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Abstract

Traumatic brain injury (TBI) is associated with increased blood content of fibrinogen (Fg), called 

hyperfibrinogenemia (HFg), which results in enhanced cerebrovascular permeability and leads to 

short-term memory (STM) reduction. Previously, we showed that extravasated Fg was deposited in 

the vasculo-astrocyte interface and was co-localized with cellular prion protein (PrPC) during 

mild-to-moderate TBI in mice. These effects were accompanied by neurodegeneration and STM 

reduction. However, there was no evidence presented that the described effects were the direct 

result of the HFg during TBI. We now present data indicating that inhibition of Fg synthesis can 

ameliorate TBI-induced cerebrovascular permeability and STM reduction. Cortical contusion 

injury (CCI) was induced in C57BL/6J mice. Then mice were treated with either Fg antisense 

oligonucleotide (Fg-ASO) or with control-ASO for two weeks. Cerebrovascular permeability to 

fluorescently conjugated bovine serum albumin was assessed in cortical venules following 

evaluation of STM with a Y-maze test. Separately, brain samples were collected in order to define 

the expression of PrPC via Western blotting while deposition and co-localization of Fg and PrPC, 

as well as gene expression of inflammatory marker activating transcription factor 3 (ATF3), were 

characterized with real-time PCR. Results showed that inhibition of Fg synthesis with Fg-ASO 
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reduced overexpression of AFT3, ameliorated enhanced cerebrovascular permeability, decreased 

expression of PrPC and Fg deposition, decreased formation of Fg-PrPC complexes in brain, and 

improved STM. These data provide direct evidence that a CCI-induced inflammation-mediated 

HFg could be a triggering mechanism involved in vascular cognitive impairment seen previously 

in our studies during mild-to-moderate TBI.
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1. Introduction

Mild traumatic brain injury (TBI) is a common neurological disorder and increasing health 

problem worldwide. Among the many examples of devastating clinical afflictions that 

results from mild TBI in patients are a decline in cognitive function and loss of memory 

(Cernich et al., 2010; Till et al., 2008). In particular, short term memory (STM) reduction is 

one of the problems associated with head injury in patients (Chuah et al., 2004). Transient 

long-term memory and longer lasting STM impairments are found during mild TBI 

(Gorman et al., 1993). It has been shown that STM deficits persist for a long time in patients 

with mild to moderate TBI (Chuah et al., 2004). Precise mechanisms of this STM reduction 

during mild head trauma are not clear. Lately, great attention has been focused on studies 

related to the vascular contributions to cognitive impairment (Corriveau et al., 2016; 

Gorelick Philip et al., 2011; Muradashvili et al., 2012a; Muradashvili and Lominadze, 2013; 

Muradashvili et al., 2016; Murphy et al., 2016).

It has been shown that in a mouse model of mild-to-moderate TBI, there are no ruptured 

microvessels nine days after head injury (Pleasant et al., 2011). Despite the intact 

microvessels, we found that systemic inflammation induced by TBI results in blood proteins 

traversing vascular walls (Muradashvili et al., 2015; Muradashvili et al., 2017). Most 

notably, we found that fibrinogen (Fg), a protein that is exclusively synthesized in 

hepatocytes (Fuller and Zhang, 2001; Vasse et al., 1996), extravasates and deposits in 

vasculo-astrocyte endfeet interface 14 days after cortical contusion injury (CCI) 

(Muradashvili et al., 2017). Fg/fibrin-containing plaque formations are the hallmark of 

neurodegenerative diseases associated with memory impairment such as Alzheimer’s disease 

(AD) (Ahn et al., 2010), multiple sclerosis (MS) (Vos et al., 2005), and TBI (Hay et al., 

2015). Fibrin deposits were found many years after head injury in humans (Hay et al., 2015). 

Thus, our findings of TBI-induced Fg extravasation could be a causative explanation of the 

Fg/fibrin deposits present in the brains of trauma patents indicated above.

The high level of blood plasma protein Fg, called hyperfibrinogenemia (HFg), is both a 

marker of inflammation (Ross, 1999) and a cause of inflammatory responses (Kerlin et al., 

2004; Muradashvili et al., 2011; Muradashvili et al., 2012a; Patibandla et al., 2009; Tyagi et 

al., 2008). It is known that the level of Fg in blood increases after local vascular injury (del 

Zoppo et al., 2009) and particularly during TBI (Muradashvili et al., 2015; Pahatouridis et 

al., 2010; Sun et al., 2011). It has been shown that the blood content of Fg remains elevated 
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for more than 20 days after inflammatory insult (Gabay and Kushner, 1999). Since Fg 

synthesis exclusively occurs in hepatocytes with plasma half-life of 3–4 days (Martinez et 

al., 1974), its appearance in extravascular spaces can only occur due to increased vascular 

wall permeability. We found that increased cerebrovascular permeability during TBI results 

in enhanced deposition of Fg in extravascular space of the brain (Muradashvili and 

Lominadze, 2013; Muradashvili et al., 2017). Moreover, at an elevated level, Fg itself is the 

main cause of increased cerebrovascular permeability (Muradashvili et al., 2012a; 

Muradashvili et al., 2012b; Muradashvili and Lominadze, 2013; Muradashvili et al., 2014b; 

Muradashvili et al., 2016; Muradashvili et al., 2018).

Cellular Prion Protein PrPC is a cell surface, glycosylphosphatidylinositol-anchored 

glycoprotein, abundantly expressed in the nervous system including neurons (Westergard et 

al., 2007), glial (Westergard et al., 2007) and endothelial (Starke et al., 2002) cells. PrPC is 

involved in several distinct cellular phenomena, such as neurogenesis and neural 

differentiation (Westergard et al., 2007), cell signaling, changes in neuronal plasticity 

(Kanaani et al., 2005; Lauren et al., 2009), memory consolidation (Coitinho et al., 2007), as 

well as protection against both oxidative stress and apoptosis (Hetz et al.; Westergard et al., 

2007). PrPC exhibits dual effects in the brain. In its native state, it provides neuroprotective 

effects, while when ligated, it results in neurotoxicity (Onodera, 2017). It has been shown 

that ligated PrPC induces production of reactive oxygen species, which results in neuronal 

and other brain cell toxicity and oxidative stress (Schneider et al., 2003). Thus it is not 

surprising that alterations in this protein should affect cognitive processes and result in 

memory reduction (Chung et al., 2010; Coitinho et al., 2007; Fischer et al., 2000; Zhou and 

Liu, 2013). It is known that the amyloid beta (Aβ) peptide is linked to AD severity. 

However, some studies indicate that the content of Aβ has limited effects on memory and 

point to a greater role of PrPC (Chung et al., 2010; Gimbel et al., 2010). It has been shown 

that PrPC is involved in TBI-associated memory reduction (Rubenstein et al., 2017).

Our previous study has shown that TBI-induced deposition of PrPC in brain tissue was 

enhanced by and was co-localized with extravasated Fg (Muradashvili et al., 2015) that was 

immobilized in the vasculo-astrocyte interface after CCI (Muradashvili et al., 2017). Lately, 

we showed a specific association of Fg and PrPC protein on astrocyte cell surface suggesting 

ligation of PrPC (Charkviani et al., 2020). All these effects were associated with the memory 

reduction following head injury in mice (Muradashvili et al., 2015; Muradashvili et al., 

2017). Combined these results indicate neurotoxic effects of the ligated PrPC during TBI.

In this study, we aimed to define if a reduction of the blood content of Fg would decrease 

cerebrovascular permeability and ameliorate memory reduction during TBI in mice. To 

decrease Fg levels in blood we used Fg antisense oligonucleotide (Fg-ASO) that specifically 

decreases synthesis of Fg in mice (Yuasa et al., 2015).

2. Results

2.1 Fg-Aso reduced TBI-induced inflammation in brain.

Expression of ATF3, a marker of inflammation of brain cells, was increased in mice treated 

with control-ASO after CCI (Figure 1). In mice treated with Fg-ASO after CCI, expression 
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of ATF3 was significantly reduced compared to that in mice treated with control-ASO after 

CCI (Figure 1). However, ATF3 expression was still greater in animals with CCI treated with 

Fg-ASO than that in sham-operated mice (Figure 1). Mann-Whitney statistical test was used 

to define the difference between the groups in this study.

2.2 Fg-ASO decreased cerebrovascular protein permeability.

14 days after CCI, pial venular permeability to Alexa Fluor 488-labelled BSA was 

significantly lower in mice treated with Fg ASO compared to that in mice given control-

ASO (Figure 2). As expected, TBI resulted in greater cerebrovascular permeability in mice 

treated with control-ASO (Figure 2). Mann-Whitney statistical test was used to define the 

difference between the groups in this study.

2.3 Expression of PrPC in brains of Fg-ASO-treated mice after CCI.

Western blot analysis of mouse brain samples showed greater expression of brain PrPC after 

CCI when compared to that in the sham group of mice treated with control-ASO (Figure 3). 

Treatment with Fg-ASO significantly reduced PrPC expression in brains of both sham-

operated mice and mice with TBI compared to their respective controls (Figure 3). No 

difference was found in expression of PrPC between sham-operated mice and mice with CCI 

treated with Fg-ASO. (Figure 3b). Kruskal-Wallis statistical test followed by Dunn’s 

multiple comparison post-hoc correction test were used to define the difference between the 

groups in this study.

2.4 Formation of Fg-PrPC complexes.

There was increased deposition of Fg and increased expression of PrPC in the 

pericontusional area of brain after CCI in mice treated with control-ASO compared to those 

of mice with sham-operation that were treated with control-ASO (Figure 4). Similarly, the 

number of spots of co-localized Fg and PrPC and thus, possible formation Fg-PrPC 

complexes along the Lycopersicon esculentum lectin-marked vessels were also greater in 

brains of mice with CCI treated with control-ASO (Figure 4). Treatment of mice with Fg-

ASO significantly reduced deposition of Fg, expression of PrPC, and number of spots with 

co-localized Fg and PrPC in mice with CCI when compared to those in CCI mice treated 

with control-ASO (Figure 4). Mann-Whitney statistical test was used to define the difference 

between the groups in this study.

2.5 Fg-ASO improved short-term memory (STM) deficit after CCI.

Both NORT and SAT (Y-maze test) showed significant improvement of STM in mice with 

CCI after treatment with Fg-ASO (Figure 5). Mann-Whitney statistical test was used define 

the difference between the groups in this study.

3. Discussion

In several studies, blood levels of Fg was reduced with ancrod, a defibrinogenating agent 

derived from the venom of the Malayan pit viper, which did have some valuable results (del 

Zoppo et al., 2009; Paul et al., 2007; Schachtrup et al., 2010). However, it is known that 

ancrod decreases levels of most high molecular weight proteins such as fibronectin, von 
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Willebrand factor, globulins, and various others. Therefore, ancrod cannot be considered as 

an agent specifically targeting blood level of Fg. Use of fenofibrate (brand name Tricor) in 

rodents have been shown to suppress Fg gene expression in liver and decrease the Fg level in 

blood (Kockx et al., 1999). However, it is mainly used to reduce low density lipoproteins and 

triglycerides (Genest et al., 2000) and thus, cannot be considered as a specific inhibitor of Fg 

synthesis. The majority of studies concerning Fg’s effects used models of reduced blood 

levels of Fg, such as Fg gene knock out (Fg−/−) mice (Ni et al., 2000; Wilberding et al., 

2001). The results show that other proteins, e.g. fibronectin, can “assume” role of Fg in 

coagulation and/or thrombogenesis (Ni et al., 2000). Thus, all these manipulations with 

blood content of Fg mask its effects in circulation. On the other hand, Fg-ASO specifically 

and effectively decreases synthesis of Fg, and thus, blood level of Fg in mice (Yuasa et al., 

2015).

It is well known that TBI is associated with HFg and the development of inflammation 

(Jenkins et al., 2018; Muradashvili and Lominadze, 2013; Sun et al., 2011). Our result 

showed that CCI induced expression of ATF3, a marker of inflammation. ATF3 is a member 

of the ATF/cAMP responsive element binding protein family that is typically greatly 

increased when cells are exposed to stress signals (Hai et al., 1999). Increase in ATF3 gene 

expression after CCI suggests that developed of TBI is accompanied with inflammation, 

which results in HFg and lead to enhanced Fg transcytosis. Our finding that treatment of 

mice with Fg-ASO after CCI caused lesser expression of ATF3 in brain, suggests that a 

decrease in Fg synthesis ameliorates inflammation. However, expression of ATF3 in mice 

with CCI was still greater than in sham-operated mice even after treatment with Fg-ASO. 

The difference in ATF3 gene expression levels in mice with CCI treated with control-ASO 

and Fg-ASO would indicate a level of Fg involvement in reduction of overall inflammation 

caused by TBI. In other words, the difference in ATF3 gene expressions between sham-

operated animals and mice with CCI treated with Fg-ASO would point to the level of 

inflammation due to other factors than blood content of Fg.

We have previously shown that TBI-induced elevated blood levels of Fg caused a significant 

increase in pial venular permeability in WT mice (Muradashvili et al., 2012a). The changes 

in cerebrovascular permeability seen in our present study are perfect examples of 

inflammatory responses in this TBI model. It is well accepted that an increase in vascular 

permeability is a direct indication of inflammation (Mehta and Malik, 2006). In the same 

study, we also showed that the pial venular permeability 14 days after CCI was significantly 

lowered with Fg-ASO treatment. Thus, these data suggest a strong mechanistic role of Fg in 

cerebrovascular permeability and in inflammation. This confirms our hypothesis that CCI 

induced macromolecular traversing of vascular wall could be reduced by Fg-ASO resulting 

in reduction of blood content of Fg. The effect of reduced venular permeability potentially 

decreases the deposition of Fg in the extravascular space. Our previous data indicated that at 

a high level, Fg was involved in overexpression of PrPC and formation Fg-PrPC complexes 

(Muradashvili et al., 2015). Recently, we confirmed a strong association of Fg and astrocyte 

PrPC, indicating that PrPC can be ligated on the surface of activated astrocytes resulting in 

neurotoxicity (Charkviani et al., 2020). However, it has never been shown that the reduction 

of blood content of Fg would affect expression of PrPC and Fg-PrPC complex formations. 

Results reported here confirmed our previous findings that there is a greater deposition of Fg 
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in the vascular and astrocyte endfeet interface in mice with TBI (Muradashvili et al., 2017) 

and greater deposition of PrPC that was associated with HFg (Muradashvili et al., 2016). In 

the current study, we found that the increased deposition of Fg, expression of PrPC, and 

formation of Fg-PrPC complexes observed during CCI (thus, during HFg) were significantly 

reduced with the use of Fg-ASO indicating a significant involvement of Fg in impairment of 

cerebrovascular function. Western blot results were confirmed with IHC experiments where 

a greater expression of PrPC protein was seen in mouse brains after CCI compared to that in 

sham-operated mice. These effects were significantly reduced in mice receiving Fg-ASO.

Results of the present study indicate that a decrease in Fg synthesis reduced not only 

expression of PrPC and formation of Fg-PrPC complexes, but also improved TBI-induced 

changes in STM. PrPC is known to be involved in memory reduction (Chung et al., 2010; 

Gimbel et al., 2010). It has been found that PrPC affects brain cell-redox homeostasis 

through reactive oxygen species (ROS) production (Schneider et al., 2003). In addition, toxic 

effects of ligated PrPC have been widely recognized (Onodera, 2017). We have previously 

shown that the increased deposition of Fg and expression of PrPC leading to possible a Fg-

PrPC complex formation have been associated with reduced STM during HFg (Muradashvili 

et al., 2016) and TBI (Muradashvili et al., 2015). All these effects were correlated with 

neurodegeneration and memory reduction during TBI (Muradashvili et al., 2017). Therefore, 

if during the course of TBI there was a reduced level of Fg, it would result in lesser vascular 

permeability and lesser extravasation and deposition of Fg in extravascular space. These 

effects would diminish expression of PrPC and the resultant formation of Fg-PrPC 

complexes, which can result in lesser detriments in STM. Thus, our data indicate that Fg has 

a significant role in development of inflammation and the resultant inflammatory responses, 

such as increased cerebrovascular permeability, formation of Fg-PrPC complexes, generation 

of ROS, and reduction of STM during TBI. These results suggest that Fg could be 

considered as a potential target for therapy during TBI to mitigate or prevent vascular 

cognitive impairment.

4. Methods and Materials

4.1. Antibodies and reagents.

Human Fg depleted of plasminogen, von-Willebrand factor, and fibronectin was purchased 

from Enzyme Research Laboratories (South Bend, IN). Polyclonal rabbit antibody against 

human Fg (which is known to cross react with mouse Fg) was purchased from Dako 

Cytomation (Carpentaria, CA). Mouse monoclonal anti-prion protein antibody was obtained 

from Sigma-Aldrich (St. Louis, MO). Secondary antibodies conjugated with Alexa-Fluor 

488 or Alexa-Fluor 594 were purchased from Invitrogen (Carlsbad, CA). Bovine serum 

albumin (BSA) was from Sigma and 10% normal donkey serum - from Jackson Immuno 

Research (West Grove, PA).

4.2. Animals.

In accordance with National Institute of Health Guidelines for animal research, all animal 

procedures for these experiments were reviewed and approved by the Institutional Animal 

Care and Use Committees of the University of Louisville and University of South Florida. 
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Twelve-week-old male wild-type (WT) C57BL/6J mice obtained from the Jackson 

Laboratory (Bar Harbor, ME) were used in the study.

4.3. Fg-ASO.

Fg-ASO (GCTTTGATCAGTTCTTTGGC), a gift from Ionis pharmaceuticals (Carlsbad, 

CA), was used to transiently decrease synthesis of Fg and thus, reduce its plasma level in the 

mice (Yuasa et al., 2015). Control-ASO (CCTTCCCTGAAGGTTCCTCC) which has no 

homologue in the mouse genome was used as a control compound. Animals were given Fg-

ASO and control-ASO at the dose of 40 mg/kg (intraperitoneally) post-surgery. Then 

identical treatments (at the same dose) were given every third day for the duration of the 

experiment.

4.4 Cortical contusion injury (CCI).

Mice (26–30 g) were anesthetized with 2.5% isoflurane delivered by a nose cone (Kopf, 

Tujunga, CA). Heads were shaved and placed in a stereotaxic frame (Kopf). Briefly, a 4 mm 

diameter cranial window was created in the left parietal bone, centered at 2.5 mm caudal of 

bregma and 2.75 mm lateral to the midline according to the method described in detail 

previously (Muradashvili et al., 2015; Muradashvili et al., 2017). The impactor device (TBI 

0310, Precision Systems & Instrumentation, Fairfax Station, VA) with 2 mm diameter flat 

tip was set to deliver an impact (0.5 mm impact depth, 3.5 m/s velocity, 500 ms simulation 

duration) to the cortical surface which is known to cause a mild-to-moderate injury 

(Muradashvili et al., 2015; Muradashvili et al., 2017; Pleasant et al., 2011). In control 

(sham-injured) group, all procedures but the cortical impact was performed (Muradashvili et 

al., 2015; Muradashvili et al., 2017). After injury, the brain was briefly superfused with 

artificial cerebrospinal fluid (Harvard Apparatus, Holliston, MA) and the skin was sutured. 

Then mice were placed on a heating pad to maintain normal body temperature until they 

were fully awake and returned to their home cages.

4.5 Cerebrovascular permeability assessment.

Pial venular permeability to BSA conjugated with Alexa-488 dye was performed as 

described previously (Muradashvili et al., 2014b; Muradashvili et al., 2015; Muradashvili et 

al., 2016). Briefly, after the mice were surgically prepared, 1 hour of equilibration period 

was given before microvascular permeability observation was performed. Initial 

autofluorescence of the observed area was recorded over a standard range of camera gain. 

The brain vasculature was observed using an epi-illumination system of an electron-

multiplying charge-coupled device camera (Olympus BX61W1, Tokyo, Japan) and image 

acquisition system (Olympus cellSens Dimension Desktop 2.3, Tokyo, Japan). A mixture of 

100μl of Fluor (300μg/ml) and 20 μl of BSA-Alexa Fluor-488 (3.3 mg/ml) in phosphate-

buffered saline (PBS) was infused through the cannulated carotid artery with a syringe pump 

(Harvard apparatus) at 30μl/min. The solution was infused to circulate for 10 minutes and 

the pial circulation was observed to ensure there was no spontaneous leakage of the 

fluorophore-conjugated BSA. Pial venules were identified by the topology of the circulation 

and blood flow direction using the microscope. Selected third order venular segments were 

imaged and recorded. Readings were recorded at baseline, 10, 20, 40, 60 and 90 minutes. 

The area of interest was exposed to blue light (488 nm) with a power density of 3.5μW/cm2 
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to observe intravascular and extravascular BSA-Alexa Fluor-488. The camera output was 

standardized with a 50ng/nl fluorescein diacetate standard (Estman Kodak, Rochester, NY, 

USA). During the experiment, the lamp power and camera gain settings were kept constant 

and the camera response was verified for its linearity over the range used for these 

acquisitions. Cerebrovascular segment was observed with Olympus x20/0.40 (UPlanSApo) 

objective. Image analysis was performed with commercial analysis software (Image-Pro 

Plus 7.0, Media Cybernetics, Bethesda, MD, USA). A 30μm length line profile probe was 

positioned in the middle of the selected segment of the venule and outside of the venular 

wall, parallel to the vessel. Mean fluorescence intensities along the probes were measured. 

Extravasation of the BSA-Alexa-488 was assessed by changes in the ratio of fluorescence 

intensity in the interstitium to that inside the venule and calculated as a percent of baseline. 

Results were averaged for each experimental group.

4.6 Collection and preparation of mouse brain samples.

Fourteen days after CCI animals were exsanguinated and brain samples were collected for 

Western blot analysis as described previously (Muradashvili et al., 2014a; Muradashvili et 

al., 2015; Muradashvili et al., 2016). Briefly, whole brain samples were digested in 

radioimmunoprecipitation assay (RIPA) buffer (1 g of tissue/2 ml of RIPA) in the presence 

of protease inhibitor cocktail (Thermo Fisher Scientific). The samples were homogenized 

using Zirconium Beads and Beadmaster-24 homogenizer (Worldwide Life Science Division; 

Bristol, PA). After homogenization, samples were centrifuged at 7000g for 10 min at 4°C. 

The supernatant was collected, and total protein content was determined by the Bradford 

method.

4.7 Activating transcription factor 3 (ATF3) gene assessment.

To define the role of Fg in development of CCI-induced inflammation, we assessed gene 

expression of the inflammation marker ATF3 (Greer et al., 2011; Hai et al., 1999) in brain 

samples from mice with CCI or sham-operation treated with control-ASO or Fg-ASO. Total 

RNA was extracted from mice whole brain samples using a Trizol method according to the 

manufacturer’s instruction (Invitrogen Life Technologies, Carlsbad, CA, USA). Then, RNA 

quality was determined, by NanoDrop ND-1000, and RNA with high purity (260/280~2.00 

and 260/230~2.00) was used for q-PCR analysis. RT-PCR was performed by as described 

previously using ImProm-II™ Reverse Transcription kit (Promega Corporation, Madison, 

WI). Complimentary DNA (cDNA) was prepared using 2 μg of the RNA. A reverse 

transcription program on the DNA Engine Peltier Thermal Cycler (Bio-Rad Laboratories, 

Hercules, CA) was used to synthesize cDNA. The program consisted of a denaturing cycle 

at 70°C for 6 min and then a reverse transcription cycle at 25°C for 2 min, 42°C for 50 min, 

and 75°C for 5 min. For qPCR, SYBR green-based kit was used to measure the relative 

expression of each mRNA specific primers (Förstner et al., 2018). A three-step cycling 

protocol was performed using 20 ng of cDNA template in a 20 μL reaction volume under the 

following conditions: denaturation at 95°C for 10 min, followed by 40 cycles of 95°C for 15 

s, 55°C for 1min, and 72°C for 34 s, in which fluorescence was acquired and detected by 

Roche LightCycler® 96 Real Time PCR System (Roche Diagnostics, IN). Following RT-

qPCR, analysis of the melt curve was-performed to validate the specific generation of the 

expected PCR product. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as 
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an endogenous control (Quanta Biosciences, Beverly, MA). Although others have shown 

GAPDH expression changes dependent upon post-injury time and severity of the TBI 

(Zamani et al., 2020), in our study all the experimental animals received head trauma of a 

similar level of severity and were observed at the same time point after the injury. Therefore, 

in our study, expression of GAPDH would not be altered between the groups and thus, can 

be used as a reliable housekeeping protein. Moreover, the stability of GAPDH as a reference 

gene to efficiently normalize qRT-PCR gene expression in mouse model of TBI has been 

validated in work by others (Rhinn et al., 2008). The CT values were determined after 

baseline and threshold adjustment and the results are expressed in fold expression. The 

sequence of primers for real time PCR were for ATF3 Fwd-5’-GCT GGA GTC AGT TAC 

CGT CAA-3’; Rev-5’-CGC CTC CTT TTC CTC TCA T-3’ and for GAPDH Fwd-5′-

TGGCAAAGTGGAGATTGTTGCC-3′ and Rev-5′-AAGATGGTGATGGGCTTCCCG-3′.

4.8 Immunohistochemistry (IHC).

Mouse brain tissue IHC was performed as previously described (Muradashvili et al., 2012a; 

Muradashvili et al., 2014c; Muradashvili et al., 2015; Muradashvili et al., 2016; 

Muradashvili et al., 2017). The investigator was blinded to the tissue sample sources. 

Briefly, deeply anesthetized mice were infused with fluorophore-conjugated Lycopersicon 

esculentum lectin via the carotid artery cannulation. Lycopersicon esculentum lectin was 

used to label the intravascular endothelial surface (Muradashvili et al., 2012a). Mice were 

exsanguinated by infusion of PBS followed by 4% paraformaldehyde (PFA) through the left 

ventricle. The brain samples were harvested and preserved in 4% PFA solution overnight 

prior to being kept in 30% sucrose for 3 days. Brain samples were mounted in protective 

matrix (Polyscience, Inc, Warrington, PA) and cryosectioned through coronal plane at 15μm 

thickness, placed on microscope slide, and stored at −80°C. Thawed slides were heated at 

37°C for 20 minute and the mounting medium was removed. Ice cold 100% methanol was 

used for fixation for 10 minutes before washing with Tris-buffered saline and blocking with 

0.1% TritonX-100TBS (TBS-T), 0.5% BSA and 10% normal donkey serum. Tissue samples 

were incubated with appropriate primary antibodies overnight at 4 °C followed with washing 

and incubation with fluorescently labeled secondary antibodies for 2 h at room temperature. 

The samples were cover slipped and sealed with ProLong™ Diamond Antifade mounting 

media (Thermo Fisher Scientific, Waltham, MA).

4.9 Confocal Microscopy.

A laser-scanning confocal microscope (Olympus FV1200 Spectral Inverted Laser Scanning 

Confocal Microscope, with objective x60) was used for the detection of Fg deposition, the 

expression of PrPC, and their co-localization in order to define the possible formation of Fg-

PrPC complexes. The general area of interest was defined as the area of pial vasculature 

located at least 200μm away from the injury and no deeper than 200 μm from the brain 

surface. PrPC (the antibody was conjugated with Alexa-488 dye) was visualized using a 

multiline argon-ion laser (458/488/515 nm) to excite the dye, while light emission was 

observed above 519 nm. Fg (the antibody was conjugated with Alexa-594 dye) was 

visualized using a HeNe-Green laser (543 nm) to excite the dye, while light emission was 

observed above 620 nm.
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4.10 Image Analysis

Expressions of Fg and PrPC were assessed for each experimental group using offline image 

analysis software, Image-Pro Plus (Media Cybernetics, Silver Spring, USA) as previously 

described (Muradashvili et al., 2012a; Muradashvili et al., 2014c; Muradashvili et al., 2015; 

Muradashvili et al., 2017). Fluorescence intensities of Fg or PrPC were measured in at least 

4 randomly placed areas of interest of constant size along the vessel wall and normalized per 

length of the respective vascular segment. The results were averaged for each experimental 

group and presented as fluorescence intensity units. To identify co-localization of Fg with 

PrPC, the images were deconvoluted and “masks” were formed which demonstrated overlap 

of different colors as previously described (Muradashvili et al., 2014a; Muradashvili et al., 

2017). The numbers of objects co-localized with fluorophores were counted.

4.11 Western Blot Analysis.

After assessing the total protein level in brain samples, equal volume (30 μl) of protein from 

each sample was loaded onto 10% SDS-PAGE gels, electrophoresed under reducing 

conditions, and then transferred onto polyvinylidene difluoride (PVDF) membranes. Non-

specific sites on membranes were blocked with 5% nonfat dry milk in TBS-T and 

membranes were incubated with antibodies against target proteins overnight at 4°C. After 

probing with appropriate secondary antibodies for 2 hours at room temperature, the blots 

were visualized using a BioRad Molecular Imager (ChemiDoc XRS+, Hercules, CA). Then, 

blots were stripped with blot stripping buffer (RPI, Mt. Prospect, IL) and probed for the 

content of β-actin that was used as a loading control. Blot were visualized again. Obtained 

blot images were analyzed with Image Pro Plus. Contents of target proteins were assessed 

by measuring an integrated optical density (IOD) of their bands in each sample lane profile 

and presented relative to the IOD of the respective β-actin bands.

4.12 Memory assessment.

To investigate the effect of Fg content on memory-related behavior of the mice, a novel 

object recognition test (NORT) and a Y-maze spontaneous alternation test (SAT) were 

performed as we have described previously (Muradashvili et al., 2015; Muradashvili et al., 

2016; Muradashvili et al., 2017). Behavioral tests were done by a person who was blinded to 

the animal conditions.

4.12.1 NORT was used to assess visual STM.—The mice were acclimatized and 

trained for two days prior the test for 10 minutes, twice a day. On the day of the test, each 

mouse was placed in the box at the mid-point of the wall opposite to two similar objects and 

allowed to investigate the objects for 5 minutes. After 1 hour, one of the objects was 

replaced with a new, different-shaped object and the animal was returned to the box for 3 

min. TopScan behavioral analyzing system (Version 3.00; Clever Sys Inc., Reston, VA, 

USA) was used for the recording and analysis of mice behavior. A discrimination ratio was 

calculated as a ratio of the time spent at the novel object to the time spent at both objects.

4.12.2 SAT was used to assess spatial working STM.—This test is based on the 

concept of determining the willingness of rodents to explore new environment and thus their 

inquisitive nature to investigate a new arm of the maze. Age-matched mice were placed in 
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the middle of Y-maze with all three arms opened and all arm entries were sequentially 

recorded for 8 minutes. The SAT was calculated as a ratio of actual alternations to possible 

alternations (the total number of arm entries minus two) and presented as a percent (Jadavji 

et al., 2015).

4.13 Data Analysis.

Data in Figures 1, 3 and 5 were presented as mean ± standard error of the mean while data in 

Figures 2 and 5 were presented as a scatter dot plot with a median line. The experimental 

groups were compared by Mann-Whitney or Kruskal-Wallis statistical test followed by 

Dunn’s multiple comparison post-hoc correction test, unless otherwise indicated. 

Differences were considered statistically significant at p < 0.05. Analyses were performed 

using GraphPad Prism version 8.0.0 for Windows, GraphPad Software, San Diego, 

California USA. We used a blind study approach where it was possible. In vitro samples 

were coded. Experimental animals were also coded for behavioral tests. The decoding of 

data was done at the end the statistical analysis. An investigator was blinded while analyzing 

images for cerebral permeability.
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Highlights

• Decrease of Fg synthesis reduced TBI-induced inflammation in brain

• Decrease of Fg synthesis reduced expression of PrPC and formation of Fg-

PrPC complex

• Decrease of Fg synthesis improved TBI-induced changes in STM

Muradashvili et al. Page 15

Brain Res. Author manuscript; available in PMC 2022 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Gene expression of Activating Transcription Factor 3 (ATF3) in brain of mice treated 
with fibrinogen antisense oligonucleotide (Fg-ASO)
Quantitative PCR assessment of messenger RNA (mRNA) transcripts encoding ATF3 from 

brain samples of mice with CCI and sham-operation groups treated with control-ASO or Fg-

ASO. Levels of ATF3 mRNA were assessed 14 days after CCI and presented as the fold 

change of the gene level over the housekeeping gene, glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH).

P < 0.05 in all; * - vs. Sham, † - vs. CCI control-ASO; n=8/group. Mann-Whitney statistical 

test was used to define the difference between the groups.
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Figure 2. Cerebrovascular permeability in mice treated with fibrinogen antisense oligonucleotide 
(Fg-ASO) after CCI
Pial venular permeability to bovine serum albumin (BSA) Alexa Fluor-488 fourteen days 

after CCI or sham-operation was assessed by comparison of ratios of fluorescence intensities 

of the dye measured along the line profile probe placed on a selected place outside of the 

vessel to that measured along the line profile placed inside of the vessel. Results are 

presented as a percent to baseline.

P<0.05 in all; * - vs. Sham, † - vs. CCI control-ASO; n=6/group. Mann-Whitney statistical 

test was used to define the difference between the groups.
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Figure 3. Expression of cellular prion protein (PrPC) in mouse brain treated with fibrinogen 
antisense oligonucleotide (Fg-ASO) after CCI
A) Examples of Western blot analyses images of PrPc expression in brain samples from mice 

treated with control-ASO or Fg-ASO undergone sham-operation or CCI. Samples were 

collected 14 days after CCI or sham-operation. An equal amount of protein was placed in 

each well of the SDS gel. Molecular weight standard (Std) is presented in the left lane. 

Twenty-seven and 22 kD scrape prion proteins (PrPSC), which reflect changes of the PrPC, 

are also visible

B) Data analysis of PrPC expression is shown. Relative protein expression in samples is 

presented as a ratio of integrated optical density (IOD) of each PrPC band to the IOD of the 

β-actin band in respective lane.

P<0.05 in all; * - vs. Sham Control-ASO, † - vs. CCI Control-ASO, n=4/group. Kruskal-

Wallis statistical test followed by Dunn’s multiple comparison post-hoc correction test were 

used to define the difference between the groups.
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Figure 4. Deposition of Fg and expression of PrPC, and their co-localization in brain of mice 
treated with fibrinogen antisense oligonucleotide (Fg-ASO) after CCI
A) Examples of images showing expression of PrPC (green) and deposition of Fg (red), and 

their co-localization in mouse cortical vessels. Lycopersicon esculentum lectin, a marker of 

endothelium is shown in blue. Samples were collected 14 days after CCI or sham-operation.

B) Data analysis of fluorescence intensities of Fg and PrPC (presented as fluorescence 

intensity) are shown in the upper two plots. Co-localization of Fg and PrPC was assessed as 

a number of spots of co-localized respective fluorophores.

P<0.05 in all; * - vs. Sham Control-ASO, † - vs. CCI Control-ASO n=4/group. Mann-

Whitney statistical test was used to define the difference between the groups.
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Figure 5. Short-term memory (STM) changes in mice treated with control-ASO or Fg-ASO after 
CCI.
Changes in STM were assessed in mice 14 days after CCI or sham-operation using a novel 

object recognition test (NORT) and a Y-maze spontaneous alternation test (SAT). For STM 

assessment by NORT, discrimination ratio was calculated as a ratio of the time spent at the 

novel object to the time spent at both objects. The SAT was calculated as a ratio of actual 

alternations to possible alternations (the total number of arm entries minus two) and 

presented as a percentage.

P < 0.05 vs. Control-ASO; n=6/group. Mann-Whitney statistical test was used to define the 

difference between the groups.
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