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Abstract

Finite element models (FEMs) are used increasingly in the traumatic brain injury (TBI) field to provide an estimation of

tissue responses and predict the probability of sustaining TBI after a biomechanical event. However, FEM studies have

mainly focused on predicting the absence/presence of TBI rather than estimating the location of injury. In this study, we

created a multi-scale FEM of the pig brain with embedded axonal tracts to estimate the sites of acute (£6 h) traumatic

axonal injury (TAI) after rapid head rotation. We examined three finite element (FE)-derived metrics related to the axonal

bundle deformation and three FE-derived metrics based on brain tissue deformation for prediction of acute TAI location.

Rapid head rotations were performed in pigs, and TAI neuropathological maps were generated and colocalized to the

FEM. The distributions of the FEM-derived brain/axonal deformations spatially correlate with the locations of acute TAI.

For each of the six metric candidates, we examined a matrix of different injury thresholds (thx) and distance to actual TAI

sites (ds) to maximize the average of two optimization criteria. Three axonal deformation-related TAI candidates predicted

the sites of acute TAI within 2.5 mm, but no brain tissue metric succeeded. The optimal range of thresholds for maximum

axonal strain, maximum axonal strain rate, and maximum product of axonal strain and strain rate were 0.08–0.14, 40–90,

and 2.0–7.5 s-1, respectively. The upper bounds of these thresholds resulted in higher true-positive prediction rate. In

summary, this study confirmed the hypothesis that the large axonal-bundle deformations occur on/close to the areas that

sustained TAI.

Keywords: axonal tractography; brain injury localization; finite element–histopathology coregistration; meso-/macroscale

computational model; neuropathology mapping

Introduction

Traumatic brain injury (TBI) is the most common cause of

cognitive and behavioral deficits in the United States and

worldwide and its rate is increasing every year.1 Despite ongoing

efforts to address and decrease TBI, it is still alarming that *1.4

million TBIs occur in the United States each year.2 To reduce the

number and severity of TBIs, more effective head protective

devices and TBI risk reduction and prevention strategies are

needed. Finite element models (FEMs), which can provide in-

sights into tissue responses during biomechanical events expe-

rienced by the intact head, are among the tools that can play an

important role in accelerating technical innovations in head

protective equipment and improving TBI diagnostic and prog-

nostic techniques. FEMs have the potential to determine tissue

injury thresholds and predict the possible presence, degree, lo-

cation, and distribution of injury after an incidental event.3–13

Most of the previous FEM studies have focused mainly on pre-

dicting the absence or presence of TBI rather than estimating the

extent and/or location of injury.3,4,6–10,12

Prediction of brain regions and/or areas that might have sus-

tained damage after a head impact or rapid rotation can greatly

improve TBI diagnosis and treatment strategies and better guide

advancement in the design of more effective devices to mitigate the

occurrences and severity of TBI. An important question is whether

and how closely and accurately FEMs can predict the actual loca-

tion of brain injury. A practical approach to answer this question is

to compare the pattern and location of predicted maximal dynamic

biomechanical responses of the brain tissue during an event with

the measured locations of injury.

The TBI research community has recently started to explore

possible correlations between the outcomes of FEM simulations
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and location of injury.5,11,14–18 For example, Ghajari and col-

leagues11 reconstructed three common biomechanical events that

can result in TBI and compared the distribution of the brain strain

and strain rate at the boundary of the gray and white matter with

the pattern of diffusion tensor imaging (DTI) abnormalities

observed in a cohort of TBI patients. They found a correlation

between the locations of highest brain tissue deformations in-

duced by the three TBI loading scenarios that they examined and

the common locations of imaging features in TBI patients.11 In a

study by our group, we reconstructed a set of real-world infant

fall-related TBI accidents that resulted in skull fractures and

found an agreement between the distribution of finite element

(FE)-derived stress and strain in the skull and the location and

pattern of skull fracture identified in the corresponding comput-

erized tomography (CT) scans.5 In another study, Fahlstedt and

colleagues14 quantified the correlation between the FE-derived

brain-strain distribution patterns in three bicycle accident simu-

lations and the hemorrhagic contusion patterns indicated in the

image scans. A couple of studies also reconstructed fall-related

TBI accidents that resulted in subdural hematoma and focused

only on the regions of brain elements that were associated with the

area of hemorrhage, as indicated by the corresponding CT

scans.15,16 Some animal studies also found the regional distribu-

tion of FEM-derived brain tissue strain and stress to be compa-

rable with the pattern of contusion and cell membrane damage

observed experimentally after controlled cortical impact.17,18

All these studies demonstrated the utility of FEMs for esti-

mating the location and pattern on injuries. However, most of

these studies5,14–18 focused on focal injuries such as skull frac-

ture, hematoma, and contusion, which are observable lesions at

the macroscopic level that can be localized using conventional

neuroimaging scans. However, we are unaware of a study that

examined spatial correlation of FEM results with diffuse soft

tissue damage such as diffuse traumatic axonal injury (TAI).

Performing such a study is challenging because it requires the

whole brain to be explored rather than specific selected areas of

interests, attributable to the diffusely dispersed nature of TAI.

Another challenge is the absence of observable definitive mac-

roscopic pathology on the current imaging scans specifically in

the case of mild-to-moderate TAI. Although advanced neuroi-

maging modalities, such as diffusion tensor imaging (DTI),

susceptibility-weighted imaging, and functional magnetic reso-

nance imaging, have offered potential for improved evaluation

and general diagnosis of TAI,19–22 these techniques have not yet

attained sufficient diagnostic criteria20–22 for a definite locali-

zation of TAI pathology.

Animal models of TBI, in which the precise location and extent

of TAI are available through microscopic histopathology analysis

after euthanization, are great surrogates to investigate a possible

correlation between the FEM results and the brain areas that TAI

might have occurred. Moreover, the FEM studies in the TBI lit-

erature were mainly performed at the macroscale continuum

level3–6,11,16–18 and lacked the responses of axonal fibers at the

micro-/mesoscopic levels where axonal damage occurs and are

detected by histopathology. Incorporation of axonal tract details

and multi-scale modeling, where kinematic loading experienced

by the head can be applied at the macroscopic level and defor-

mation responses can be computed at the micro-/mesoscopic le-

vel, can bridge this gap and improve the axonal damage location

prediction of FEMs.

Recent developments in FEMs set the stage for simulation of

axonal damage by incorporation of the axonal orientations into the

FEMs using the DTI technique.3,7,9,10,12,13,23 In most recent studies,

the tract-oriented approach was used, in which the brain tissue was

modeled with an isotropic or fiber-reinforced anisotropic3,6,10,23–25

material, and the brain biomechanical responses in the dominant

direction of axonal tracts at each brain element were calculated.

Although the tract-oriented approach has shown to improve the

biofidelity of the FE brain models6,10 and their injury prediction

capability, some simplifications made in that approach resulted in a

loss of anatomical information from the axonal tracts and a reduction

in the biofidelity and accuracy of the derived axonal biomechanical

response. First, for each brain element, one dominant fiber direction

was estimated by averaging the fiber orientations of all DTI voxels

within that element. These averaged orientations may not necessarily

be aligned with the exact orientations of several axonal fiber bundles

within that brain element. Second, in some of these studies that used

isotropic material model for the brain tissue, the averaged axonal

tract orientation in each brain element was determined in the initial

undeformed condition and does not take into the account the change

of the orientations of axonal tracts with respect to brain tissue given

that the brain tissue deforms during the simulation.

More recently, an element embedding approach has been used

in a few TBI FEM studies.12,13,26–29 This approach overcomes

the simplifications of the tract-oriented method by including

multiple fiber paths in each brain element. The element-

embedding method allows for a coupled modeling of meso fea-

tures of axonal structures within the three-dimensional (3D)

macroscale brain FEM.

The objective of this study was to investigate the utility of such a

multi-scale FEM approach to estimating the location of axonal

injury. We hypothesized that the distribution of large FEM-derived

brain tissue/axonal fiber deformations colocalize with the pattern of

TAI. To that end, an embedded axonal tract pig brain FEM was

utilized to simulate a set of well-characterized rapid non-impact

head rotation (RNR) pig TBI experiments. The spatial distributions

of induced TAI in those pig experiments were precisely quantified

by histology, and TAI maps were generated and colocalized to the

results of FEM simulations. An optimization method was then

developed and coupled with the k-fold cross-validation technique

to quantify the capability of different FE-derived tissue deforma-

tion parameters in estimating the location of axonal injury. The

optimal FE-derived tissue injury thresholds and distance to actual

TAI were determined and the threshold values were compared with

the injury thresholds from in vitro and in vivo studies. This study

demonstrates the capability of coupled meso-/macroscale FEMs in

localization of axonal injury at the micro-/mesoscopic levels dif-

fusely throughout the brain.

Methods

Animal model of traumatic brain injury

A well-characterized RNR pig TBI model30–34 was used to
produce a single rapid sagittal or axial head rotation causing purely
inertial TAI. This TBI model produces unconsciousness, sustained
cognitive dysfunction, and bilateral diffuse axonal and hemor-
rhagic injury.

In this experimental model of TBI, the animal was anesthetized
and, while maintained on isoflurane, the animals’ heads were se-
cured to the inertial loading apparatus by a snout clamp. The lower
part of the clamp, a metal plate covered with a rubber bite plate, was
inserted into the animal’s mouth and the head was secured by
tightening the padded steel spring bands, which encircle the snout
onto the metal plate. Immediately before injury, anesthesia, sup-
plemental oxygen, and mechanical ventilation were withdrawn,
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and the piglet could breathe spontaneously on room air. Then, the
pig head rotated through a 60-degree sagittal arc or 90-degree axial
arc in 10–40 ms using an inertial loading device. The angular ve-
locity of the pig head rotation was directly measured at 10 kHz,
filtered with a fourth-order, low-pass Butterworth filter, and ex-
tracted for FE simulations. After injury, the piglet was removed
from the bite plate, supplemental oxygen was resumed as needed,
isoflurane was discontinued, the piglet was extubated, and stable
monitors were discontinued.

All protocols for these experiments were approved by the In-
stitutional Animal Care and Use Committee of the University of
Pennsylvania (Philadelphia, PA), where these experiments were
previously conducted. For this study, an experimental dataset
containing 16 two-month-old and 26 four-week-old pigs with head
rotation in the axial or sagittal plane was selected.

Neuropathology analysis

These animals were euthanized at 6 h post-injury, and their
brains were perfusion-fixed and sectioned in 3-mm coronal slices
(14–22 slices per brain). All coronal brain sections were then pho-
tographed, cut into 6-lm-thick slices, and stained for beta-amyloid
precursor protein (bAPP; at a dilution of 1:5000), which is a gold-
standard marker of damaged axons. For each slice, areas (20 · field
size, 0.586 mm2) with at least two positive bAPP immunostaining
axonal damage profiles were marked as TAI areas and neuropatho-

logical maps were generated. An example of TAI maps for one of the
animals is given in Figure 1. The cumulative sum of marked areas of
TAI over the whole areas of the examined brain slices (every 3 mm
throughout the whole brain) was used to calculate the axonal injury
volume (AIV), which indicates the severity of axonal injury. The
range of AIV calculated for this dataset is 0.02–1.65%, which rep-
resents a no/very minor-to-moderate level of axonal injury.

Anisotropic axonal tract embedded
pig head finite element model

A 4-week-old pig head FEM consisted of brain, falx, skull, and
brain-skull connectors (mimicking the relative motion of brain to
skull), previously developed and validated by our group,3,4 was
recently enhanced by adding anatomical regions, including lateral
ventricles, corpus callosum, and white matter, through mapping
the coronal slices of the FEM to the corresponding brain coronal
CT images.12,13 In addition, axonal fiber tract structures were
reconstructed by streamlines tractography analysis using a pre-
viously acquired DTI scan of an uninjured perfusion-fixed ex vivo
4-week-old piglet brain.3

Fiber tractography analysis was performed in the Advanced
Normalization Tools (ANTs) and Camino software packages,35

using a Euler method with linear interpolation algorithm by the
tracking stop criterion of fractional anisotropy (FA) <0.2 and
the tract-turning angle threshold of 60 degrees, and the fixed step

FIG. 1. Traumatic axonal injury (TAI) maps at every 3 mm throughout the whole brain for 1 piglet. For each slice, areas of TAI were
identified by bAPP immunostaining analysis and marked at each brain slice (black marks). bAPP, beta-amyloid precursor protein. Color
image is available online.
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size of 0.2 mm. FA value was calculated for each seed point
through all streamlines. The axonal tractography streamlines
were then used as an input, and the axonal fiber bundle structure
FEM was developed using a custom MATLAB script (V. R2015;
The MathWorks, Inc., Columbia, MD) and embedded into the
pig brain FEM with *CONSTRATNED_BEAM_IN_SOLID
Keyword in LS-DYNA (v 971 R9.2.0; LSTC, Livermore, CA).
The new enhanced pig FEM, shown in Figure 2, consists of
13,189 brain, 110 lateral ventricle solid elements, and 72,842
one-millimeter one-dimensional axonal fiber beam elements.
The average of FA values of streamline seed points along the
element was assigned to each axonal fiber element. The axonal
fiber elements were categorized into eight groups depending on
the FA value of the element as shown with different colors in
Figure 2.

The brain tissue was broken down into axonal fiber and isotropic
brain matrix. The brain and axonal fibers were modeled using a
modified version of the anisotropic Holzapfel-Gasser-Ogden hy-
perviscoelastic material model12,29 and a one-term Prony visco-
elastic material,36 as described in detail in the Supplementary

Appendix and implemented in LS-DYNA using user-defined ma-
terial models. The coefficients of the material model of the matrix
brain tissue were computed based on a published material testing
data of pig brain tissue.36

The material property of axonal fiber bundle was computed using
an effective stiffness ratio (Rv) based on the fiber to brain volume
fraction (cV ) and stiffness ratios (see the details in the Supplementary
Appendix or a previous work12) experimentally determined for pig
brain.37 The effective stiffness ratio was used to prevent potential
volume redundancy and excessive material stiffness that may arise
by the embedded FEM approach,12,29 in which the brain matrix
covers the whole brain volume including the volume of embedded
fibers.

To minimize the possible effect of mass redundancy which may
arise by the element embedding method, a very small density
(q = 0.00104 g/cm3), which is 0.001 of the brain density, was used
for the embedded axonal fiber elements in this model.12 The total
additional mass of the embedded axonal bundles is only 5*10–4 of
the original brain mass and thus its effect is negligible. The cross-
section of 0.43 mm2 was used for the axonal fiber elements to obtain

FIG. 2. The embedded white matter tracts pig brain finite element model. In the top figure, the model was cut at several points for
illustration of the components. The bottom figure shows the axonal fiber tract within the head geometry. FA, fractional anisotropy. Color
image is available online.
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the axonal fiber/brain matrix fraction of 0.5 that was experimentally
identified by Arbogast and Margulies37 for pig brain.

The material property of the eight groups of the axonal fiber
elements, assuming similarity between mechanical anisotropy and
diffusion anisotropy, was adjusted using a dimensionless structure
parameter ( j ; details in earlier works12,38,39 and the Supplemen-
tary Appendix) that accounts for the orientation distribution of the
axons in a voxel-scale fiber bundle and can be related with FA
values of the fiber bundle elements. It should be noted that in this
model the axonal fibers only contribute during tension, but not
compression. The detailed material models and coefficients used in
this pig FEM for the axonal fiber bundles, brain tissue, skull, lateral
ventricle, skull-brain connectors, and falx are given in the Sup-
plementary Appendix of this article and also can be found in our
previous work.12 The mesh size of 1 mm was used for the axonal
fiber elements, which is relevant to the brain elements with mesh
size of 1.3–2.0 mm. To determine how sensitive the response of the
brain model to the fiber element size is, smaller (0.5 mm) and larger
(2 mm) mesh sizes were used for fiber elements and the cumulative
axonal strain responses of the model with these three mesh sizes
were compared (Supplementary Fig. S1), and no difference was
observed.

The brain tissue deformation responses of this axonal tract em-
bedded brain FEM were then validated against the brain defor-
mations measured in an ex vivo hemisection experiment previously
performed in our laboratory in high strain and strain rate similar to
the pig TBI experiments (details published previously3,12), and the
FEM-derived brain deformation cumulative distribution curve was
correlated with the curve obtained from the experiment with no
significant statistical difference ( p value, >0.05). Obtaining a re-
alistic overall brain tissue deformation response was the objective
of this validation process. It is worth mentioning that a similar
validation approach was used for the previous pig brain models3,4

from our group by comparing their overall deformation responses
with the deformation captured by the same ex vivo pig hemisection
experiments. Therefore, although different constitutive material
models were used in this study and the previous pig brain models
from our group and direct comparison between their coefficients
are not possible, the brain material of these models provide similar
deformation responses.

In addition, in this study, in order to investigate the effect of
embedded axonal fiber bundles on the material behavior of the
brain model, the deformation responses of the current anisotropic
axonal embedded model was compared with an isotropic brain
model with the same mesh properties and a brain visco-hyperelastic
constitutive material model as the model in this study, but without
the embedded axonal beams. The brain tissue material properties of
the isotropic model were calibrated by adjusting the material co-
efficients of the brain tissue used in this study (multiplying G and k1

by a ratio) until statistically similar deformation responses were
obtained between the isotropic and axonal embedded anisotropic
FE models (see Supplementary Fig. S2 in the Supplementary
Material). The ratio of 1.3 was found for this calibration, suggesting
that the embedding axonal bundles stiffen the brain response by
30% (ratio = 1.3).

Overall, the material property used for this pig model was softer
than the ones used in the human brain models in the literature,
particularly the axonal embedded human brain model recently
developed by another group29 in which the same material model
and embedding technique were implemented. It should be noted
that the experimental studies of pig and human brain tissue using
similar material testing approaches also reported that the pig brain
tissue was softer than human brain tissue.40

Simulation of animal experiments

Next, we used the model to simulate the 42 selected pig TBI
experiments using their measured rotational velocity time his-

tories as input loading conditions to reproduce the experiments.
All simulations were performed in LS-DYNA. The details of the
brain geometries, required for geometry scaling, were not avail-
able for the animals in this dataset, and therefore mass scaling
was used. However, in a recent publication by our group,12 we
examined a separate dataset containing 7 four-week-old and 7
two-month-old pigs, in which the brain geometries were avail-
able. Then, we measured the anterior-posterior (AP), lateral (L),
and superior-inferior (SI) dimensions of the brain and determined
that the geometry variations, which were defined as the coeffi-
cients of variation (CVs) of the ratios of these dimensions (L/AP
and SI/AP), were <6% across subjects within each age group and
both combined. The mean, standard deviation, and CV values for
these L/AP and SI/AP are given in Table 1 for each age group and
both combined. This analysis suggested that uniform mass scal-
ing can be used for scaling the animals with the age range used in
this study.

The anisotropic pig brain FEM was used as the base for the FE
simulations and scaled according to the brain mass of each animal
using uniform, isometric mass scaling approach (with scale factor
kx¼ ky¼ kz¼ mscaled=mbaseð Þ

1
3 ).41 For each brain element in

each simulation, first principal strain at each output state (0.1 ms)
was extracted and its maximum value during the entire simulation
was calculated as the maximum principal strain (MPS). Similarly,
for each axonal fiber element in each simulation, the axial loga-
rithmic strain at each output state was calculated and its maximum
value over the simulation time was defined as the maximum ax-
onal strain (MAS). The strain rate for each brain/axonal fiber
element was calculated at every 0.1-ms time step as the discrete
derivative of the 5-point moving-window-average smoothed
strain signal (first principal strain for the brain elements and the
axial logarithmic strain for the axonal fiber elements) for each
element.

The maximum values of the strain rate over the entire simu-
lation time were defined as maximum principal strain rate
(MPSR) for each brain element and MASR for each axonal fiber
element. Similarly, the strain times strain rate (SxSR) was cal-
culated as multiplication of strain by its strain rate at each time
step, and its maximum value over the entire simulation time was
defined as MPSxSR for each brain element or MASxSR for each
axonal fiber element.

Finite element model and neuropathology
colocalization

In this step, we registered the neuropathology maps, previ-
ously generated for each piglet (details in section on Neuro-
pathology analysis), onto the FEM scaled to the corresponding
piglet brain. This step was conducted to find the coordinates of
the areas with axonal damage within the 3D geometry of the pig
brain FEM. For each animal, the coronal slices of the scaled FEM
with a thickness of one brain element (1.0–1.8 mm) were gen-
erated and overlayed to the equivalent histopathological maps
generated at every *3-mm coronal brain tissue slices throughout
the whole brain. Criteria, including shape, width, area, and ana-
tomical structures, were considered in order to find the correct
location for mapping of histopathological slices onto the FEM
slices. A schematic summarizing the workflow of the FEM-
neuropathology colocalizaton for 1 animal as an example is
shown in Figure 3. TAI areas as shown in Figure 1 had different
sizes. In order to standardize the size of TAI areas, each area was
partitioned to smaller areas with an almost uniform size of
0.29 – 0.07 mm2 as shown in Figure 3. This area size is close to
the value of cross-section area (0.38 mm2) selected for the axonal
fiber elements.

After colocalization of FEM and neuropathology slices and
discretization of TAI areas to areas with small, more uniformly
area size, the coordinates of the center of each TAI area and its
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cross-sectional area size were extracted instead of a set of
boundary points defining the area of damage. This simplification
allowed the use of lower-dimension data structure. For further
analysis, we considered each TAI area as a cylinder with 3-mm
thickness and the cross-section (0.29 – 0.07 mm2) that was ex-
tracted for that TAI. Then, for each animal, the minimum distance
(d) between the location of each brain element centroid and each
axonal fiber element centroid of the scaled FEM to any of the TAI
cylindrical regions of that animal was calculated. With this defi-
nition, for any element whose centroid was within any TAI cy-
lindrical area, d was equal to zero and for any other element d was
calculated as the minimum distance between the element centroid
to the outer boundary of the closest TAI cylindrical area. All
analyses in this step were performed in MATLAB (The Math-
Works, Inc.).

The optimal tissue injury threshold and distance
to the actual injury areas

When deformation-related TAI predictor candidates, including
MPS, MPSR, MPSxSR, MAS, MASR, and MASxSR, were com-

puted for all animals through FE simulations of the pig TBI ex-
periments and the minimum distance, d, of all FE elements to TAI
areas for all animals were calculated (as described in section on
Finite element model and neuropathology colocalization), these
data were combined and deformation parameters were plotted
against ‘‘d’’ for all brain and axonal fiber elements as shown in
Figure 4.

To implement the concept of using FEM for predicting damage
at element-by-element approximations, we sought to identify a
threshold (thx) such that any element whose predictor parameter
value exceeds that injury threshold as an injured element (predicted
as injured; PI) and any element whose predictor value is lower than
that injury threshold as a non-injured element (predicted as non-
injured; PN). Ideally, all PI elements should be perfectly over-
lapped (d = 0 mm) with TAI areas identified by histopathology
analysis, and all PN elements should be far from (d >> 0 mm) any
TAI areas. A schematic representation of an ideal condition is
shown in Figure 5A. However, none of the FE-derived predictor
candidates fit the ideal characteristics described above. Therefore,
instead of looking for a perfect overlap (d = 0), any area within a
selected distance (ds) of any actual TAI can be defined as injured

Table 1. Summary of Brain Geometry Variations Across 4-Week-Old Piglets,

2-Month-Old Piglets, and Both Ages Combined

Pig brain geometry
variations

lateral Lð Þ
anterior� posterior APð Þ ratio

superior� inferior SIð Þ
anterior� posterior APð Þ ratio

Mean – standard
deviation

Coefficient
of variation (%)

Mean – standard
deviation

Coefficient
of variation (%)

4-week-old 0.6763 – 0.0250 3.71 0.6344 – 0.0376 5.93
2-month-old 0.6606 – 0.0172 2.61 0.6125 – 0.0326 5.33
Combined ages 0.6685 – 0.0222 3.32 0.6234 – 0.0359 5.76

FIG. 3. A schematic workflow for the FEM-neuropathology colocalization process. Color image is available online.
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area and any areas with d > ds can be defined as non-injured area.
Given this definition, the PI elements that are within ds distance
(d £ ds) of actual TAI areas can be considered as correctly pre-
dicted as injured element (CPI), and the PN elements with d > ds of
actual TAI areas can be determined as correctly predicted as non-
injured element (CPN). A schematic representation of CPI and
CPN elements for an arbitrary selected thx and ds is shown in
Figure 5B.

In order to determine how well the FE-derived predictor can-
didates can predict TAI spatially, for each of the six TAI predictor

candidates (x), we examined a matrix of the threshold values (thx)
and ds to maximize the average of two optimization criteria:
element-based correct prediction rate and TAI detection rate. The
overall element-based correct prediction rate was defined as the
percentage of the elements that correctly predicted as injured
(CPI; x > = thx and d < = ds) or non-injured elements (CPN; x < thx

and d > ds). The element-based true positive prediction rate and
true negative prediction rate were defined as CPI/PI and CPN/PN,
respectively. The percentage of actual TAI areas that were within
distance of ds from elements predicted as injured (PI; x > = thx)

FIG. 4. The brain and axonal fiber deformation parameters including: (A) MAS, (B) MASR, (C) MASxSR, (D) MPS, (E) MPSR, and
(F) MPSxSR versus the minimum distance between the location of each brain and axonal fiber element to the regions of TAI identified
by histopathology. MAS, maximum axonal strain; MASR, maximum axonal strain rate; MASxSR, maximum product of axonal strain
and strain rate; MPS, maximum principal strain; MPSR, maximum principal strain rate; MPSxSR, maximum product of principal strain
and strain rate. Color image is availble online.
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was defined as TAI detection rate. To calculate the TAI detection
rate, the regions within ds distance of the PI elements for each
animal were searched for the actual TAI regions, identified by
histopathology analysis. Higher TAI detection rate indicates that
more actual TAI regions can be predicted as damaged by the FEM
tool using the selected thx and ds values. Higher overall element-
based correct prediction rate represents better prediction capa-
bility of the FE-derived predictor candidate spatially at the ele-
ment level.

The optimization criterion defined as the average of overall
element-based correct prediction rate and TAI detection rate
criteria for the selected matrices of thx and ds were calculated for
all the six FE-derived predictor candidates. To obtain more re-
liable results, this optimization process was coupled with a k-fold
CV technique with k = 5.42 Accordingly, for each of the TAI
predictor candidates, the data were partitioned into k equal or
nearly equal subsamples and at each iteration of k-fold CV, k-1
subsamples were combined and used as a training dataset to de-
termine the optimal injury values (thx) and ds, and one subsample
was left out as a testing dataset to evaluate the overall element-
based correct prediction rate and TAI detection rate performance
of the selected thx and ds on the new dataset. For each TAI pre-
dictor candidate at each iteration of the 5-fold CV, *80% of the
data were used as training, the thx and ds values that resulted in
the highest average value of the two criteria, if available, were
selected as the optimal combination of injury threshold and dis-
tance to actual injury, the determined optimal thx and ds values
were then examined on the remaining *20% testing data set, and
the overall element-based correct prediction rate and TAI de-
tection rate on the testing dataset were calculated. The averages
of the 5-fold CV results were then calculated and are reported in
Table 1.

Results

All six selected TAI candidates showed higher values at ele-

ments closer and lower values at elements farther from TAI sites

(Fig. 4). No optimal ds and thx were found for brain tissue metrics

MPS, MPSR, and MPSxSR as shown in Supplementary Figure S3.

In contrast, all the three axonal deformation-related TAI candidates

showed promise for TAI localization. The results of the optimi-

zation analysis for these three axonal deformation metrics are

given in Table 2. The average of optimal threshold values (and ds)

in 5-fold CV analyses for MAS, MASR, and MASxSR that maxi-

mized the optimization criterion (‡82%, shown with black points in

Fig. 6 for one of the 5-fold analyses as an example) were 0.118

(2.5 mm), 60 s-1 (2.5 mm), and 4 s-1 (2.5 mm), respectively. These

optimal values for MAS, MASR, and MASxSR resulted in 70–73%

overall element-based correct TAI prediction rates and 93–95%

TAI detection rates.

The optimal ranges, defined as threshold values that resulted in a

high optimization criterion of ‡80%, were 0.08–0.14, 40–90 s-1,

and 2.0–7.5 s-1 for MAS, MASR, and MASxSR, respectively.

Elements predicted as injured based on optimal threshold values

(0.12, 60 s-1, and 4 s-1) and the high bounds of the optimal

threshold ranges (0.14, 90 s-1, and 8 s-1) of the MAS, MASR, and

MASxSR metrics for an animal subject as an example are shown in

Figure 7. This figure illustrates that a reasonable prediction of the

locations of sustained TAI, as evidenced by microscopic histopa-

thology analysis, was obtained. At the optimal thresholds (e.g.,

MAS = 0.12), which have lower values than the upper threshold

bounds (e.g., MAS = 0.14), more elements were past the thresholds

and predicted as injured, which resulted in larger blue areas

(Fig. 7A,C,E) in comparison to the upper threshold bounds

(Fig. 7B,D,F).

This observation was expected and can be explained by the

optimization approach that was used in which the threshold

values including the optimal and the bounds of the optimal

threshold ranges were determined based on the average of two

optimization criteria: overall element-based correct prediction

rate and TAI detection rate. The optimal thresholds resulted in

lower element-based true positive prediction rate and lower

element-based overall correct prediction rate or, in other words,

overprediction as shown in Figure 7A,C,E by larger FEM pre-

dicted injury areas (blue areas) that might not completely overlap

with actual measured injury areas (red areas). On the other hand,

the upper threshold bounds resulted in a higher overall element-

based correct prediction rate and higher element-based true

positive prediction rate, which can be observed with close

FIG. 5. (A) Schematic representation of an ideal condition in which all elements whose metric · values exceeding a selected threshold
of thx (dashed red line) are very close to TAIs (d& 0). (B) Schematic representation of predicted injured element (PI; in the green box),
correctly predicted injured element (CPI; in the blue box), predicted non-injured elements (PN; in the black box), and correctly predicted
non-injured elements (CPN; in the red box) for an arbitrary selected thx and arbitrary selected distance to actual TAI (ds). TAI, traumatic
axonal injury. Color image is available online.
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overlap between predicted blue injury areas and actual red injury

areas, and a lower detection rate, which increased the chance of

missing the detection of actual injury areas.

A good example is the upper bound threshold of MASR

(90 s-1; shown in Fig. 7F) in which several actual injured areas in

the middle of the brain were not detected by FEM simulations.
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FIG. 6. The average of the two optimization criteria, correct pre-
diction rate and TAI detection rate, for one of the 5-fold analyses as an
example, for a matrix of threshold values and ds based on (A) MAS,
(B) MASR, and (C) MASxSR metrics. Black dots and yellow contours
in each of these plots represent the absolute and range of the optimal
threshold values and ds, respectively, for each of these TAI predictor
candidates. MAS, maximum axonal strain; MASR, maximum axonal
strain rate; MASxSR, maximum product of axonal strain and strain
rate; TAI, traumatic axonal injury. Color image is available online.
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Therefore, when detection and overall prediction rates are

equally important, the optimal thresholds (MAS = 0.12, MASR =
60 s-1, or MASxSR = 4 s-1) are more appropriate to be used, and

when the overall prediction rate and true prediction positive rate are

more important than the detection rate, and thus less possible

overprediction is desirable, the upper bound of the optimal

threshold ranges (MAS = 0.14, MASR = 90 s-1, or MASxSR = 7.5

s-1) are suggested to be used. The detection rates using the upper

bound of the optimal threshold ranges were lower than the optimal

threshold values. For example, as given in Table 2, the detection

rate for MAS thresholds of 0.14 and 0.12 are 83.1 – 1.8 and

89.2 – 2.5, respectively.

Discussion

In this study, for the first time, we demonstrated that there is

spatial correlation between the large brain/axonal deformations

obtained from FEM and the actual locations of sustained acute TAI

FIG. 7. FEM-predicted sites of TAI (blue areas) using the optimal threshold value (left plots) or the upper bound of the optimal
threshold range (right plots) based on (A,B) MAS, (C,D) MASR, and (E,F) MASxSR metrics and TAI areas identified by bAPP
histopathology (red areas). bAPP, beta-amyloid precursor protein; FEM, finite element model; MAS, maximum axonal strain; MASR,
maximum axonal strain rate; MASxSR, maximum product of axonal strain and strain rate; TAI, traumatic axonal injury. Color image is
available online.
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after rapid head rotation. Consistent with our hypothesis, our results

showed that the highest FEM-derived brain tissue/axonal fiber

deformation parameters, including strain, strain rate, and product of

strain and strain rate, were located on/close to the areas where TAI

were identified through neuropathology and these deformation

parameters were lower farther away from the TAI sites (Fig. 4).

Among the six metrics examined herein, the trends of axonal-

related metrics, especially MASR and MASxSR, are a more

comparable trend to an ideal condition, in which elements with

values > threshold are expected to be on/very close (d / 0) to the

actual locations of TAI than brain-related metrics.

Using the MAS, MASR, and MASxSR metrics as TAI pre-

dictors, we found the optimal prediction distance of 2.5 mm to the

actual locations of TAI. All these three metrics are related to the

axonal deformations and derived from axonal fiber elements.

These results suggest that axonal tract embedded FEM can closely

predict the sites of acute TAI. Given the *1-mm axonal fiber

element length that was used in our FEM and 3-mm thickness

increments and 0.586-mm2 field size that we used in our TAI

histopathology evaluation, this estimation distance is reasonable.

Previously, our laboratory attempted to spatially correlate the

results of pig brain FEM to the location of TAI using the classi-

cal32,43–45 or white matter tract–oriented isotropic FEM,3,46

without success, and were limited to predicting the overall ab-

sence or presence and volume of TAI.

Therefore, we postulate that this close prediction between the

locations of the FE-derived axonal fiber deformations and actual

TAIs are attributable to the improvements that were made to the pig

FEM herein, including the explicit incorporation of the mesoscopic

axonal tract structures and the inclusion of anisotropy into the

constitutive model of the brain tissue. Also, it should be noted that

although metrics similar to the ones used in the current axonal

embedded anisotropic pig brain FEM were used in the previous

white matter tract–oriented isotropic pig brain FEMs from our

group,3,46 no spatial correlation was observed between regions of

TAI and regions of brain with high tract-oriented MAS, MASR, and

MASxSR in those FEMs.3,46

These results support our postulation that the successful TAI

localization obtained herein was mainly attributed to the aniso-

tropic material and modeling approach that we used rather than the

FEM-derived metrics used in this study. Our newly developed and

validated multi-scale pig FEM is substantially different from the

published FEMs in two particular ways. First, the details of the

axonal tract structure are now explicitly incorporated into the brain

model using the element embedded method.28

This method, in contrast to projecting brain strain responses

onto the averaged axonal orientation calculated for each element

(e.g., tract-oriented strains), can incorporate the specific axonal

tract information by including multiple fiber orientations in each

brain element to capture the heterogeneity of orientation and

distribution of axonal bundles and the associated axonal-related

directional reinforcing https://www.sciencedirect.com/topics/

engineering/micromechanical-modellingresponse of the brain

tissue throughout the whole brain. With this method, the defor-

mation of each individual axonal bundle throughout the biome-

chanical loading experienced by the head can be determined.

Second, the anisotropic behavior of the brain tissue was modeled

by not only embedding the axonal tract pathways into the brain,

which automatically reinforce the brain in the direction of axonal

bundles, but also tuning the axonal bundle material property based

on local FA dispersions using an 8-point scale (details in the

Supplementary Appendix and Fig. 2).

In addition, there are some other considerations made in this

study that might have contributed to the successful TAI locali-

zation obtained herein. For example, our FEM was validated for

brain deformation response whereas many (listed in an earlier

work47), but not all,3,6,25,28,48 FE head models in the TBI literature

have been validated for intracranial pressure response, which may

not to be a sufficient validation approach48 when a goal of the

model is to compare tissue deformation with injury pathology.

Moreover, our FE model was validated against in vitro experi-

ments performed using the same system and under similar loading

conditions that were used for our TBI experiments. In addition,

the center and direction of rotation as well as magnitude of applied

kinematics were precisely controlled, measured, and replicated in

simulations. These precise kinematic data are not necessarily

available for human TBI reconstruction studies. Further, the TAI

histopathology was assessed at 6 h post-TBI to minimize the ef-

fect of later secondary sequelae that might be caused by hypoxic

or ischemic injuries and to more focus on primary injury, which is

believed to be caused mainly by the biomechanical loading/de-

formation.30

The optimal value (and range) of TAI thresholds obtained for

the MAS, MASR, and MASxSR metrics were 0.118 (0.80–0.14),

60 s-1 (40–90), and 4 s-1 (2.0–7.5 s-1), respectively. The sites of

TAI were determined within a 2.5-mm accuracy distance with

70–73% (and 64–74%) correct overall prediction rates at the

element-by-element level using these axonal-deformation opti-

mal values (and ranges) of TAI thresholds. These threshold

ranges agree closely with functional thresholds obtained from

in vivo, in vitro, and ex vivo studies conducted on isolated axons,

axonal and neural cell cultures, and peripheral, spinal, and optic

nerve fibers.49–55 For example, an in vivo stretch study conducted

on the spinal nerve found engineering strain thresholds of 0.09–

0.16 (equivalent logarithmic strain of 0.086–0.148) for a 50%

probability of complete conduction block, resulting in functional

axonal injuries.49

Another in vivo experimental study on isolated peripheral

nerve root50 was also shown to hold evidence of a partial con-

duction block at an engineering strain of 0.12. Another in vivo

stretch study of guinea pig optic nerve also reported the optimal

receiver operating characteristic Lagrangian strain thresholds of

0.18 and 0.21 (equivalent logarithmic strain of 0.154 and 0.175)

for occurrence of electrophysiological impairment and morpho-

logical axonal injury by NF68 staining, respectively.51 The

higher strain injury threshold found in the Bain and Meaney51

study in comparison to ours may be attributed to the NF68

staining for TAI assessment used in that study, which has been

shown to be less sensitive32 to axonal damage than bAPP staining

used in this study.

Although previous experimental studies found the formation of

the axonal/neuronal damage to be dependent on both strain and

strain rate,49,52,54–59 none of these studies examined a wide range of

strain rates with the purpose of determination of threshold values

for strain rate (SR) and/or combination of strain and strain rate

(SxSR). These studies have shown evidence of axonal damage,

such as cell death, conduction block, axonal swelling, bulb for-

mation, and breakage and disintegration of microtubules in axons,

which lead to axonal swelling and degeneration at different com-

binations of strain and strain rate such as strain rate of 50 and 70 s-1

for strain of 0.15 (SxSR = 7.5–10.5), strain rate of ‡30 s-1 for strain

of 0.2 (SxSR > = 6),52 strain rate of ‡10 s-1 for strain of 0.3 (SxSR

‡3 s-1)54 and 0.5 (SxSR ‡5 s-1),56 and strain rate of 44 s-1 for strain

of ‡0.3 (SxSR ‡13.2 s-1).55 The ranges of threshold values that we
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found in this study are comparable to the range of strain-rate values

(SR = 10–70 s-1) and combination of strain and strain-rate values

(SxSR = 3.0–13.2 s-1) where axonal damage was observed in the

experimental stretch studies.49,52,54–57 Also, it should be noted that

many in vivo and in vitro studies suggested that the strain threshold

for axonal injury is lower at higher strain rates.49,52,53,58

Future improvements deserve mention. First, an idealized ge-

ometry of the pig brain was used in this study and might not

capture all the anatomical and geometrical details of the pig brain.

In particular, the sulci and gyri anatomical details were not in-

corporated and thus the effect of these anatomical details on TAI

local prediction capability has not been investigated in this study.

However, the deformation results of a high-resolution tract-

oriented isotropic pig brain FEM recently developed in our labo-

ratory, in which the details of anatomical features such as sulci and

gyri were included, did not show spatial correlation with TAI

pathology.46 In addition, the axonal damage identified through

bAPP immunostaining and pathology analysis, as shown in

Figure 1, was observed mainly in the deep white matter areas and

around the lateral ventricle, and not close to sulci or gyri areas and

thus the lack of sulci and gyri might not affect the TAI location

prediction results substantially. Second, the brain geometry and

axonal tractography were developed based on a single animal

whereas the histopathology maps were generated for each animal

subject individually. Therefore, although the FEM-histopathology

coregistrations were reasonable, they were not perfect.

Future research may use high-resolution subject-specific

models to improve the credibility of FEM simulations and FEM-

histopathology coregistration analyses. Third, the pig brains were

examined for axonal injury at every 3 mm, and TAI areas at each

coronal histopathology maps were assumed to be relevant

throughout the 3-mm thickness. The 3D spatial resolution of FEM-

histopathology coregistration can be increased by finer brain-slice

increments in future studies. Finally, the axonal damage was

evaluated at 6 h post-TBI in this study. Axonal damage has been

shown to evolve over time subsequent to the primary injury, and

our data do not capture the possible secondary pathologies that

might become apparent later (after 6 h).60 However, it should be

noted that secondary injuries are shown to be caused by metabolic

disturbances, excitotoxicity, and hypoxic or ischemic mechanisms

rather than biomechanical mechanisms,30 which is the main focus

of the FEM analysis in this article. Therefore, although it was

possible to assess TAI at a later time post-TBI, 6 h was selected to

reduce the effect of any axonal injury mechanisms other than me-

chanical causations.

Conclusion

By examining a matrix of different tissue injury threshold values

(thx) and distance to actual TAI sites (ds) to maximize the overall

element-based TAI correct prediction rate and TAI detection rate,

defined as the percentage of actual TAI sites £ds from elements

‡thx, our results showed that three FE-derived metrics related to

strain and strain rate of the axonal fiber bundles, including MAS,

MASR, and MASxSR, can predict the location of TAI acutely

within 2.5 mm with a 93–95% TAI detection rate and 70–73%

overall element-based correct prediction rate. Also, the optimal FE-

derived tissue injury threshold ranges that we determined in this

study agree closely with threshold ranges reported in in vitro and

in vivo experimental studies of isolated axonal bundles in the lit-

erature. The upper bound of the threshold range lowers the over-

prediction that usually accompanies with FEM prediction of TBI.

We conclude that coupled multi-scale modeling using the element

embedding method, which allows axonal bundle tract information

to be explicitly incorporated into the macroscale model of brain and

the deformation responses along the axonal bundles to be computed

at the mesoscopic level, enhance the axonal injury location pre-

dictions of the FE tools.
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