stadtherr, and Baldea (2020), for example, the authors
argue in favor of ’on and off’-policies of the social distancing measures,
yielding a bang–bang like optimal control strategy. Such ’on and off’-
policies, where the control input switches between two states, however,
could pose great challenges, amongst others, for the society, but also for
production lines, supply chains and the economy in general.

In this paper, we propose optimal open-loop and feedback control
strategies to handle the German COVID-19 outbreak. We employ the
recently developed SIDARTHE model (Giordano et al., 2020) in order
to design control policies which minimize the number of fatalities
within a time horizon of two years, without using excessive social
distancing measures. We also address robustness of our policies w.r.t.
model and measurement uncertainties via a (robust) model predictive
control (MPC) feedback strategy. Note that the following discussion and
results are all based on the information and data available prior to the
initial submission of this paper (May 2020).

Similar to the setup in this paper, the authors in Djidjou-Demasse,
Michalakis, Choisy, Sofonea, and Alizon (2020) explore the best policy
to implement while waiting for the availability of a vaccine. In their pa-
per, they also distinguish between varying severity of symptoms (’mild’
or ‘severe’) and seek a solution to the multi-objective optimization
problem of minimizing fatalities and costs due to the implementation
of the control strategy itself. Their main outcome of the open-loop
input strategy is qualitatively similar to our results in Section 3.2: Start
with a loose strategy, soon increase all distancing measures such that
the health care system capacities are never extorted and then relax
the social distancing measures gradually and slowly. Another example
for an open-loop optimal policy applied to the COVID-19 pandemic is
presented in Kantner and Koprucki (2020) where the authors consider
optimal control of the German outbreak using a slightly simpler model
as the one chosen in the present paper (without distinguishing between
detected and undetected individuals), which also includes an increased
mortality rate if the ICU capacity is exceeded. Therein, the objective
is not only to minimize the number of fatalities but also the number
of susceptible individuals at the end of the time horizon, thus aiming
for herd immunity. Our investigations in Section 3, however, indicate
that herd immunity cannot be reached in a reasonable amount of time
without overwhelming the hospital capacities. Therefore, our approach
minimizes the number of fatalities after two years, with the underlying
assumption that a vaccine will be available thereafter.

However, an open-loop optimal policy cannot suffice to control
the COVID-19 pandemic given all the uncertainties in the spreading
of the virus and the disease progression, as we will see in the nu-
merical results. We argue, similar to Alleman et al. (2020), that an
MPC-based feedback strategy is the right tool to develop optimal and
robust social distancing policies, especially in the presence of model
inaccuracies. By using online measurements of the current outbreak,
feedback inherently introduces robustness with respect to uncertain-
ties and disturbances to the policy. We also robustify the feedback
mechanism by introducing a robust MPC-based feedback strategy for
uncertain state measurements which is crucial in a situation where only
a limited amount of data is available and, for example, the number
of the currently infected persons can only be estimated roughly by
applying different studies.

Our results are also in accordance with a very recently published
joint strategy paper for Germany by authors from different German
research institutions (Fraunhofer-Gesellschaft, Helmholtz Association,
Leibniz Association and Max Planck Society) (Meyer-Hermann, Pigeot,
Priesemann, & Schöbel, 2020). Firstly, they also state that reaching
herd immunity without the availability of a vaccine would either
526

exceed the health care capacities (with a resulting high mortality rate)
or take several years (cf. our results in Section 3). Secondly, they state
that the goal of wiping out the virus can only be a robust solution
if this eradication would be a worldwide effort with very high social
and economic costs (cf. our results in Section 3.1.1), which seems
impossible to realize. Finally, they suggest an adaptive strategy for all
policies influencing the infection rates with the goal to keep the spread
of COVID-19 at bay while requiring the least possible restraints on the
society and economy. With exactly this reasoning, we develop suitable
control approaches in Section 3.2, Section 4, and Section 5 for such an
‘adaptive’ strategy.

To summarize, our key contributions are the following:

• We extend the model in Giordano et al. (2020) by a mortality
rate dependent on the state of the health care capacity and fit the
parameters with data from Germany (Section 2).

• We develop an optimization problem for finding the optimal input
(in terms of setting infection rates) that minimizes the number of
fatalities while keeping the costs occurring due to distancing mea-
sures low (Section 3). Moreover, we show that such an optimal
input has significant advantages compared to simpler baseline
policies.

• We show that simply applying a precomputed (optimized) input
is dangerous if the model is uncertain and explain why feedback
is of utmost importance when dealing with such an unstable and
uncertain system. Further, we demonstrate how such feedback
can be incorporated via MPC, and we showcase the advantages
of this control policy (Section 4).

• We develop a robust MPC-based feedback strategy, which takes
model inaccuracies, uncertain state measurements, and inexact
inputs into account and can thus handle the COVID-19 outbreak
cautiously and safely (Section 5).

Although based on a simple model fitted with limited data, we hope
that these high-level insights inspire further investigations, possibly
on more complex epidemiological models, and can ultimately help
decision makers to improve and optimize their policies to mitigate the
spread of epidemics while keeping the toll on the society and economy
low.

2. Modeling of the COVID-19 epidemic

In this section, we describe the model of the COVID-19 epidemic
that we use for our subsequent control approach. Our model is adapted
from the SIDARTHE model proposed in Giordano et al. (2020) with
the key differences that (i) we use more recent data to estimate new
parameters to model the German COVID-19 outbreak (in Giordano
et al. (2020), the Italian outbreak was considered) and (ii) we model
the fact that the mortality rate increases if the number of critically
ill patients exceeds the capacity of the German health care system.
In Section 2.1, we describe the model of Giordano et al. (2020) and
explain its ingredients. Thereafter, in Section 2.2, we provide details
on our parameter estimation algorithm which fits the model to the
German COVID-19 outbreak. Finally, we propose an extension of the
model by increasing the mortality rate when the health care system is
overwhelmed in Section 2.3.

2.1. The SIDARTHE model

The considered model based on Giordano et al. (2020) is shown
in Fig. 1 and includes eight states: S - Susceptible, I - Infected
(asymptomatic, undetected), D - Diagnosed (asymptomatic, detected),
A - Ailing (symptomatic, undetected), R - Recognized (symptomatic,
etected), T - Threatened (symptomatic with life-threatening symp-
oms, detected), H - Healed (immune after prior infection, detected or
ndetected), E - Extinct (dead, detected). In accordance with Fig. 1,
he following differential equations describe the SIDARTHE model:

̇
𝑆 = −𝑆(𝛼𝐼 + 𝛽𝐷 + 𝛾𝐴 + 𝛽𝑅), (1a)
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�̇� = 𝑆(𝛼𝐼 + 𝛽𝐷 + 𝛾𝐴 + 𝛽𝑅) − (𝜖 + 𝜁 + 𝜆)𝐼, (1b)

�̇� = 𝜖𝐼 − (𝜁 + 𝜆)𝐷, (1c)

�̇� = 𝜁𝐼 − (𝜃 + 𝜇 + 𝜅)𝐴, (1d)

�̇� = 𝜁𝐷 + 𝜃𝐴 − (𝜇 + 𝜅)𝑅, (1e)

�̇� = 𝜇𝐴 + 𝜇𝑅 − (𝜎(𝑇 ) + 𝜏(𝑇 ))𝑇 , (1f)

�̇� = 𝜆𝐼 + 𝜆𝐷 + 𝜅𝐴 + 𝜅𝑅 + 𝜎(𝑇 )𝑇 , (1g)

�̇� = 𝜏(𝑇 )𝑇 . (1h)

In the Eqs. (1), capital letters describe fractions of the whole population
that are currently in the respective state. Since the model represents
the whole population, the states sum up to 1, i.e., they must satisfy
𝑆 + 𝐼 +𝐷+𝐴+𝑅+ 𝑇 +𝐻 +𝐸 = 1 at all times. Therefore, one equation
in (1) is redundant and hence, e.g., the state 𝐻 can be expressed via the
algebraic relation 𝐻 = 1−(𝑆+𝐼+𝐷+𝐴+𝑅+𝑇 +𝐸) instead of Eq. (1g),
as it is common in the field of differential algebraic equations. In most
parts of this section, we omit time arguments for simplicity. Further,
Greek letters are the model parameters which are briefly summarized
in the following:

• 𝛼, 𝛽, 𝛾 describe the infection rates for susceptible individuals,
i.e., the rate at which susceptible individuals are infected by the
states 𝐼 , 𝐷 or 𝑅, and 𝐴, respectively, and hence join the state 𝐼 .

• 𝜖, 𝜃 describe the testing rate, i.e., at which rate (asymptomatic
or symptomatic) infected individuals go from undetected to de-
tected.

• 𝜁 describes the rate of asymptomatic (detected or undetected)
infected individuals exhibiting symptoms, i.e., going from states
𝐼 or 𝐷 to 𝐴 or 𝑅, respectively.

• 𝜇 is the rate at which infected individuals in 𝐴 or 𝑅 develop
life-threatening symptoms, i.e., join the state 𝑇 .

• 𝜆, 𝜅, 𝜎(𝑇 ) are recovery rates for individuals affected by COVID-19.
The recovery rate for threatened individuals 𝜎(𝑇 ) depends on 𝑇 ,
compare Section 2.3.

• 𝜏(𝑇 ) is the mortality rate, i.e., the rate at which individuals with
life-threatening symptoms decease, and it depends on 𝑇 , compare
Section 2.3.

Key features of the considered model for the COVID-19 pandemic
compared to simpler ones (e.g., SIR models, compare (Kermack &
McKendrick, 1927)) are that it distinguishes between detected and
undetected cases, symptomatic and asymptomatic individuals, and it
includes a separate state 𝑇 for patients with life-threatening symptoms
(compare Giordano et al. (2020) for a more detailed explanation of the
key ingredients). The present model, i.e., Eqs. (1) as well as Fig. 1, is
a mild modification of the model suggested in Giordano et al. (2020).
First, we reduce the number of parameters by including the following
assumptions. We assume that the rate for developing (severe) symptoms
is the same for detected and undetected cases, since (to this day)
no effective medication of COVID-19 is known. More precisely, the
transitions from 𝐼 to 𝐴 and 𝐷 to 𝑅 have the same dynamics with
rate 𝜁 , and similarly for the respective recovery rates as well as for
the transitions from 𝐴 to 𝑇 and 𝑅 to 𝑇 . Moreover, we assume that
the rate 𝛽 at which susceptible individuals are infected is the same
from states 𝐷 and 𝑅, since the state 𝐷 is neglected for the parameter
identification step (compare Section 2.2). Finally, as a key difference
to Giordano et al. (2020), we consider 𝑇 -dependent rates 𝜏(𝑇 ) and 𝜎(𝑇 )
for threatened patients, i.e., the mortality and recovery rates depend on
the current number of threatened patients. Essentially, 𝜏(𝑇 ) increases
and 𝜎(𝑇 ) decreases if 𝑇 exceeds the capacity of the German health
care system (see Section 2.3 for a detailed description of this model
527

refinement).
Fig. 1. Scheme of the considered model for the COVID-19 epidemic.
Source: Adapted from Giordano et al. (2020).

.2. Parameters for the German outbreak

In this section, we adjust the model parameters and the initial
ondition given in Giordano et al. (2020) to the COVID-19 outbreak in
ermany. This is necessary, because the outbreaks in Germany and Italy
volved differently due to differences in the testing policy, the testing
apacity, the health care system, the reaction of the governmental
uthorities, and the underlying counting method of confirmed cases.

In order to compute realistic parameters for Germany, we will use a
ragmatic approach that enables us to easily include prior knowledge
bout relations between parameters. The approach is a least squares
ptimization of the available data, where prior knowledge is incorpo-
ated via hard constraints in the optimization problem. The available
ata is marked by a tilde and is given by:

• the confirmed COVID-19 cases �̃�, deaths �̃�, and recoveries �̃�𝑐
from Dong, Du, and Gardner (2020a, 2020b) for the days 𝑡 ∈
[0, 49] from February 28, 2020 (𝑡 = 0) to April 21, 2020 (𝑡 = 53).
We filtered this data set using the Matlab function kaiser(7,3)
with window length 7 and shape factor 3 to reduce the effect of
noise corruption and having less confirmed cases during week-
ends. Further, we have to divide the data set by the total German
population 𝑁total = 8.3 ⋅ 107 to ensure all values are normalized
and are in the range [0, 1].

• the COVID-19 patients in ICU �̃�2 and how many of them died �̃�2
or recovered �̃�2 from DIVI-IntensivRegister (2020) for 𝑡 ∈ [24, 53]
from March 23 (𝑡 = 24) to April 21 (𝑡 = 53).1

This data set, however, is rather small compared to the complexity of
the model (1) consisting of eight states and 13 parameters. Therefore,
we need to leverage additional prior knowledge in order to avoid
over-fitting and ensure a realistic resulting parameter set and initial
conditions. Based on other studies and the interpretation of our model
states and parameters, we enforce the following assumptions.

• The detection rate of asymptomatic cases is negligible, as the
current German policy is to test only people showing symp-
toms (Jakob Simmank, 2020), i.e., 𝜖 = 0.

1 There was no reliable data available from before March 23; the data from
arch 23 to March 26 contains only information about �̃�2, not �̃�2 or �̃�2; from

April 5 to April 7, there is a gap in the data due to a server migration of the
DIVI Intensivregister (DIVI-IntensivRegister, 2020).
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• At February 28, the initial date for our fit, there were 48 con-
firmed cases, hence, we assume 𝑅(0) = 48∕𝑁total, 𝑇 (0) = 𝐷(0) =
𝐻(0) = 𝐸(0) = 0, and 𝐼(0), 𝐴(0), 𝑆(0) appear as decision variables
with 𝑆(0) = 1 −𝑅(0) − 𝐼(0) − 𝐴(0).

• The test rate 𝜃 is approximately constant. Please note that this
does not mean that the absolute number of tests is constant per
day, as this value is rather proportional to 𝜃𝐴 than to 𝜃.

• The infection rates 𝛼 and 𝛾 were influenced by the countermea-
sures that the German authorities installed to fight the spread of
the pandemic. According to Dehning et al. (2020), three main
events changed the spreading rates: (1) March 9 — canceling
large events, (2) March 16 — closing schools and non-essential
stores, and (3) March 23 — contact ban (Kontaktsperre) that
prohibits groups of more than two people and requires people to
maintain a distance of at least 1.5m in public. Hence, there are
four different policies 𝑢𝑖, 𝑖 = 1, 2, 3, 4 monotonically increasing
from no countermeasures 𝑢1 = 0 to full lockdown 𝑢4 = 1 resulting
in 𝛼𝑖 = 𝛼max + 𝑢𝑖(𝛼min − 𝛼max) and 𝛾𝑖 = 𝛾max + 𝑢𝑖(𝛾min − 𝛾max). This
yields the following six decision variables 𝛼min, 𝛼max, 𝛾min, 𝛾max,
𝑢2, and 𝑢3.

• One of the main reasons why the COVID-19 pandemic is spread-
ing so fast is that infectiousness peaks even before the onset of
symptoms (He et al., 2020). As asymptomatic individuals have
no indication of their infection, they are on top of that also not
as cautious as people with symptoms. Therefore, we require 𝛼 ≥
𝛾 when searching for realistic parameters. Further, we want to
ensure that people tested positive are significantly less contagious
while in quarantine, such that we require 𝛾 ≥ 5𝛽.

• The percentage of confirmed COVID-19 cases is estimated in the
study (Bommer & Vollmer, 2020) as 27.32% in Germany. In our
model, this value approaches the constant 𝜙 = 𝜁

𝜆+𝜁
𝜃+𝜇

𝜅+𝜃+𝜇 , which
is the proportion of people that develop symptoms (𝐼 to 𝐴, 𝐼 to
𝐷 can be ignored as 𝜖 = 0) and get detected (𝐴 to 𝑅 or 𝑇 ); that is
the percentage of confirmed accumulated cases in a steady state
(𝐼 = 𝐷 = 𝐴 = 𝑅 = 𝑇 = 0). To make sure our model coincides
with the findings of Bommer and Vollmer (2020), we expect 𝜙 to
be slightly above of the estimated 27.32% as a steady state is not
reached yet and the proportion of detected cases increases over
time, i.e., we constrain 𝜙 ∈ [0.3, 0.45].

• The percentage of asymptomatic disease progressions was esti-
mated at 43% in a population screening study in Iceland (Gud-
bjartsson et al., 2020), at 43.2% in a comprehensive testing of
the whole municipality of Vo’, Italy (Lavezzo et al., 2020) and
at 17.9% (Mizumoto, Kagaya, Zarebski, & Chowell, 2020) in a
study regarding the cruise ship Diamond Princess. To ensure that
our model has a comparable ratio, we add the constraint 𝜆

𝜆+𝜁 ∈
[0.18, 0.43] to the optimization problem.

• The (base) reproduction rate in the beginning of March was
estimated as approximately 3 (an der Heiden & Hamouda, 2020).
Thus, for the parameters 𝛼max, 𝛾max with no active countermea-
sures we require 𝑅0(𝛼max, 𝛾max) ∈ [2.5, 3.5] where 𝑅0(𝛼, 𝛾) is given
by (see Giordano et al. (2020) for details)

𝑅0(𝛼, 𝛾) =
1

𝜁 + 𝜆

(

𝛼 + 1
𝜃 + 𝜇 + 𝜅

(

𝛾𝜁 +
𝛽𝜃𝜁
𝜇 + 𝜅

))

. (2)

• The median of the incubation time is 5–6 days (Li et al., 2020;
Linton et al., 2020; World Health Organization (WHO), 2020),
which we identify as the half life period a person is in the state 𝐼 ,
i.e. log(2)∕(𝜆 + 𝜁 ) ∈ [5, 6]. Further, the median time from onset of
symptoms until intensive care is 10–11 days (Wang et al., 2020;
Yang et al., 2020). Hence, we constrain the half life period of a
ailing or recognized individuals to log(2)∕(𝜅 + 𝜇) ∈ [10, 11].

In the state 𝐻 of (1) the confirmed recovered cases are not dis-
inguished from the undetected ones, thus we define the number of

̇
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onfirmed recovered cases as 𝐻𝑐 , with 𝐻𝑐 (0) = 0 and 𝐻𝑐 = 𝜆𝐷 + A
Table 1
The parameters of the model for Germany.
𝛼min = 0.0422 𝑢1 = 0.5816 𝜁 = 0.0790 μ1 = 0.0080 μ2 = 0.0050
𝛼max = 0.3614 𝑢2 = 0.7062 𝜆 = 0.0596 𝜎1 = 0.0370 𝜎2 = 0.0552
𝛾min = 0.0422 𝛽 = 0.0084 𝜅 = 0.0563 𝜏1 = 0.0159 𝜏2 = 0.0242
𝛾max = 0.3614 𝜃 = 0.1981 𝐼0 = 500∕𝑁total 𝐴0 = 304∕𝑁total

𝜅𝑅 + 𝜎1𝑇1 + 𝜎2𝑇2 and further the number of confirmed accumulated
cases as 𝐶 = 𝐷 + 𝑅 + 𝑇 + 𝐻𝑐 + 𝐸 in order to match the data �̃�𝑐 and
̃ . Considering the COVID-19 patients in intensive care �̃�2, a natural
hoice would be to identify them with threatened state 𝑇 , however, all
eaths in the model have been in 𝑇 before, but in reality only half to a
hird of the deaths happens in ICU (DIVI-IntensivRegister, 2020; Dong
t al., 2020a). Hence, as the patients in ICU are only a part of 𝑇 , we
plit 𝑇 into 𝑇1 and 𝑇2, where 𝑇2 represents the number of people in
ntensive care and 𝑇1 are all otherwise threatened COVID-19 cases. We
ssume that there are no transitions from 𝑇1 to 𝑇2 and vice versa, such
hat 𝑇 = 𝑇1 + 𝑇2 can be modeled as

̇ 1 = 𝜇1(𝐴 + 𝑅) − (𝜎1 + 𝜏1)𝑇1 (3a)
̇ 2 = 𝜇2(𝐴 + 𝑅) − (𝜎1(𝑇2) + 𝜏2(𝑇2)) (3b)

ith 𝜇1 + 𝜇2 = 𝜇. This more complex model with 𝑇1 and 𝑇2 will be
pproximated with a model of the form described in Section 2.1 as
ketched in Fig. 2. Further, we define 𝐻2 (𝐸2) to be the numbers of
eople that recovered (died) from 𝑇2.

Finally, we perform the parameter optimization by solving a least
quares problem via CasADi (Andersson, Gillis, Horn, Rawlings, &
iehl, 2019) to fit 𝐶, 𝐸, 𝐻𝑐 , 𝑇2, 𝐸2, 𝐻2 to the data �̃�, �̃�, �̃�𝑐 , �̃�2, �̃�2,
̃ 2. The best fitting parameters are given in Table 1 and the resulting
it is shown in Fig. 3. Many of the constraints listed above are active
t the optimal set of parameters, e.g., 𝛼 = 𝛾, which is not surprising
ince we use the constraints to keep the parameters in a realistic range
ithout further regularization.

This fit further enables us to specify the full model state of today
(53) =∶ 𝑥0, which will be used in the following sections as the initial
ondition where 𝑡 = 53 corresponds to April 21

0 =
1

𝑁total

[

82 636 256 20 581 0 8 041 41 931 11 469 276 911 4 810
]⊤

.

(4)

Please note that the model is quite sensitive to changes in the pa-
rameters and one obtains quite different parameter values if, e.g., the
estimated range of unknown cases or the percentage of asymptomatic
cases deviate from the assumptions.

2.3. Modeling of the mortality rate

It has been recognized as a key difficulty in handling the COVID-
19 pandemic that the virus is highly contagious, thus infecting large
numbers of individuals. In addition, since many elderly and ill people
require hospitalization and/or intensive care (Verity et al., 2020), large
waves of infections can quickly exceed the capacities of local health
care systems (Grasselli, Pesenti, & Cecconi, 2020). Hence, ensuring that
health care resources are sufficient is a key issue in handling the out-
break (IHME COVID-19 health service utilization forecasting team, C. J.
L. Murray, 2020), given that an overwhelmed health care system even
correlates positively with the mortality rate (Ji, Ma, Peppelenbosch, &
Pan, 2020).

In this section, we describe how the mortality and recovery rates
𝜏(𝑇 ) and 𝜎(𝑇 ) in (1) depend on the number of threatened patients 𝑇 .

he basic idea is that they are constant as long as the health care
ystem’s capacity is not at its limit, and the mortality rate 𝜏 (the
ecovery rate 𝜎) increases (decreases) significantly if it is overwhelmed.
ccording to DIVI-IntensivRegister (2020), there are (on April 21) 2 908
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Fig. 2. The threatened state 𝑇 is split up in ICU cases 𝑇2 and non-ICU cases 𝑇1 which is later approximated using a lumped model.
Fig. 3. Simulation of the model (1) with the estimated parameters in Table 1 scaled by 𝑁total compared to the actual data (DIVI-IntensivRegister, 2020; Dong et al., 2020a). The
horizontal axis represents the time in days, where 𝑡 = 1 is February 28 and 𝑡 = 53 is April 21.
OVID-19 patients in an ICU and 12 623 ICU spots are available. Hence,
he overall ICU capacity currently available for COVID-19 patients is
908 + 12 623 = 15 531, and we define the relative ICU capacity as
ICU = 15 531

𝑁total
, where 𝑁total = 8.3 ⋅ 107. We consider a constant value

of 𝑇ICU for simplicity, although it is likely that it will further increase
in the future.

We assume that the mortality rate increases if the number of indi-
viduals requiring treatment in an ICU exceeds 𝑇ICU, i.e., if 𝑇2 > 𝑇ICU,
with 𝑇2 as in 2. More precisely, we assume that if a patient requiring
intensive care does not receive it, then the patient deceases (i.e., for
such patients, the mortality rate increases and the recovery rate is zero).
According to data of deceased individuals from Italy, those who were
not admitted to an ICU deceased in median within 4 days (COVID-19
Surveillance Group, 2020). Hence, we model those individuals in 𝑇2
which are not admitted to an ICU via decaying first order dynamics
with a half-life period of 4 days, i.e, the corresponding time constant
𝜏crit satisfies 𝑒−4𝜏crit = 0.5, thus leading to 𝜏crit = 0.173.

In a first approximation 𝑇2 ≈ 𝜇2
𝜇 𝑇 and hence we only modify the

ortality rate 𝜏 in case that 𝜇2
𝜇 𝑇 > 𝑇ICU. In the model (1), 𝜏(𝑇 ) and

(𝑇 ) only occur jointly with 𝑇 , which leads us to the following formula
or 𝜏(𝑇 )𝑇 and 𝜎(𝑇 )𝑇 :

𝜏(𝑇 )𝑇 =
𝜇1
𝜇
𝜏1𝑇 + max

{

𝜇2
𝜇
𝜏2𝑇 , 𝜏2𝑇ICU + 𝜏crit

(

𝜇2
𝜇
𝑇 − 𝑇ICU

)}

, (5a)

(𝑇 )𝑇 =
𝜇1
𝜇
𝜎1𝑇 + 𝜎2 min

{

𝜇2
𝜇
𝑇 , 𝑇ICU

}

. (5b)

f 𝜇2
𝜇 𝑇 ≤ 𝑇ICU, then (5) implies 𝜏(𝑇 )𝑇 = ( 𝜇1𝜇 𝜏1 +

𝜇2
𝜇 𝜏2)𝑇 and 𝜎(𝑇 )𝑇 =

𝜇1
𝜇 𝜎1 + 𝜇2

𝜇 𝜎2)𝑇 , i.e., a simple lumped model is recovered as long as
he ICU capacity is not exceeded. If however 𝜇2

𝜇 𝑇 > 𝑇ICU, then the
mortality rate increases to 𝜏crit for those 𝜇2

𝜇 𝑇 − 𝑇ICU patients which
require intensive care but do not receive it. Similarly, for this fraction,
the recovery rate is set to zero implicitly in (5b). The individuals 𝑇1 =
𝜇1 𝑇 not receiving intensive care are not affected by this mechanism.
529

𝜇

Clearly, the modified rates in (5) are just a simple approximation of
the effect that the mortality rate increases if hospitals are overwhelmed.
This modification in the model is crucial when studying the effect of
loosening quarantine measures and corresponding optimal policies, as
done in the remainder of this paper. Since (fortunately) the German
health care system has not been overwhelmed to this date, there are no
quantitative data to validate the above modification and in particular,
the exact value of 𝜏crit. Nevertheless, the refinement is confirmed
qualitatively by experiences in other countries (Grasselli et al., 2020;
IHME COVID-19 health service utilization forecasting team, C. J. L.
Murray, 2020; Ji et al., 2020). Moreover, even a substantial change
of 𝜏crit has little effect on the overall dynamics since it only affects the
exact number of fatalities. In particular, changing 𝜏crit does not lead
to a qualitative change in an optimal policy to control the outbreak as
long as 𝜏crit is sufficiently larger than 𝜏2 and it is possible not to exceed
the ICU capacity.

3. Open-loop optimal control of the COVID-19 outbreak

In this section, we discuss different policies that can be considered
to keep the number of fatalities due to COVID-19 low while at the same
time also impose as little constraints as possible on the public. The
most significant degree of freedom currently is certainly influencing
the infection rates 𝛼 and 𝛾. Measures for influencing the infection
rates include hygienic measures, face masks, and different nuances of
distancing policies, up to a mandated lockdown. Therefore, we define
𝑢 as introduced in Section 2.2 as our input, representing distancing
policies or other measures that have a direct influence on the infection
rates 𝛼 and 𝛾. We model this influence via

𝛼(𝑡) = 𝛼max + (𝛼min − 𝛼max)𝑢(𝑡) (6a)

𝛾(𝑡) = 𝛾max + (𝛾min − 𝛾max)𝑢(𝑡), (6b)
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where a value of 𝑢 = 1 hence represents the policies in Germany as
f mid April (lockdown) and 𝑢 = 0 represents no social distancing or
ther measures (i.e. corresponding to infection rates as in the beginning
f March). Furthermore, we assume that the policies affecting the
nfection rates 𝛼, 𝛾 (i.e. 𝑢) stay constant for at least one week and
an only be changed every seven days. In the first subsection, we will
ntroduce different baseline policies which can give insights into the
ffects of different inputs 𝑢 and which will serve as a comparison to the
ptimal controller in the following subsection. More specifically, these
aseline strategies will be used to define an upper bound on the social
istancing measures that the optimal control in Section 3.2 and later
n the feedback strategies in Sections 4 and 5 can employ to minimize
he fatalities.

est capacity
In addition to varying the infection rates 𝛼 and 𝛾, another degree of

reedom to influence the model (1) lies in adapting the testing policy.
esting individuals on COVID-19 is represented in the current model
y parameters 𝜃 and 𝜖 for symptomatic and asymptomatic individuals,
espectively. In the following, we assume that only a fixed number of
ests can be carried out every day. If we wish to only test symptomatic
ndividuals, this includes both symptomatic individuals infected with
OVID-19 (i.e., members of the state 𝐴) and individuals suffering from
ther illnesses with similar symptoms. In Robert Koch Institut (2017),
he Robert Koch Institute estimates numbers on influenza-like illnesses
ILI) in Germany. While the numbers show clear seasonal differences,
pproximately 1.3% of the population become newly infected with ILI
n average per week, and approximately 37% of them see a doctor (an
ndication for more severe symptoms). Moreover, influenza symptoms
sually last 4–5 days leaving us with an approximate average of 𝑝sick =

0.3% of the population showing significant influenza-like symptoms at
an arbitrary time of the year. When testing asymptomatic individuals,
this includes infected persons without symptoms but also any other
individual not known to be infected or healed and not showing any
symptoms (i.e. 𝑆 + 𝐼 + 𝐻 − 𝐻𝑐 − 𝑝sick, where 𝐻𝑐 are the confirmed
healed cases, compare Section 2.2). The total amount of resources used
for testing is then captured by the following cost:

𝑐test(𝜖, 𝜃, 𝐴, 𝑆, 𝐼,𝐻−𝐻𝑐 ) = 𝜖(𝑆+𝐼+𝐻−𝐻𝑐−𝑝sick)+𝜃 ⋅(𝐴+𝑝sick)+𝐴𝜇. (7)

Denoting the parameter 𝜃 from Table 1 as 𝜃𝑛, we assume a fixed bound
𝑐 > 0 on the amount of resources for testing 𝑐test and that 𝜃𝑛 corresponds
to the nominal value for 𝐴 = 0, i.e., 𝑐 ∶= 𝑐test(0, 𝜃𝑛, 0). In the following,
we assume that the current policy with respect to testing stays in place:
all available tests are used on a daily basis for as many symptomatic
people as tests are available. Then the testing policy used throughout
this section reads 𝜖(𝑡) = 0 (as is current practice) and

𝜃(𝑡) = (𝜃𝑛 ⋅ 𝑝sick − 𝜇𝐴(𝑡))∕(𝑝sick + 𝐴(𝑡)). (8)

Note that this also implies that throughout this paper the state 𝐷 ≡ 0.
The allocation of tests (with the possibility of also saving test resources
for later) can also be modeled as control inputs. However, in the present
model the effects of temporarily saving tests (under the current re-
source constraints) are negligible compared to the effects of changes in
the infection rates. Increasing the overall test capacity or improving the
choice of test subjects (e.g. with tracing of cases), which corresponds to
increasing values of 𝜃𝑛/𝑐, on the other hand, can potentially improve
he evolution of the pandemic significantly, since detected individuals
re less contagious than undetected ones. However, increasing test
apacities or better allocated testing (especially with regard to 𝜖, i.e.

tracing of also asymptomatic infections) is at the current stage not
included in our consideration but could be addressed in future work
with the presented model by choosing 𝜖 ≠ 0 and making 𝜃𝑛/𝑐 an
ncreasing and time-varying variable.
530
Control goal
Given the introduced control input 𝑢, different control goals can be

formulated. One such goal could be to obtain herd immunity. Herd
immunity corresponds to the only stable equilibrium given no social
distancing measures (i.e. with 𝛼max, 𝛾max) and requires a large part of
the society to be immune. More precisely, herd immunity is reached if
𝑆 < 𝑆⋆, where (Giordano et al., 2020) provide a formula for calculating
𝑆⋆ (see Section 3.1.1 for more details). Given our model, we can now
calculate the minimum time that is needed to reach herd immunity. For
this, we assume that we can choose a policy that utilizes the full health
care capacity at all times. With 𝑇 ≡ 𝜇

𝜇2
𝑇ICU, �̇� ≡ 0, �̇�+ �̇� ≡ 0, �̇�+�̇� ≡ 0,

decreases each day by (𝜁+𝜆)(𝜇+𝜅)(𝜎+𝜏)
𝜁𝜇

𝜇
𝜇2
𝑇ICU. Hence,

herd =
𝜁𝜇2(1 − 𝑆⋆)

(𝜁 + 𝜆)(𝜇 + 𝜅)(𝜎 + 𝜏)𝑇ICU

ives a lower bound on the time required to reach herd immunity
ithout exceeding the health care capacity given the introduced model.
he herein identified model parameters yield a time span 𝑡herd of more

than six years. A stable steady state in the absence of a vaccine (i.e. herd
immunity) can hence only be obtained either after many years or by
overstraining the health care system and a corresponding significant
rise in the number of fatalities. Therefore, our ongoing assumption
throughout this section is that prior to herd immunity, a vaccine will
be available and we assume the availability of the vaccine in approxi-
mately two years. Our goal is thus to find an optimal policy minimizing
the number of fatalities for the next two years while imposing as little
constraints as possible on the public and the economy.

In the next subsection, we simulate and discuss the following poli-
cies:

1. Keeping the social distancing measures in place (or even increas-
ing the measures) until the virus is eradicated in Germany

2. Slowly (or more aggressively) loosening the distancing measures
without overwhelming the health care capacities (while possibly
risking a second wave).

In fact, the presented baseline policies are similar to the policies
suggested by the German ‘‘Helmholtz-Initiative’’ in Helmholtz-Initiative
‘Systemische Epidemiologische Analyse der Covid-19-Epidemie’ (2020).
We will discuss our conclusions in comparison to theirs at the end of
the section.

In Section 3.2, we will then improve these baseline policies by
applying optimal control techniques and we will discuss the importance
and significance of the improvements.

3.1. Introducing different baseline policies

3.1.1. Consistent lockdown
In the following, we argue that a consistent lockdown strategy

necessitates strong lockdown measures over a long time horizon to
fully eradicate the virus as otherwise, dropping the social distancing
measures too early leads to a second outbreak wave.

Based on the SIDARTHE model fitted to the German outbreak,
described in Section 2.1, we simulate how long we would need to
remain in lockdown and simply wait for the virus to disappear. We
define the disappearance of the virus as follows: If – most probably –
there is less than one active contagious case, i.e., 𝐼 +𝐷 + 𝐴 + 𝑅 + 𝑇 <
.5∕𝑁total, the virus is eradicated. It takes 305 days, which is almost
ne year, until this condition is fulfilled and clearly the economical
nd psychological damage caused by a lockdown period this long is
xcessive such that staying and waiting in lockdown is not an option.
ith even stricter measures, such as 𝛼3 = 0.8𝛼3, 𝛾3 = 0.8𝛾3, we could

nly marginally accelerate this process to 288 days while increasing
ocial distancing is costly, cf. the cost function in Section 3.2. Note
hat the equilibrium attained under the above lockdown policy is an
nstable one that is not robust to uncertainties. In particular, if only
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Fig. 4. Simulation of the model (1) for a consistent lockdown of different lengths 𝑇𝑙,𝑖
ith days on the horizontal axis (𝑇𝑙,1 = 0 - blue, solid; 𝑇𝑙,2 = 50 - red, dash-dotted;
𝑙,3 = 150 - yellow, dashed).

ne person remains infected when the measures are suspended they
ould cause a new outbreak. Also, the virus may be reimported from
ther countries or humans might be reinfected by an interim host.

Next, we simulate the following three scenarios in all of which
he German population is kept in lockdown for a predefined period
f time, followed by no measures at all. The only difference is the
ength of the lockdown period. In the first scenario, the measures are
bolished immediately (April 21). The second one keeps the current
trict measures for an additional 50 days. The third variant simulates
n even longer lockdown period, ending after 150 days counting from
pril 21.

In Fig. 4, we compare the three scenarios. We clearly see that in all
hree cases the number of currently infected people 𝐼+𝐷+𝐴+𝑅+𝑇 rises
rastically a few days after the measures are removed independent of
ow long the lockdown persisted before. In any case, we experience a
econd outbreak wave. Staying longer in lockdown slightly delays the
ollowing peak of the share of active cases 𝐼 + 𝐷 + 𝐴 + 𝑅 + 𝑇 , yet the

peak amplitude is almost the same in all three scenarios.
This behavior can be explained as follows. If there is no one who

currently has the virus, i.e., 𝐼eq = 𝐷eq = 𝐴eq = 𝑅eq = 𝑇eq = 0, such
that 𝑆eq +𝐻eq +𝐸eq = 1, an equilibrium point is attained. The stability
of the equilibrium point depends on the value of 𝑆eq and the model
parameters. In Giordano et al. (2020), the authors show that the IDART
subsystem is asymptotically stable if and only if 𝑆eq < 𝑆⋆, where 𝑆eq is
the susceptible state at equilibrium for a given initial condition 𝑥0 and
the corresponding parameters, especially for 𝛼 and 𝛾 that are actively
adjusted according to an underlying policy. The value of 𝑆⋆ follows
from the stability analysis of the linearized IDART subsystem and has
the following structure with respect to 𝛼 and 𝛾

𝑆⋆ =
𝑎1

𝛼𝑎2 + 𝛾𝑎3 + 𝑎4
, (9)

where 𝑎𝑖, 𝑖 = 1…4 are constants, see Giordano et al. (2020) for details
and the definition of 𝑆⋆. Note further that the commonly stated base
reproduction rate (2) is directly linked to the value 𝑆⋆ via 𝑅0 = 1∕𝑆⋆.
The stability of an equilibrium that depends on the parameters changes
once we adjust 𝛼 and 𝛾. For strict measures (𝛼min, 𝛾min), the value 𝑆⋆ is
high (𝑆⋆ = 2.242), such that a stable equilibrium is attained for any 𝑆.
This means that only a small number of people is infected by the virus
before the equilibrium is attained. With no measures (𝛼max, 𝛾max), a
stable equilibrium requires the share of susceptible people to be smaller
than 𝑆⋆ = 0.292, i.e., herd immunity.

We can hence conclude that if 𝑆eq(𝑥0, 𝛼3, 𝛾3) > 𝑆⋆(𝛼0, 𝛾0), the equi-
librium attained during lockdown is unstable with no measures. This
means, there inevitably is a second outbreak wave once the lockdown
531
ends. For the fitted model of the German outbreak, 𝑆eq(𝑥0, 𝛼3, 𝛾3) =
0.9956 is attained after the first wave. Hence, at least another 70.4%
of the German population get infected in the second wave before a
stable equilibrium is attained. Altogether, this leaves us with the fol-
lowing conclusion of two possible outcomes when choosing a consistent
lockdown strategy:

• Strong lockdown measures over long time horizons have to be
taken to eradicate the virus in Germany. However, this takes a
big toll on the public and any infected person, e.g. from abroad,
could spark a second wave at any point.

• Any lockdown strategy that does not fully wipe out the virus
inevitably yields a second outbreak wave once all measures are
suspended.

3.1.2. Iterative loosening of the distancing policies
As argued in the previous subsection, keeping the lockdown policy

strict can never lead to a stable equilibrium when ending the lock-
down, no matter how long it did take place before all measures were
suspended. Hence, many countries are now discussing or have even
already started to loosen the lockdown in very small steps. Indeed,
experts consulting the German government ("Nationale Akademie der
Wissenschaften Leopoldina") have recently published their recommen-
dations concerning a possible strategy for loosening the lockdown
gradually in small steps (Leopoldina, 2020).

They name the following conditions for loosening the lockdown in
small steps:

(a) The number of new infections remains at a low value.
(b) The capacity of the health care system must not be exceeded.
(c) Precautions (such as hygienic measures, face masks, distancing)

remain in force.

In the following, we try to translate these recommendations into a
policy for our simplified model to first analyze the results and second,
to use this as a baseline policy for the optimizer in the following subsec-
tion. We implement the conditions presented above via the following
policy strategy:

(a) 𝑢 can only be decreased if, over the last 𝑛stab days, the number of
newly infected persons (i.e. 𝑆(𝑡−1)−𝑆(𝑡)) is decreasing and 𝑢 has
not been increased

(b) 𝑢 can only be decreased if less than 𝑋lower of the ICUs are
occupied

(c) The decrease in 𝑢 can only be a small decrease at a time and
therefore, the interval between 𝑢max = 1 (lockdown) and 𝑢min = 0
(no measures) is divided into 𝑛steps equidistant steps.

Additionally, we add that 𝑢 will be increased again (with the same step
size as the decrease) if more than 𝑋upper of the ICUs are occupied and
no decrease in the amount of necessary ICU is witnessed. This policy
results in four ’tuning parameters’ of the policy: 𝑛stab, 𝑋lower, 𝑋upper and
𝑛steps. In fact, it turns out that the outcome of the simulation is not very
sensitive to the tuning parameters of the policy, but can be tuned to be
slightly more careful or more aggressive. In the following subsection,
we choose two different sets of parameters as baseline policies for the
optimal control approach.

3.2. Optimal control strategy

In this section, we contrast the baseline policy from Section 3.1.2
with an optimal control policy, under idealized assumptions (exact
model and state measurement). The purpose of this section is twofold:
(a) Understand how an optimal policy differs qualitatively from the
baseline policies. (b) Quantify the loss of performance (in terms of
increased fatalities and/or unnecessary social policy 𝑢) resulting from

using a suboptimal baseline policy. The degree of freedom is the input
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𝑢 ∈ [0, 1] affecting the social policy and we consider the fact that the
policy can only be changed every 𝑇𝑠 = 7 days.

ulti-objective optimal control problem
In the following, we consider the problem only for the next 𝑁 = 100

eeks, assuming that thereafter a vaccine might be developed that
ould ideally prevent (almost all) further fatalities in the future. The
verall control problem can be seen as a multi-objective optimal control
roblem, where we wish to simultaneously minimize the number of
atalities 𝐸 and the societal and economical cost of the social policy
easures, which will be measured by the function 𝑐policy(𝑢) = 1∕𝛼(𝑢).
e point out that due to the parametrization (6) this cost also in-

erently considers the infection rate 𝛾. This cost function is such that
he social cost of achieving an arbitrarily small infection rate 𝛼 grows

unbounded, while for large values of 𝑢 incremental differences are less
relevant. In order to suitably characterize an optimal solution to this
multi-objective problem we use the baseline policies in Section 3.1. The
resulting optimal control problem is given by (11) below, which will
be explained in the following. In particular, our goal is to find an input
policy that minimizes the number of accumulated fatalities, while using
less resources than the baseline policy in terms of accumulated social
impact of 𝑐policy (c.f. (11d)). We point out that similar ‘‘stabilization’’
problems subject to resource constraints for the control of epidemic
outbreaks can be found in the literature, also using a fractional cost
𝑐policy, compare e.g. Köhler, Enyioha, and Allgöwer (2018), Preciado,
Zargham, Enyioha, Jadbabaie, and Pappas (2014).

When minimizing the number of accumulated fatalities, it is impor-
ant to consider not only the extinct individuals 𝐸(𝑁 ⋅ 𝑇𝑠) at the end of

the two year horizon, but to account as well for the part of the already
infected individuals that will decease after the two year horizon. The
reason for this is, while the availability of a vaccine at the end of
the horizon might prevent future infections, it cannot cure already
infected people. Hence, if we do not account for the inevitable fatalities
among the individuals infected at the end of the prediction horizon, the
optimal controller does not take any efforts to keep them low and as
a result a lot of people would die shortly after the two year horizon.
Therefore, we propose an optimization objective that includes all past
and inevitable future fatalities. Based on the model (1), we know that a
total of 𝜁

𝜁+𝜆 (𝐼 +𝐷) of the infected people 𝐼 +𝐷 will develop symptoms
in the future and further that a total of 𝜇

𝜇+𝜅

( 𝜁
𝜁+𝜆 (𝐼 + 𝐷) + 𝐴 + 𝑅

)

will
become threatened. Thus, assuming the capacity 𝑇ICU is not exceeded
afterwards, i.e., setting constant values 𝜏 = 𝜏(0) = 𝜇1

𝜇 𝜏1 + 𝜇2
𝜇 𝜏2 and

= 𝜎(0) = 𝜇1
𝜇 𝜎1 +

𝜇2
𝜇 𝜎2, the amount of inevitable fatalities is exactly

iven by

= 𝐸 + 𝜏
𝜏 + 𝜎

(

𝜇
𝜇 + 𝜅

(

𝜁
𝜁 + 𝜆

(𝐼 +𝐷) + 𝐴 + 𝑅
)

+ 𝑇
)

. (10)

Hence, given a baseline solution 𝑢𝑏, 𝑥𝑏 from Section 3.1.2, the
corresponding optimal control problem reads as follows:

min
𝑢(⋅)

𝐹 (𝑁 ⋅ 𝑇𝑠) (11a)

0 ≤ 𝑢(𝑘 ⋅ 𝑇𝑠) ∈ [0, 1] (11b)

𝑘 = 0,…𝑁 − 1 (11c)
𝑁−1
∑

𝑘=0
𝑐policy(𝑢(𝑘 ⋅ 𝑇𝑠)) ≤

𝑁−1
∑

𝑘=0
𝑐policy(𝑢𝑏(𝑘 ⋅ 𝑇𝑠)). (11d)

Since we only change the policy every week, the index 𝑘 in (11)
corresponds to weeks and 𝐹 (𝑁 ⋅ 𝑇𝑠) corresponds to the objective func-
tion in (10), where the states result from simulating the system (1)
with the parameters and the initial condition from Section 2 and the
input 𝑢(⋅) over 𝑘-weeks. Condition (11d) ensures that the encountered
social cost is smaller than the cost of the baseline policy. This optimal
control problem is such that the baseline policy 𝑢 = 𝑢𝑏 is a feasible
532

solution and thus the resulting fatalities 𝐹 (𝑁 ⋅ 𝑇𝑠) will always be
Fig. 5. Optimal control strategy (blue, solid), baseline policy (red, dashed) and ICU
capacity (dotted, black).

lower than that of the baseline policy. We point out that it is possible
to consider a more restrictive transient constraint on the policy cost
instead of (11d), which is discussed in detail in Appendix B. The
optimal control problem (11) can be formulated as a nonlinear program
(NLP) and is subsequently solved using CasADi (Andersson et al., 2019).

Numerical results
For comparison and to implement the constraint (11d), we use the

baseline policy from Section 3.1.2 with 𝑋𝑙𝑜𝑤𝑒𝑟 = 0.4, 𝑋𝑢𝑝𝑝𝑒𝑟 = 0.7,
𝑛steps = 14, 𝑛stab = 14, which overall is rather cautious and does not
exceed the ICU capacity. The corresponding results for the baseline
policy and the optimal control strategy can be seen in Fig. 5. Although
the optimal control input yields initially (first 100 days) a slightly
larger number of infected individuals and thus slightly more fatalities in
the first 200 days, the number of infected individuals is subsequently
significantly lower and the overall number of fatalities is reduced to
only 26%. The optimal controller allows for a smooth increase of the
infection rate 𝛼, while keeping the number of threatened individuals
(𝑇 ) consistently below the corresponding value of the baseline policy
after the first 200 days, thus yielding a small number of fatalities. The
rising number of infected individuals (𝐼) at the end results from the
finite-horizon and will be considered later in more detail.

We also consider a second baseline policy using 𝑋𝑙𝑜𝑤𝑒𝑟 = 0.6,
𝑋𝑢𝑝𝑝𝑒𝑟 = 0.85, 𝑛steps = 12, 𝑛stab = 14, which slightly relaxes the
social policy, but also exceeds the ICU capacity. The result is shown
in Fig. 6. We can see that in comparison to this second baseline policy
the optimal policy significantly reduces the number of fatalities to only
39%. The optimal strategy is a lot more cautious in reducing the social
policy, while the baseline is more aggressive and goes back and forth
between increasing and decreasing 𝛼, resulting in significant violations
of the ICU capacity. Furthermore, the simple baseline policy results in
a second wave as the restrictions are loosened too quickly, while the
optimal strategy slowly but steadily increases 𝛼 after the first 200 days,
and thereby avoids a second wave.

In both examples, a further observation should be highlighted. After
an initial phase of containing the outbreak, the measures are slowly but
steadily relaxed until a larger release at the end of the horizon. Similar
behavior can be observed for many optimal control problems with finite
horizons and is commonly referred to as ‘‘turnpike’’ behavior, which
goes back to Dorfman, Samuelson, and Solow (1987). An explanation
for this is that the consequences of decisions taken at later points in
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Fig. 6. More aggressive baseline: Optimal control strategy (blue, solid), baseline policy
(red, dashed) and ICU capacity (dotted, black).

time mainly occur after the end of the horizon, such that a more aggres-
sive policy towards the end is optimal, when only considering the finite
two year horizon. Of course, one would not implement the ‘‘leaving
arc’’ if the development of a vaccine would not be finalized after two
years, since implementing such a policy may lead to an uncontrollable
increase of infections towards the end of the time horizon in case
that the model is inaccurate and should thus be avoided in practice.
In Appendix A, we therefore discuss how adding ‘‘terminal constraints’’
to the optimization problem can prevent this turnpike behavior of the
optimal solution, at the price of an increasing number of fatalities.

3.3. Discussion

If we compare the results in Section 3.2 with the consistent full lock-
down from Section 3.1.1, we can see that it is possible to appropriately
increase 𝛼 without exceeding the ICU capacities, while the consistent
ull lockdown strategy would require a lockdown that takes approx-
mately a year to be effective. Hence, while a consistent lockdown
an effectively minimize the number of deaths, this strategy is only
iable in case this lockdown can be prolonged over the corresponding
ime horizon, unless a vaccine is developed earlier. On the other hand,
oth the optimal controller and the baseline controller allow for a
ignificant relaxation of the lockdown (on average a doubling of 𝛼),

without significantly increasing the number of fatalities.
In comparison to the baseline policy suggested in Section 3.1.2,

the optimal control policy results in a slower but smooth loosening of
the distancing policies. Without increasing the social cost over the full
time horizon, this optimal policy avoids any violation of the maximum
ICU capacity and hence results in a significantly smaller fatality rate.
We point out that the resulting optimal policy of slowly increasing 𝛼
is qualitatively similar to the resulting optimal policy in Kantner and
Koprucki (2020), albeit for a different control goal. It can be seen that
an initially ‘‘stronger’’ lockdown (i.e., a smaller value of 𝛼) over a longer
time period with subsequent loosening leads to a better handling of the
pandemic, compared to repeated tightening and loosening of distancing
measures. Moreover, a smooth and monotone loosening of distancing
policies is also desirable from an economic aspect since repeated lock-
downs after interim-periods of relaxed distancing guidelines may be
even more damaging to the economy, compared to an initially longer
lockdown.
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Comparing our results with the proposed scenarios by the Helmholtz
Association (Helmholtz-Initiative ‘Systemische Epidemiologische Anal-
yse der Covid-19-Epidemie’, 2020), we find that we agree that the
goal of herd immunity without overwhelming the health care capacity
would require years. Our results further agree with Helmholtz-Initiative
‘Systemische Epidemiologische Analyse der Covid-19-Epidemie’ (2020)
that the contact restrictions can only be loosened slowly if the health
care capacity must not be overwhelmed. However, since the authors in
Helmholtz-Initiative ‘Systemische Epidemiologische Analyse der Covid-
19-Epidemie’ (2020) do not consider the availability of a vaccine, their
conclusion is keeping or even increasing the lockdown until the number
of infected persons is small and all infections can be traced efficiently
and effectively via strategically allocated (and increased) testing. With
the assumption of a vaccine within the next two years, we argue that a
slow and smooth loosening of the lockdown does not lead to many more
fatalities while decreasing the social and economic cost significantly
according to our model. Concurrently, increased and strategically better
allocated testing, e.g., via a contact tracing mobile app (Oliver et al.,
2020), is of course highly beneficial and greatly advisable to improve
the performance (even if it this was not accounted for in our model).

To summarize, it seems possible to reduce the current restrictions
and thus allow 𝛼 to increase without exceeding the ICU capacity.
Furthermore, optimized policies can significantly improve the outcome
(in terms of fewer deaths and/or less social restrictions). However,
the result is highly sensitive w.r.t. the change in the infection rate,
while an accurate control of the infection rate 𝛼 (e.g. ±5%) through
governmental policies seems difficult/unrealistic. In the next section,
we will therefore deal with these issues by formulating a robust control
strategy that takes uncertainty in our COVID-19 model into account and
uses feedback based on uncertain state information.

4. Optimal feedback control of the COVID-19 outbreak

Section 3.2 shows that an optimal control policy can significantly
reduce the number of fatalities compared to a baseline policy that
allows for iterative loosening of social distancing measures. This opti-
mal control policy is computed by optimizing over all possible policies
to find the one minimizing the number of fatalities predicted by the
model Eqs. (1) without using stronger shutdown measures than the
baseline. Hence, the policy proposed in Section 3.2 strongly relies on
the accuracy of the model identified in Section 2 and thus may fail to
effectively control the outbreak in case of a model mismatch. However,
such a model mismatch is inevitable in practice, especially since the
model itself is a simplification of a much more complex reality and the
identification outlined in Section 2.2 strongly depends on the (sparse)
available data and the additional prior knowledge based e.g. on further
studies concerning COVID-19, which also provide only estimates. In
addition, the optimal control policy relies on exact knowledge of all
states and on the assumption that values for 𝛼 and 𝛾 can be exactly
imposed up to arbitrary precision via social distancing measures, both
of which are unrealistic assumptions when applying the policy in
practice.

In this section, we show how online measurements can be utilized
via feedback to effectively and robustly control the German COVID-19
outbreak in the presence of uncertain parameters. More precisely, we
illustrate that the optimal open-loop policy of Section 3.2 may lead to
poor performance when applied to validation models with a different
set of parameters, although these validation models result from adjust-
ing only one prior assumption in the identification and still fit the past
data well. On the other hand, we show that a model predictive control
(MPC) feedback strategy, based on repeatedly computing an open-loop
policy for the nominal model from Section 2, is inherently robust w.r.t.

model inaccuracies and successfully handles the outbreak.
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Basic idea
At each time step 𝑘 = 1,… , 𝑁 , where 𝑘 corresponds to weeks

nd 𝑁 = 100 as in Section 3.2, we solve the optimization problem
11) over the time horizon 𝑘,… , 𝑁 using the current measurements as
nitial condition at week 𝑘. Then, we apply the computed optimal policy
ver one week before solving the problem for the new measurements
gain. In this way, since the initial conditions in the optimal control
roblem are updated, a feedback mechanism is included as is standard
n MPC (Rawlings, Mayne, & Diehl, 2017). As a result, the prediction
orizon 𝑁 − 𝑘 of the optimization problem is shrinking with each time
tep 𝑘, such that it never exceeds the considered total time horizon of
= 100 weeks, after which we assume the availability of a vaccine.

ence, since the constraint (11d) needs to hold over the whole time
orizon 𝑁 , we replace it by
−1

∑

𝑗=𝑘
𝑐policy(𝑢(𝑗 ⋅ 𝑇𝑠)) ≤ 𝑐1policy −

𝑘−1
∑

𝑗=0
𝑐policy(𝑢(𝑗 ⋅ 𝑇𝑠)), (12)

ith 𝑐1policy =
∑𝑁−1

𝑘=0 𝑐policy(𝑢𝑏(𝑘 ⋅ 𝑇𝑠)) being the cost of the first baseline
olicy in Section 3.1.2. As a second modification, we adapt the bound
n the social distancing cost online, depending on the predicted states,
s is detailed in the following.

nline adaptation of social policy constraint
In Section 3.2, we proposed an open-loop optimal control strategy,

here the inputs were the infection rates 𝛼 and 𝛾. Loosely speaking, the
ontrol goal was to achieve a minimum number of fatalities without im-
osing stronger social distancing measures than a simple baseline policy
compare (11d)). Since this constraint heavily depends on the model to
hich the baseline is applied, a realistic setting with imperfect model
nowledge should allow to adapt the constraints on the policy online
n case that the nominal model is overly optimistic or pessimistic.
nstead of simply requiring that the cost of the MPC-based feedback
annot exceed 𝑐1policy, we increase the maximum cost in case that the
redicted number of patients requiring intensive care lies above 90%
f the maximum capacity 𝑇ICU at least once during the horizon, and we
ecrease it in case that the number consistently lies below 10% of 𝑇ICU.

This adaption is natural, as in reality one would increase the efforts
to contain the outbreak if the current measures are insufficient, and
on the other hand, the population cannot be expected to accept strict
measures when there are only few (severe) cases across the country.
Therefore, the maximum cost in week 𝑘, denoted by 𝑐𝑏(𝑘), varies online
with 𝑘 and is initialized as 𝑐𝑏(0) = 𝑐1policy. The amount by which we
change 𝑐𝑏 online is ±𝛥𝑢

𝑁−𝑘
𝑁 , where 𝛥𝑢 =

1
𝛼min

− 1
𝛼max

with 𝛼min and 𝛼max
as in Section 2.2. If, for instance, the model predicts large numbers of
future ICU patients, then the cost bound 𝑐𝑏 is increased by the difference
between the minimum and the maximum social distancing cost, scaled
by the remaining time horizon. This increase corresponds to the social
cost of an additional week in full lockdown, scaled by the remaining
time horizon via the factor 𝑁−𝑘

𝑁 .

PC-based feedback strategy
The proposed MPC-based feedback strategy is summarized in Al-

orithm 1. In the algorithm, 𝑇 (𝑗 ⋅ 𝑇𝑠 ∣ 𝑘 ⋅ 𝑇𝑠) denotes the number of
threatened individuals at time 𝑗 ⋅ 𝑇𝑠, predicted by the optimal solution
of (11) at time 𝑘 ⋅ 𝑇𝑠. Essentially, the algorithm repeatedly applies the
open-loop optimal control policy of Section 3.2 with the key difference
that, at time 𝑘, all past measurements 𝑗 = 1,… , 𝑘 are used in the
optimization problem, thus including an online feedback. In addition,
in Step 3 of the algorithm, the social policy constraints is adapted as
described above.

Validation
To assess the improved robustness of Algorithm 1 compared to

open-loop optimal control, we produce two validation models. More
534
Algorithm 1. MPC-based feedback strategy

1. Given state measurements up to time 𝑘, solve the following
problem

min
𝑢(⋅)

𝐹 (𝑁 ⋅ 𝑇𝑠) (13a)

0 ≤ 𝑢(𝑗 ⋅ 𝑇𝑠) ∈ [0, 1] (13b)

𝑗 = 𝑘,… , 𝑁 − 1 (13c)
𝑁−1
∑

𝑗=𝑘
𝑐policy(𝑢(𝑗 ⋅ 𝑇𝑠)) ≤ 𝑐𝑏(𝑘) −

𝑘−1
∑

𝑗=0
𝑐policy(𝑢(𝑗 ⋅ 𝑇𝑠)), (13d)

with the state-dependent cost 𝐹 as in (10), based on simulating
the model (1) over the remaining horizon 𝑁 − 𝑘 subject to the
input 𝑢, starting at the current measured state at time 𝑘.

2. Apply the optimal policy 𝑢∗(𝑘 ⋅ 𝑇𝑠) for the next 𝑇𝑠 = 7 days.
3. Update the social policy cost as

𝑐𝑏(𝑘+1) =

⎧

⎪

⎨

⎪

⎩

𝑐𝑏(𝑘) + 𝛥𝑢
𝑁−𝑘
𝑁 if 𝜇2

𝜇 max𝑗∈[𝑘,𝑁] 𝑇 (𝑗 ⋅ 𝑇𝑠 ∣ 𝑘 ⋅ 𝑇𝑠) ≥ 0.9𝑇ICU

𝑐𝑏(𝑘) − 𝛥𝑢
𝑁−𝑘
𝑁 if 𝜇2

𝜇 max𝑗∈[𝑘,𝑁] 𝑇 (𝑗 ⋅ 𝑇𝑠 ∣ 𝑘 ⋅ 𝑇𝑠) ≤ 0.1𝑇ICU

𝑐𝑏(𝑘) otherwise

where 𝛥𝑢 =
1

𝛼min
− 1

𝛼max
.

4. Set 𝑘 = 𝑘 + 1.

precisely, we identify two new sets of parameters A and B by proceed-
ing exactly as in Section 2.2 with the only difference that we change
the prior assumption that the stationary ratio of confirmed COVID-19
cases is in the interval [0.3, 0.45]. Instead, we assume that this value
is in [0.3, 0.6] for set A and in [0.3, 0.4] for set B. When performing
parameter identification based on these modified prior assumptions, we
also obtain sets of parameters that can accurately explain the existing
past data on COVID-19 cases in Germany. However, the resulting
models have different dynamics and different reproduction rates for
the same lockdown policy. Increasing the above ratio as in parameter
set A decreases the number of infected and undetected individuals
resulting in a higher reproduction rate to explain the same amount of
confirmed cases. Hence, if an open-loop policy based on the nominal
model (i.e., with parameters described in Section 2.2) is applied to the
validation model with parameters A, then the number of infections and
thus the number of fatalities increases significantly.

To illustrate this effect, we apply the open-loop optimal control
policy based on the model with parameters as in Section 2.2 to the
new models with parameter sets A and B. The control effort of this
policy, i.e., the amount of social distancing, is constrained as in (11d)
by the cost of the baseline policy when applied to the nominal model
identified in Section 2.2. The results for the model with parameters
A can be seen in Fig. 7. Since this validation model has a higher
reproduction rate for similar inputs as explained above, the number of
fatalities after 𝑁 = 100 weeks increases significantly compared to the
simulations in Section 3. This is due to the fact that the open-loop policy
is only computed once, at the beginning of the time horizon, and is
then applied over the whole time span of two years without any online
adaption based on new measurements. Therefore, it cannot handle the
model mismatch and thus has a significantly worse performance. In
addition, Fig. 7 shows the evolution under the proposed MPC-based
feedback, which leads to a significantly lower number of fatalities
compared to the open-loop policy. We point out that the feedback
(partially) compensates the fact that the control action is computed
based on the nominal model parameters from Section 2.2, which differ
significantly from parameter set A. Due to the larger number of infected
individuals, the maximum social cost 𝑐 is increased at multiple time
𝑏
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Fig. 7. Different policies designed based on the nominal model identified in Sec-
tion 2.2, applied to the validation model with parameter set A (top) and parameter set
B (bottom): Open-loop optimal control strategy (‘OL’, blue dotted), Open-loop optimal
control strategy with the same amount of resources as the MPC-based feedback (‘OL-
resource’, red dashed), MPC-based feedback strategy as in Algorithm 1 (yellow solid),
and ICU capacity (black dotted).

steps, which is indicated by the step-like increases of the input. Finally,
an open-loop optimal control policy is computed which is allowed
to use the same amount of resources as the MPC-based feedback (in
hindsight), i.e., the adapted social and economical cost 𝑐𝑏(𝑁). While
his policy performs better than the initial open-loop policy with fewer
esources, it leads to a similar number of fatalities at the end of the
orizon compared to the feedback controller. However, the number of
hreatened patients is very large at time 𝑘 = 𝑁 , which would lead to a
ignificant increase in fatalities after the considered time period, even
f a vaccine is available.

Fig. 7 also shows the same comparison for the model with parameter
et B. In this case, since the reproduction rate is lower, the open-loop
ptimal policy leads to fewer fatalities than in Section 3.2. The MPC-
ased feedback leads to almost identical performance, but it reduces
he cost budget at several time instants, i.e., it can handle the outbreak
imilarly well but with significantly lower social and economic costs.
hen restricting the budget of the open-loop optimal policy to the one

f the feedback strategy, i.e., 𝑐𝑏(𝑁), then it leads to a dramatic increase
n fatalities.
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Table 2
Uncertainties in the states.
𝐼 ± 50% 𝐷 ± 1% 𝐴 ± 20% 𝑅 ± 1% 𝐻 ± 50% 𝐸 ± 1%

𝑇 ± ( μ1
μ
⋅ 1% + μ2

μ
⋅ 5%)

To conclude, the above discussion reveals that a combination of
open-loop optimal control with feedback is inherently robust in the
sense that it effectively controls the German COVID-19 outbreak even
if the employed model is inaccurate. When comparing the result to an
open-loop strategy, then the MPC-based feedback strategy can dramati-
cally decrease the number of fatalities or the necessary amount of social
distancing, respectively. Such robustness is an important property for
applying any control strategy in a real-world scenario, where accurate
model knowledge is rarely available. In the next section, we propose
a more systematic robust MPC approach which explicitly takes model
inaccuracies as well as uncertain state measurements and control inputs
into account in order to safely and cautiously control the COVID-19
pandemic.

5. Robust and optimal feedback control of the COVID-19 outbreak

While the MPC-based feedback policy proposed in Section 4 is
significantly more successful in handling the outbreak compared to a
simple open-loop policy, it relies on the assumption that exact measure-
ments of the state in (1) are available at each time step. In this section,
we consider a more realistic scenario of uncertain measurements in
terms of biased state estimates, and we analyze the impact on the
closed-loop operation. In particular, we develop a robust MPC-based
feedback strategy using interval arithmetic that takes the uncertainty
into account during the predictions and thus leads to a safer policy
minimizing the number of fatalities.

Biased state measurements
In the following, we consider the case where at each day 𝑘 instead

of the true state 𝑥(𝑘) we only obtain an estimated state �̂�(𝑘), which
is subject to an additional bias. In Table 2, we summarize the uncer-
tainties in the states. For individuals in states 𝐷 and 𝑅, the disease
COVID-19 was detected by tests. Hence, their values are well known,
nevertheless, we assume that they can slightly differ from the true
states by ±1%, as there might be cases on the borderline between 𝐷
and 𝑅 that are hard to assign to either of the states. The number of
people in ICUs is well documented. However, the state 𝑇 contains not
only patients in ICUs (𝑇𝐼𝐶𝑈 ± 1%) but also other infected members
of the risk group (𝑇2 ± 5%), cf. Section 2.1, such that the uncertainty
we use is ±( 𝜇1𝜇 ⋅ 1% + 𝜇2

𝜇 ⋅ 5%). We assume that the number of deaths
s certain by ±1% as it includes some people that died of different
auses. As the undetected cases can by definition not be measured, they
ust be estimated using random sampling or strategies like (Bommer
Vollmer, 2020). Therefore, the states 𝐼 and 𝐴 are much less certain,

specially without symptoms (𝐼 ± 50%, 𝐴 ± 20%). Recovering from the
isease is a resulting state from both rather certain states, 𝐷 and 𝑅, and
ighly uncertain states, 𝐼 and 𝐴 such that overall it is uncertain itself
𝐻 ±50%). The uncertainty of the state of susceptible persons 𝑆 results
rom the other states: �̂� = �̂�1 = 1 −

∑8
𝑖=2 �̂�𝑖.

It is possible to directly use this biased state estimate �̂�(𝑘) in
lgorithm 1 and compensate the bias through the inherent robustness

n the feedback implementation. In the following, we derive an alterna-
ive robust formulation that explicitly considers the uncertainty in the
rediction.

nterval predictions
First, given a biased state estimate �̂�(𝑘) and known bounds on the

ias (Table 2), it is possible to compute interval bounds 𝑥(𝑘), 𝑥(𝑘) such
that the true state is guaranteed to lie in that interval, i.e., 𝑥 (𝑘) ∈
𝑖
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[𝑥𝑖(𝑘), 𝑥𝑖(𝑘)]. The following formulation will predict the interval bounds
𝑥𝑖 and 𝑥𝑖 instead of using some nominal prediction. This methods is
similar to interval arithmetic employed in robust MPC (Limon, Bravo,
Alamo, & Camacho, 2005) and the robust moment enclosure for an
SEIV epidemic model in Watkins, Nowzari, and Pappas (2019). Using
the fact that the system is positive (𝑥𝑖 and all the parameters are
positive), it is possible to derive an interval prediction of the form

�̇� =𝑓 (𝑥, 𝑥, 𝑢), (14a)

̇ =𝑓 (𝑥, 𝑥, 𝑢), (14b)

hich ensures that 𝑥(0) ∈ [𝑥(0), 𝑥(0)] implies 𝑥(𝑡) ∈ [𝑥(𝑡), 𝑥(𝑡)] for all
𝑡 ≥ 0, given suitable bounds on the uncertain parameters in the system
model (1). The detailed derivation of the interval prediction model (14)
can be found in Appendix C (more precisely, Eqs. (C.4)). Since deriving
reliable bounds on all parameters in the model (1) is rather difficult
or unnecessarily complex, we only focus on the uncertainty associated
with the infection rate 𝛼. In particular, we consider an uncertainty
of ±5% on the infection rate 𝛼. Thereby, we explicitly consider the
roblem that the infection rate cannot be precisely specified via social
istancing measures. We will see later in the simulations that, although
e do not account for all possible mismatches in the prediction model,
e nevertheless obtain the desired properties in closed loop.

Given this interval prediction model, the proposed robust formu-
ation now predicts an interval for the different state variables and
inimizes the worst-case number of fatalities 𝐹 based on 𝑥(𝑁 ⋅𝑇𝑠). The

overall procedure is summarized in Algorithm 2.

Algorithm 2. Robust MPC strategy using interval arithmetic

1. Given biased state estimate �̂�(𝑘⋅𝑇𝑠), compute set [𝑥(𝑘⋅𝑇𝑠), 𝑥(𝑘⋅𝑇𝑠)].
2. Solve the following problem

min
𝑢(⋅)

𝐹 (𝑁 ⋅ 𝑇𝑠) (15a)

0 ≤ 𝑢(𝑗 ⋅ 𝑇𝑠) ∈ [0, 1] (15b)

𝑗 = 𝑘,…𝑁 − 1 (15c)
𝑁−1
∑

𝑗=𝑘
𝑐policy(𝑢(𝑗 ⋅ 𝑇𝑠)) ≤ 𝑐𝑏(𝑘) −

𝑘−1
∑

𝑗=0
𝑐policy(𝑢(𝑗 ⋅ 𝑇𝑠)), (15d)

with 𝐹 based on (10) using 𝑥, which results from the interval
predictions of the model (14) over the remaining horizon 𝑁 − 𝑘
subject to the input 𝑢, starting at the current set estimate [𝑥(𝑘 ⋅
𝑇𝑠), 𝑥(𝑘 ⋅ 𝑇𝑠)].

3. Apply the optimal policy 𝑢∗(𝑘 ⋅ 𝑇𝑠) for the next 𝑇𝑠 = 7 days.
4. Update the social policy cost as in Algorithm 1 using 𝑇 instead

of 𝑇 .
5. Set 𝑘 = 𝑘 + 1.

Numerical results
In the following simulations, we consider the extreme case where

the number of estimated infected or previously infected individuals (𝐼 ,
, 𝐴, 𝑅, 𝑇 , 𝐻 , 𝐸) is underestimated. The results for the robust MPC and

he nominal MPC in comparison to open-loop optimal control strategies
or the two validation parameter sets A and B (compare Section 4) can
e seen in Fig. 8. Due to the worst-case prediction in the robust MPC,
t 𝑡 = 0 the robust MPC already increases the resources two times,
or both parameter sets, such that at 𝑡 = 𝑇𝑠 the predictions satisfy
𝜇1
𝜇2
𝑇 (𝑘 ⋅ 𝑇𝑠) ≤ 0.9𝑇𝐼𝐶𝑈 .
In the simulation with the model based on parameter set A, we

can directly see that both the nominal MPC and the robust MPC
reduce the number of fatalities compared to an open-loop optimal
control strategy. Furthermore, if we compare the robust MPC and the
nominal MPC, we can see that after 𝑡 = 140 days the nominal MPC
536

n

Fig. 8. Different policies designed based on the nominal model identified in Sec-
tion 2.2, applied to the validation model with parameter set A (top) and parameter set B
(bottom) with biased state measurements: Open-loop optimal control strategy (‘OL’, blue
dotted), Open-loop optimal control strategy with the same amount of resources as the
robust MPC-based feedback (‘OL-resource’, red dashed), nominal MPC-based feedback
strategy as in Algorithm 1 with biased estimated state �̂�(𝑘) (yellow, dash-dot), robust

PC-based feedback strategy using Algorithm 2 (purple, solid), and ICU capacity (black
otted).

mplementation realizes that the spread is worse than initially assumed.
his leads to a strong increase in social measures 𝑢 at 𝑡 = 140. With
he robust formulation, 𝑢 decreases almost monotonically. Furthermore,
he nominal implementation results in twice the number of fatalities,
hile the applied resources 𝑐policy over the two year horizon differ
y less than 𝛥𝑢, which corresponds to one week of lockdown. This
ndicates that the robust MPC, planning cautiously from the beginning,
xploits its resources more efficiently by imposing stricter social dis-
ancing measures early on, which results to be beneficial in the long
un.

For the second parameter set B, we can see that the worst-case
obust formulation uses initially an unnecessarily high control effort.
evertheless, overall the applied resources 𝑐policy differ by less than 𝛥𝑢
ompared to the nominal MPC, while the number of fatalities is still
educed by 33%. In comparison to the open-loop policies, both MPC
olicies require less or equally restrictive policy measures 𝑢, while the
umber of fatalities are significantly reduced.
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6. Conclusions and discussion

In the following, we summarize our findings on a high-level and
highlight the main take-away messages:

• Our results in Section 3 confirm the conclusions in
Meyer-Hermann et al. (2020) that neither eradication of the virus
nor herd immunity without the availability of a vaccine are viable
solutions to handle the current COVID-19 outbreak.

• Applying an optimizer to the mathematical model describing the
outbreak, one can significantly reduce the number of fatalities
without increasing the costs associated to decreasing the infection
rate (social distancing policies, closing schools, etc.), compare
Section 3.2.

• Since the proposed model can never exactly predict the COVID-19
pandemic, applying a nominal optimal policy introduces unneces-
sary conservatism, at best, up to posing a great danger (i.e. over-
whelming the health care capacities risking high mortality rates).
Therefore, our findings in Section 4 support (Meyer-Hermann
et al., 2020) by showing that any policy to control the COVID-
19 outbreak successfully has to be an adaptive strategy. This
means we need to constantly measure, monitor and estimate the
current numbers and adapt our policy accordingly, i.e., feedback
is necessary for reliably handling the outbreak.

• If we already a priori take into account that our model includes
mismatches and that all measured and estimated numbers are
not exact and can have a bias, we can further improve the
outcome, as shown in Section 5. More specifically, we developed
a robust MPC-based feedback strategy using interval arithmetic.
The application of feedback without the robust description of the
considered model can lead to intermediate increases in the num-
ber of new infections necessitating another period of lockdown.
On the contrary, a robust feedback strategy can take these model
mismatches and other uncertainties into account and is hence able
to avoid such behavior, thus significantly reducing the number of
fatalities.

• When looking at the qualitative results the robust MPC-based
feedback offers, one can see that, accounting for the instability
and uncertainty of the spread of the virus, the controller suggests
a rather strict policy at the beginning and only then allows for a
gradual increase in the infection rate. Keeping this loosening slow
at the beginning shows a beneficial effect in the long run. This
qualitative result of the robust MPC underpins also the German
policy and reaction to the outbreak of COVID-19 in Germany
where initially strong measures (what we here refer to as lock-
down) were applied. Only very recently the German government
started to loosen these measures slowly and gradually.

There are also influences on the course of the outbreak that were
ot taken into account in the present paper but which are important
n an overall strategy towards the spread of COVID-19 (e.g. increasing
esting capacities, tracking of infections, as well as investigating which
easures lead to the desired infection rate). However, controlling the

nfection rate is certainly one of the key factors and hence, this paper
ontributes towards mitigating the spread of COVID-19 under manage-
ble societal and economic costs. We hope that the proposed feedback
trategies inspire further investigations in this direction and offer qual-
tative and high-level insights that underpin the current policies or
trategy papers.
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Fig. A.9. Cautious baseline: Optimal control strategy with terminal constraints (blue,
solid), baseline policy (red, dashed) and ICU capacity (dotted, black).

Appendix A. Optimal control formulation using terminal con-
straints

In order to avoid artifacts of considering a finite-horizon problem
(e.g. a lot of infected people at the end of the horizon), an alternative
to considering the modified cost function F from (10) is the inclusion of
additional terminal constraints for the contagious population 𝐼𝐷𝐴𝑅𝑇 =
(𝐼,𝐷,𝐴,𝑅, 𝑇 ) ∈ R5. In particular, we require that at the end of the con-
trol horizon 𝑁 , the number of contagious individuals in each category
(𝐼,𝐷,𝐴,𝑅, 𝑇 ) should be smaller than the corresponding number from
the baseline policy (c.f. (A.1a)). In addition, at the end of the horizon
the number of contagious individuals should be non-increasing, which
is implemented as (A.1b).

Hence, in the following, we replace the cost 𝐹 by the number of
atalities 𝐸, and we add the following constraints to the optimal control

problem (11) from Section 3.2:

𝐼𝐷𝐴𝑅𝑇 (𝑁 ⋅ 𝑇𝑠) ≤ 𝐼𝐷𝐴𝑅𝑇 𝑏(𝑁 ⋅ 𝑇𝑠), (A.1a)

𝐼𝐷𝐴𝑅𝑇 (𝑁 ⋅ 𝑇𝑠) ≤ 𝐼𝐷𝐴𝑅𝑇 ((𝑁 − 1) ⋅ 𝑇𝑠). (A.1b)

Again, the index 𝑘 in (11) corresponds to weeks and the states
𝐼𝐷𝐴𝑅𝑇 (𝑘⋅𝑇𝑠) correspond to the result of simulating the system (1) with
the parameters and initial condition from Section 2. These terminal
conditions (A.1a)–(A.1b) (which should be interpreted element-wise)
ensure that the final state after the finite horizon 𝑁 is ‘‘better’’ than
the baseline solution (c.f. (A.1a)) and the outbreak can be contained
(c.f. (A.1b)). The simulation results with the two baseline policies
shown in Figs. A.9 and A.10 demonstrate that the terminal constraints
indeed effectively prevent the turnpike behavior. However, the ad-
ditional constraints also lead to a slight increase in the number of
fatalities.

Appendix B. Alternative average constraint formulation

We wish to briefly mention a stronger restriction on the societal cost
of the optimal control strategy. In particular, instead of only restricting
the cost over the considered horizon of 𝑁 = 100 weeks, a stronger
property is to ensure that at any time 𝑡, the previously accumulated
policy cost is smaller than the corresponding cost of the baseline policy.
This can be done by replacing condition (11d) with the following
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Fig. A.10. Aggressive baseline: Optimal control strategy with terminal constraints
blue, solid), baseline policy (red, dashed) and ICU capacity (dotted, black).

ransient constraint:
𝑖−1
∑

𝑘=0
𝑐policy(𝑢1(𝑘)) ≤

𝑖−1
∑

𝑘=0
𝑐policy(𝑢𝑏1(𝑘)), (B.1)

𝑖 = 1,… , 𝑁. (B.2)

The corresponding results for both baselines considered in Section 3.2
can be seen in Fig. B.11. In this case the number of fatalities are reduced
by 33% and 37%, respectively. Thus, also for this more restrictive
setting, the optimal controller can significantly reduce the number of
fatalities. In addition, in the comparison to the more aggressive baseline
we also see that early measures are absolutely crucial, since the two
policies are essentially equivalent in the period from 110 days–150
days, i.e., including the critical time period where the ICU capacity is
exceeded, but differ significantly over 30 weeks prior to the violation
of the ICU capacity.

Appendix C. Interval predictions

In the following, we derive the dynamics of the interval predictions
𝑓, 𝑓 used in (14). Note that the following property holds for any scalars
∈ [𝑎, 𝑎], 𝑏 ∈ [𝑏, 𝑏]:

⋅ 𝑏 ∈ [𝑎𝑏, 𝑎𝑏], (C.1)

f 𝑎, 𝑏 ≥ 0. Furthermore, to ensure that 𝑥(𝑡) ∈ [𝑥(𝑡), 𝑥(𝑡)] given 𝑥(0) ∈
𝑥(0), 𝑥(0)], we only require

�̇�𝑖 ≥ �̇�𝑖 if 𝑥𝑖 = 𝑥𝑖, (C.2)

and similarly

̇ 𝑖 ≤ �̇�𝑖 if 𝑥𝑖 = 𝑥𝑖, (C.3)

or all 𝑖 = 1,… , 8. Essentially, we use the property (C.1) together with
he fact that 𝑥𝑖 and the parameters are positive to ensure that (C.2) and
C.3) hold in order to derive the differential equations for the interval.
ore precisely, assuming that every parameter is uncertain in some

ounds (e.g. 𝛽 ∈ [𝛽, 𝛽]) yields the following 2 ⋅ 8 ODEs:

�̇� = − 𝑆(𝛼𝐼 + 𝛽𝐷 + 𝛾𝐴 + 𝛽𝑅), (C.4a)

�̇� = − 𝑆(𝛼𝐼 + 𝛽𝐷 + 𝛾𝐴 + 𝛽𝑅), (C.4b)

�̇� =𝑆(𝛼𝐼 + 𝛽𝐷 + 𝛾𝐴 + 𝛽𝑅) − (𝜖 + 𝜁 + 𝜆)𝐼, (C.4c)
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Fig. B.11. Transient constraint on social policy: Top: cautious baseline; Bottom:
aggressive baseline. Optimal control strategy (blue, solid), baseline policy (red, dashed)
and ICU capacity (dotted, black).

�̇� =𝑆(𝛼𝐼 + 𝛽𝐷 + 𝛾𝐴 + 𝛽𝑅) − (𝜖 + 𝜁 + 𝜆)𝐼, (C.4d)

�̇� =𝜖𝐼 − (𝜁 + 𝜆)𝐷, (C.4e)

�̇� =𝜖𝐼 − (𝜁 + 𝜆)𝐷, (C.4f)

�̇� =𝜁𝐼 − (𝜃 + 𝜇 + 𝜅)𝐴, (C.4g)

�̇� =𝜁𝐼 − (𝜃 + 𝜇 + 𝜅)𝐴, (C.4h)

�̇� =𝜁𝐷 + 𝜃𝐴 − (𝜇 + 𝜅)𝑅, (C.4i)

�̇� =𝜁𝐷 + 𝜃𝐴 − (𝜇 + 𝜅)𝑅, (C.4j)

�̇� =𝜇𝐴 + 𝜇𝑅 − (𝜎(𝑇 ) + 𝜏(𝑇 ))𝑇 , (C.4k)

�̇� =𝜇𝐴 + 𝜇𝑅 − (𝜎(𝑇 ) + 𝜏(𝑇 ))𝑇 , (C.4l)

�̇� =𝜆𝐼 + 𝜆𝐷 + 𝜅𝐴 + 𝜅𝑅 + 𝜎(𝑇 )𝑇 , (C.4m)

�̇� =𝜆𝐼 + 𝜆𝐷 + 𝜅𝐴 + 𝜅𝑅 + 𝜎(𝑇 )𝑇 , (C.4n)

�̇� =𝜏(𝑇 )𝑇 , (C.4o)

�̇� =𝜏(𝑇 )𝑇 . (C.4p)

Since these dynamics only correspond to possibly conservative overap-
proximations, we can use ∑8 𝑥 = 1 to possibly improve the resulting
𝑖=1 𝑖
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bounds for 𝑆 using the following projections: 𝑆 ≤ 1 −
∑8

𝑖=2 𝑥𝑖 and
≥ 1 −

∑8
𝑖=2 𝑥𝑖. In principle it would also be possible to directly set

𝑆, 𝑆 using the other states 𝑥𝑖, 𝑥𝑖 instead of simulating (C.4a)–(C.4b),
ut this may not necessarily ensure 𝑆 ≤ 1 and 𝑆 ≥ 0.
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