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In this review of the most recent applications of deep learning to ultrasound imaging, 
the architectures of deep learning networks are briefly explained for the medical imaging 
applications of classification, detection, segmentation, and generation. Ultrasonography 
applications for image processing and diagnosis are then reviewed and summarized, along 
with some representative imaging studies of the breast, thyroid, heart, kidney, liver, and fetal 
head. Efforts towards workflow enhancement are also reviewed, with an emphasis on view 
recognition, scanning guide, image quality assessment, and quantification and measurement. 
Finally some future prospects are presented regarding image quality enhancement, diagnostic 
support, and improvements in workflow efficiency, along with remarks on hurdles, benefits, and 
necessary collaborations.
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Introduction

Deep learning, as a representative technology in the field of artificial intelligence (AI), has already 
brought about many meaningful changes in ultrasonography [1,2]. The tremendous potential of this 
technology, both clinically and commercially, is widely recognized in academia and industry. This new 
trend is a leap forwards from the traditional ultrasound technology inspired by information technology 
(IT) and consumer electronics technology. New AI-based applications range from enhancing 
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ultrasound images [3-8] to smart and efficient improvements of the 
workflow of healthcare professionals [9-18]. Deep learning applied 
to imaging chains has shown major improvements in the efficiency 
and effects of processing, such as signal acquisition, adaptive 
beamforming, clutter suppression, and compressive encoding for 
color Doppler [19]. It has also been shown that deep learning 
implementation in standard clinical fields, such as breast and thyroid 
ultrasound imaging, could increase diagnostic accuracy, reduce 
medical costs, and provoke some insightful discussions. In addition, 
using data augmentation could improve the generalizability of deep 
learning models, and introducing a transparent deep learning model 
to explain how and why AI systems make predictions could build 
trust in AI systems [20]. 

Enthusiasm for this technology can be easily demonstrated by the 
number of publications. For example, as seen in Fig. 1, the number 
of deep learning papers in PubMed soared since 2017 to more 
than 4,000 in 2019, and the number of deep learning applications 
in ultrasonography also followed the same trend. The wide 
participation from academia, clinical institutions, and industry is a 
clear indicator of eagerness and expectations for this technology.

This review paper will briefly introduce deep learning technology 
and major components thereof in ultrasound applications, 
and summarize the practical applications of deep learning in 
ultrasonography (especially in the domains of imaging, diagnosis, 
and workflow), focusing on the most recent research. A short 
discussion of future opportunities will also be presented. 

Fundamentals of Architecture of Deep Learning 
Networks for Classification, Detection, 

Segmentation, and Generation

Progress in algorithms, improved computing power, and the 
availability of large-scale datasets are the three major components 
responsible for the recent success of deep learning technology [21]. 
Many competitively developed algorithms are being updated and 
made accessible in deep learning frameworks such as Caffe [22], 
TensorFlow [23], Keras [24], PyTorch [25], and MXNet [26].

Convolutional neural networks (CNNs) have played the most 
important role in the history of adoption of deep learning for 
video and image processing applications. As illustrated in Fig. 2, 

Fig. 2. Basic components of a convolutional neural network.
It consists of convolutional layers performing filtering inputs (A) and pooling layers for down-sampling images (B). Through the training 
process, the optimal parameters of convolutional weights can be determined.
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Fig. 1. The number of published articles with "deep learning" in PubMed (A) and both "deep learning" and "ultrasound" (B).
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a CNN with a feature map extracting the convolutional layer and 
size-reducing pooling layer automatically extracts the optimized 
output through training process, thereby expediting applications 
in imaging. CNNs can be utilized for various purposes depending 
on their structure and training data. Concerning output features in 
scanned images can be recognized and automatically assigned to a 
meaningful category (classification). A specific feature or object can 
be located (detection), and the edge of an object can be precisely 
delineated (segmentation). Furthermore, new images, not visibly 
distinct from real ones, can be fabricated (generation).

CNNs have been expanded from natural image classification 
networks including AlexNet [27], VGGNet [28], GoogLeNet 
[29], ResNet [30], and DenseNet [31]. Key components of these 
developments include deeper networks with more convolutions 
per layer, and adoption of new layers, such as skip connections, to 

deliver information to deeper layers. The basic architecture of CNNs 
for classification is shown in Fig. 3. 

Object detection is a method for recognizing the type and location 
of an object in an image. Object detection methods using CNNs 
are broadly divided into two types. In two-stage detection, a region 
of interest (ROI) is detected by a region proposal and classification 
is then performed of the ROI, as shown in Fig. 4A. The region 
proposal finds possible locations for objects. Detection can be also 
implemented in one stage, such that ROI detection and classification 
are performed simultaneously, as shown in Fig. 4B. 

Segmentation divides an image according to a rule reflecting the 
question of interest with resolution meaningful for applications. 
Each pixel of the image is first classified and then de-convoluted to 
compensate for the pooling. Fig. 5 presents a typical architecture 
of U-net [36] based segmentation. Representative networks 

Fig. 3. Architecture of a convolutional neural network for classification.
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Fig. 4. Structures of object detection using deep 
learning. 
Region proposal and classification occur consecutively 
in two-stage detection (R-CNN [32]) (A), and region 
proposal and classification occur simultaneously in 
one-stagedetection (YOLO [33,34], SSD [35]) (B). ROI, 
region of interest. 
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Ultrasound-Specific Architectural 
Considerations for Deep Learning Networks

Ultrasound signals and images have unique characteristics and 
issues not as strongly present in other imaging modalities, such 
as attenuation, penetration, uniformity, shadowing, real time, 
and operator-dependence. These specific aspects must be taken 
into account when applying deep learning to ultrasonography. 
That means that a careful understanding of the system, its usage, 
and the practice environment should precede the design and 
implementation of a deep learning-based system. Most ultrasound 
practice is performed in real time, which in turn requires real-time 
output for deep learning-based functions. Additionally, the vast array 
of transducers, settings, and scan modes require corresponding 
diversity and integrations. 

It is necessary to establish a standardized training data set 
because ultrasound images have strong operator-dependence 
and different image characteristics for each device. There are 

for segmentation include fully convolutional networks [37] and 
DeconvolutionNet [38], and various U-Net-based networks [38-41] 
have been proposed.

The structure shown in Fig. 6 can be used to generate new 
unseen images based on the given images that originally existed. A 
generative adversarial network (GAN) can train and generate such 
images in a way that the generator and the discriminator compete 
within the network; the generator generates various new images 
from the random variables, and the discriminator distinguishes 
whether the images are real or generated. A sufficiently trained GAN 
can produce images that are not distinguishable from the real ones. 
This feature provides several applications, including augmentation 
of training data and image quality and resolution improvements 
[42,43]. Fig. 7 shows some examples of classification, detection, 
segmentation, and generation as applied to ultrasound images.

Fig. 5. Architecture of U-Net for segmentation. U-Net consists of pairs of encoder (compressing the data) and decoder (uncompressing the 
data). Detailed segmentation is possible by connecting the encoder's scale-specific features to the decoder's features.

Image Convolution net
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(Decoder) Output

Fig. 6. Basic architecture of a generative adversarial network. It consists of a generator network that creates an unseen image from an 
input random variable and a discriminator network that distinguishes whether the image is real or created.
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standardized imaging guidelines for each clinical scan, but when 
training and using a deep learning model, it is necessary to precisely 
define in advance the section of the ultrasound images before 
acquiring them. Additionally, pre-processing and normalization may 
be required to remove non-image information, such as annotations, 
and to reduce image deviation due to various scan conditions, 
respectively. The size of the data available for training is also 
an important consideration. The issue of small data sets can be 
alleviated by using transfer learning [44] where, as shown in Fig. 8, 
a pretrained model based on a large dataset can be effectively used 
in a smaller dataset when the two datasets share certain low-level 

features such as edges, shapes, corners, and intensity. For example, 
transfer learning enables us to utilize the knowledge of a pretrained 
breast lesion detection model trained with a large number of breast 
images to train a model on thyroid lesion detection with a smaller 
number of thyroid images.

Deep Learning Applications in Ultrasonography

The adoption of deep learning in ultrasound imaging can be 
explained from a simplified perspective, as shown in Fig. 9. For 
the sake of convenience of discussion, the task can be divided 

Fig. 7. Examples of classification, detection, segmentation, and generation applied to ultrasound images. 
Classification of malignancy of breast lesion (A), detection and segmentation of the ulnar nerve (UN) (B), circumference segmentation of the 
fetal abdomen (C), and examples of generated ultrasound images resembling breast lesions (D) are shown.
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A B

Possibly malignant
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into the domains of medical practitioners, ultrasound imaging 
systems, and deep learning engines. Scanned images are processed 
by an ultrasound imaging system to produce output images, of 
which measurement and/or quantification are then performed. 
Assistance can be provided in scanning by automatic recognition 
of which organ is being scanned, guidelines on how to scan, and 
assessments of scanned image quality. Traditional signal processing 
can be further enhanced in areas including beamforming, higher 
resolution, and image enhancement. The laborious and repetitive 

job of measurement/quantification can be replaced by computer-
aided detection (CADe) and computer-aided quantification (CADq). 
Finally, physicians can consult second opinions from computer-aided 
diagnosis (CADx) and/or computer-aided triage (CADt) systems.

Ultrasound Image Enhancement with Signal/
Image Processing and Beamforming

Image processing has been enriched by deep learning, opening 

Fig. 8. Transfer learning approach. A pretrained model based on a large dataset can be effectively used for applications with a smaller 
dataset.
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Fig. 9. A simplified diagram of the diagnostic workflow in ultrasonography when deep learning is involved. CADe, computer-aided 
detection; CADq, computer-aided quantification; CADx, computer-aided diagnosis; CADt, computer-aided triage.
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up a vast array of opportunities and improvements. Conventional 
signal processing is being combined with deep learning to produce 
better images [4,45], methods previously deemed to be practically 
unfeasible are being implemented [4,46], computation time is being 
greatly reduced [4,46], and new images can be created from the 
scanned images [47]. 

Yoon et al. [4] presented a framework for generating B-mode 
images with reduced speckle noise by using deep learning. The 
proposed method greatly exceeded the ability of the traditional 
delay-and-sum (DAS) beamformer, while maintaining the resolution. 
Luijten et al. [46] showed that a content-adaptive beamformer, 
such as an eigenspace-based minimum variance (MV) beamformer, 
which had not previously been utilized for real time applications, 
was implementable though training. The processing time of the MV 
beamformer, typically 160 seconds per image, was reduced to 0.4 
seconds per image with similar image acquisitions. It is expected 
that new beamformers performing better than conventional DAS 
will be implemented in the near future [4,46,48-50]. 

Liu et al. [47] showed the future potential of ultrasound 
localization microscopy (ULM) by implementing U-Net based ULM. 
The system could detect micro-bubbles (17 μm), taking about 23 
seconds per image; this was still a long time, but several times 
faster than the previous version, indicating the possible future 
applicability of this system. Huang et al. [51] proposed MimicKNet, 
which imitates the post-processing technique for ultrasound based 
on GAN. Based on DAS and taking logarithms of the data, it was 
trained on 1,500 cine loops with 39,200 frames of fetal, phantom, 
and liver targets, and was applied to untrained frames of the heart 
to show the capability of real-time processing of 142 frames per 
second using a P100 GPU.

Jafari et al. [52] provided a deep learning solution that modified 
the low-quality images from a point-of-care ultrasound (POCUS) 
device to a level of quality comparable to the that obtained 
using premium equipment. By employing constrained CycleGAN, 
the experiment could also improve the accuracy of automatic 
segmentation using POCUS data. Wildeboer et al. [53] presented 
methods of generating synthesized shear-wave elastography (SWE) 
images based on original B-mode images. Using both B-mode and 
SWE images collected from 50 prostate cancer patients, it was 
shown that synthesized SWE images with an average absolute error 
of pixel units within 4.5±0.96 kPa could be generated.

The deep learning application with the most fundamental 
effect on ultrasound imaging is ultrasonic beamforming. The DAS 
beamformer, most widely used beamforming method in ultrasound 
systems, has become an industry standard because it can be applied 
in real-time with a small amount of computation. However, the DAS 
algorithm utilizes predefined apodization weights, leading to low-

resolution images with strong artifacts and poor contrast due to high 
sidelobes. A variety of adaptive beamforming methods have been 
still proposed to address the shortcomings of DAS beamforming, 
but it remains difficult to deem any of them clinically meaningful 
for general purposes due to their computational complexity. 
Recently, however, as the limitations of these computations are 
being overcome by using deep learning, the possibility that adaptive 
beamforming could be performed in real time is emerging [45,46].

Diagnostic Support by Deep Learning Analytics

CADx assists doctors to improve diagnostic accuracy and consistency 
by suggesting second opinions. Deep learning-based CADx is 
expanding rapidly, covering more organs and diseases in many 
imaging modalities. From conventional machine learning methods, 
where manually selected features were utilized, especially in 
ultrasonography, deep learning-based studies are moving towards 
multi-parameter and multi-modality fusion of various information 
including non-ultrasound imaging, clinical information, and 
genotype information. In ultrasonography itself, accuracy can be 
improved by using various types of information, such as Doppler and 
elastography, other than B-mode [54,55].

Another important topic in diagnosis is eXplainable AI (XAI). As 
illustrated in Fig. 10, deep learning technology has been regarded 
as just a black box that cannot interpret the process of deriving 
the output. However, Ghorbani et al. [56] have shown that a CNN 
applied to echocardiography can identify local cardiac structures and 
provide interpretations by visually highlighting hypothesis-generating 
regions of interest. As such, studies published in the field of XAI 
have sought to provide explanations of why deep learning models 
produce certain outputs. Another issue to be addressed when 
discussing XAI is that there is no analytical explanation of what 
mechanisms it operates through, except for the explanation that a 
deep learning model works because it has found optimal parameters 
through training with big data. Ye et al. [57] demonstrated that the 
success of deep learning stems from the power of a novel signal 
representation using a nonlocal basis combined with a data-driven 
local basis, which is indeed a natural extension of classical signal 
processing theory.

Breast cancer is the most common cancer in women. As noted 
in Table 1, diverse studies with deep learning applications are 
being conducted. Early studies only utilized B-mode images, but 
recent studies have concentrated on combining the usage of 
ultrasound multi-parametric images or clinical information. Zheng 
et al. [58] introduced a new method to determine metastasis to 
axillary lymph nodes in early-stage breast cancer patients. Features 
obtained from deep learning-based radiomics were combined with 
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Table 1. Deep learning research on breast diagnosis

Study
Total No. of images (patients)/

Total No. of images for evaluation
Methods

Performance of previous 
methods

Performance of proposed 
methods

Zheng et al. (2020) [58] 584 (584)/118 (118) ResNet50 image only 
vs. ResNet50+clinical 
information

AUC: 0.796
ACC: 71.6%
SENS: 67.4%
SPEC: 79.1%
PPV: 70.2%
NPV: 76.8%

AUC: 0.902
ACC: 81.0%
SENS: 81.6%
SPEC: 83.6%
PPV: 78.4%
NPV: 86.2%

Sun et al. (2020) [59] 2,395 (479)/680 (136) DenseNet Image 
only vs. DenseNet 
image+molecular subtype

AUC: 0.912
ACC: 89.3%
SENS: 85.7%
SPEC: 90.7%
PPV: 77.4%
NPV: 94.4%

AUC: 0.933
ACC: 90.3%
SENS: 89.3%
SPEC: 90.7%
PPV: 78.1%
NPV: 95.8%

Liao et al. (2020) [54] 256 (141)/51 VGG19 B-mode only vs. 
VGG19 B-mode+strain 
elastography images

AUC: 0.93
ACC: 85.26%
SENS: 85.31%
SPEC: 86.09%

AUC: 0.98
ACC: 92.95%
SENS: 91.39%
SPEC: 94.71%

Tanaka et al. (2019) [55] 8,472 (1,469)/850 (150) VGG19 single image vs. 
ensemble network of 
VGG19 and ResNet152 for 
multiple images

AUC: 0.926
ACC: 86.4%
SENS: 90.0%
SPEC: 82.3%

AUC: 0.951
ACC: 89.0%
SENS: 90.9%
SPEC: 87.0%

AUC, area under the receiver operating characteristic curve; ACC, accuracy; SENS, sensitivity; SPEC, specificity; PPV, positive predictive value; NPV, negative predictive value.

Fig. 10. Explainable artificial intelligence (XAI).
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clinical parameters such as patient age, size of the lesion, Breast 
Imaging Reporting and Data System (BI-RADS) category, tumor 
type, estrogen receptor status, progesterone receptor status, human 
epidermal growth factor receptor 2 (HER2), Ki-67 proliferation index, 
and others. Sun et al. [59] included additional molecular subtype 
information such as HER2-positivity and triple-negative status. 
Luminal and Liao et al. [54] introduced a combination feature model 
of B-mode ultrasound images and strain elastography and showed 
better performance than those of models established using these 
two modalities alone. Tanaka et al. [55] introduced an ensemble 
classifier of two CNN models based on VGG19 and ResNet152 for 
multiple view images of one mass. Table 1 summarizes the number 
of cases, methods used in each paper, and the performance of the 
previous and proposed methods. Performance improves when deep 
learning is configured by combining multiple sources of ultrasound 
anatomical information, compared with when only one anatomical 
image (B-mode) is used. In addition, compared to using B-mode 
images alone, better performance is observed when complementary 
molecular information is provided, and furthermore, when patient 
information and the BI-RADS category are added to molecular 
information. 

Thyroid cancer is one of the most rapidly increasing cancers. 
Ultrasound is used as a primary diagnostic tool for detecting and 
diagnosing thyroid cancer. Various features are used in ultrasound 
images, and as shown in Table 2, many CAD studies have been 
conducted recently using deep learning. Nguyen et al. [60] introduced 
a method of combining ResNet50-based CNN architecture and 
Inception-based CNN architecture with a weighted binary cross-
entropy loss function. Park et al. [61] integrated seven ultrasound 

features (composition, echogenicity, orientation, margin, spongiform, 
shape, and calcification) and compared the performance with those 
of a support vector machine-based ultrasound CAD system and 
radiologists. Zhu et al. [62] proposed a deep neural network method 
to help radiologists differentiate Bethesda class III from Bethesda 
class VI, V and VI lesions. In all of these cases, the deep learning 
models performed better than conventional machine learning, and 
that the performance was better when additional features were 
combined. 

In the field of echocardiography, studies [64] that mainly focused 
on distinguishing cardiac disorders are now being extended to 
include the detection of additional information from the cardiac 
view or explanations proposed regarding the grounds for the 
determination. Ghorbani et al. [56] used video images as network 
input to simultaneously analyze the data characteristics that 
contain spatiotemporal information and created the final output by 
averaging the generated output from cine frames. By analyzing local 
cardiac structures, enlarged left atrium, left ventricular hypertrophy, 
and the presence of a pacemaker lead were determined, and the 
positions of the area important to the determination were marked to 
present explanations on the output. The study also tried to estimate 
age, sex, weight, and height from representative views, such as the 
apical four-chamber view. 

A chronic kidney disease (CKD) scoring system [65] using 
ultrasonographic parameters such as kidney length, parenchymal 
thickness, and echogenicity is widely used. Issues still exist, however, 
regarding the user’s subjective evaluation. In a study by Kuo et al. 
[66], a sequential configuration of two networks was presented. It 
was configured to average the results of 10 generated networks 

Table 2. Deep learning research on thyroid diagnosis

Study
Total No. of images (patients)/

Total No. of images for evaluation
Methods

Performance of previous 
methods

Performance of proposed 
methods

Nguyen et al. (2020) [60] 450 (298)/5-fold validation Single ResNet50 vs. two 
fused CNN models

ACC: 87.778%
SENS: 91.356%
SPEC: 64.018%

ACC: 92.051%
SENS: 96.072%
SPEC: 65.687%

Park et al. (2019) [61] 4,919/286 SVM based CAD vs. 
GoogLeNet image+seven 
ultrasound features

ACC: 75.9%
SENS: 90.4%
SPEC: 58.5%
PPV: 72.3%
NPV: 83.5%

ACC: 86%
SENS: 91.0%
SPEC: 80.0%
PPV: 84.5%
NPV: 88.1%

Zhu et al. (2019) [62] 467/70 Logistic regression vs. DNN 
for classifying Bethesda 
class III and class IV/V/VI

AUC: 0.904
ACC: 86.94%
SENS: 89.38%
SPEC: 80.47%

AUC: 0.891
ACC: 87.15%
SENS: 87.91%
SPEC: 85.15%

Nguyen et al. (2019) [63] 298/61 ResNet50 vs. cascaded 
classifier based on FFT and 
ResNet50

ACC: 87.131%
SENS: 90.597%
SPEC: 63.741%

ACC: 90.883%
SENS: 94.933%
SPEC: 63.741%

CNN, convolutional neural network; ACC, accuracy; SENS, sensitivity; SPEC, specificity; PPV, positive predictive value; NPV, negative predictive value; DNN, deep neural network; 
AUC, area under the receiver operating characteristic curve.
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to predict the estimated glomerular filtration rate (GFR), a renal 
function index, and the features used in the prediction were linked 
to another network to determine CKD status. The experimental 
results confirmed a strong correlation between the blood creatinine-
based GFR prediction and the results of the AI-based application. 

Automatic determination of long head of biceps tendon 
inflammatory severity using ultrasound imaging was attempted 
by Lin et al. [67]. Input images were processed first to detect the 
presence of the biceps. A CNN was then used to classify the images 
with a detected ROI into three classes of inflammatory severity 
(normal and mild, moderate, or severe). It was suggested that the 
user’s burden can be alleviated during the determination of bicipital 
peritendinous effusion.

Many networks have been proposed for automatic liver 
fibrosis staging, with examples including a four-layer CNN with 
elastographic image input [68] and a METAVIR [69,70] score 
prediction network from B-mode images. Xue et al. [71] used a 
multiple modality input of B-mode and elastography images. Two 
networks were trained using B-mode and elastography individually, 
and the results of each were combined to generate fibrosis staging. 
It was shown that networks with multi-modal input produced better 
performance.  

There are many deep learning-based obstetrics and gynecology 
applications [72]. Attempts have been made to detect abnormalities 
in the fetal brain. Yaqub et al. [73] reported a study where axial 
cross-sections of fetal brain were segmented for the craniocerebral 
region, and input to CNN for a two-category (normal/abnormal) 
classification. Suspected abnormalities were also displayed using a 
heat map. The traditional benign/malignant classification of ovarian 
cysts depended only on manually designed features [74]. In a more 
recent study by Zhang et al. [75], a diagnosis system to determine 
ovarian cysts on color Doppler ultrasound images was proposed to 
reduce unnecessary fine-needle aspiration evaluations. High-level 
features generated from a deep learning network and low-level 
features of texture information were combined. The experimental 
results indicated that the differences between malignant and benign 
ovarian cysts could be described by using a combination of these 
two feature types.

Clinical decision support solutions, traditionally referred to as 
CADx, have been developed gradually over the years. However, 
these traditional methods were not applicable as practical diagnosis 
tools because their existing performance generally did not satisfy 
doctors’ needs. Recently introduced deep learning methods are 
showing improved performance, enabling practical applications in 
clinics. Commercial AI products are being released, and their clinical 
validation and clinical utility are becoming increasingly important. 
Helping with the doctor's diagnosis is not only a form of qualitative 

assistance to support clinical decision-making, but also a meaningful 
attempt to increase workflow efficiency, as the following section 
explains in detail.

Improving Workflow Efficiency

System workflow enhancement is relatively easy in terms 
of collecting training data and is less restricted regarding 
computational resources for real-time processing; therefore, 
immediate and effective applications are more readily possible than 
is the case for imaging, which requires real-time processing, or 
diagnosis, which has the burden of diagnostic accuracy and training 
data. AI technology incorporated in an ultrasound system is applied 
in the scanning and measurement/quantification processes in the 
system workflow, as shown in Fig. 9. Fast processing and assisted 
scanning all simplify the job and reduce time-consuming and 
repetitive tasks for medical practitioners, increase their productivity, 
reduce costs, and improve the efficiency of the workflow. We 
will introduce examples of deep learning technology applied 
to view recognition, scan guide, image quality assessment, and 
quantification and measurement at each stage of the diagnostic 
process of ultrasonography.

View Recognition 
On ultrasonography, it can be difficult to determine which part of 
the body or organ is being scanned only with a 2D cross-sectional 
image. Automatic view recognition started by using a support 
vector machine [76] and conventional machine learning [77,78], 
but recently techniques that integrate deep learning have been 
developed and have greatly improved view recognition. For example, 
fully automatic classification or accurate segmentation of the left 
ventricle (LV) was not easy because of noise and artifacts in cardiac 
ultrasound images. Moreover, numerous images similar to the shape 
of the LV appear with a considerable variety. To recognize, segment, 
and track the LV in imaging sequences, a new method of integrating 
a faster R-CNN and an active shape model (ASM) was proposed [79]. 
A fast R-CNN [80], was utilized to recognize the ROI, and an ASM 
[81] identified the parameters that most precisely expressed the 
shape of the LV.

Recognizing the six standard planes in the fetal brain, which is 
necessary for the accurate detection of fetal brain abnormalities, 
has also been very difficult due to wide diversity of fetal postures, 
insufficient data, and similarities between the standard planes. Qu 
et al. [82] introduced a domain transfer learning method based 
on deep CNN. This framework generally outperformed those using 
other classical deep learning methods. In addition, the experimental 
results showed the effectiveness of data augmentation, especially 
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when training data were insufficient.
Cai et al. [83] introduced an automated approach, SonoEyeNet, 

for the automatic recognition of standardized abdominal 
circumference (AC) planes on fetal ultrasonography. Built in a 
CNN framework, the method utilized the eye movement data of a 
sonographer. The movement data were collected from experienced 
sonographers to generate visual heat maps (visual fixation 
information) of each frame and used the data for identifying the 
correct planes. Using Sononet [84], a real-time detection technology 
of fetal standard scan planes in freehand ultrasound, the heatmaps 
and image feature maps were integrated to enhance the accuracy of 
AC plane detection. 

Scan Guide 
Ultrasound images differ according to the user. A scan guide 
function is needed to assist unskilled people to take ultrasound 
images similarly to experienced users. Reinforcement learning is a 
method that maximizes the reward according to the result of an 
action, and has the characteristic feature of being able to reflect the 
user's actions and experiences in the system.

Techniques have been developed to provide a scan guide by 
applying reinforcement learning to an ultrasound system have been 
developed. Although many recent approaches have focused on 
developing smart ultrasound equipment that adds interpretative 
capabilities to existing systems, Milletari et al. [85] applied 
reinforcement learning to guide inexperienced users in POCUS to 
obtain clinically relevant images of the anatomy of interest. Jarosik 
and Lewandowski [86] developed a software agent that easily 
adapts to new conditions and informs the user on how to obtain the 
optimal settings of the imaging system during the scanning.

Image Quality Assessment
In ultrasound imaging, diagnosis is performed on standard planes. 
It is necessary to judge whether an image captured by the user is 
suitable for the standard plane. The quality of ultrasound images, 
for obstetric examinations as an example, is important for accurate 
biometric measurements. Manual quality control is a labor-intensive 
process that is often not practical in clinical environments. Therefore, 
a method that improves examination efficiency and reduces 
measurement errors due to inappropriate ultrasound scanning and 
slice selection is required.

Wu et al. [87] depicted a computerized fetal ultrasound image 
quality assessment (FUIQA) system to support quality management 
in a clinical obstetric examination. The FUIQA system was 
implemented with two deep CNN models, L-CNN and C-CNN. 
The L-CNN model located the ROI of the fetal abdomen, while the 
C-CNN evaluated the image quality from the goodness of depiction 

of the key structures of the stomach bubble and umbilical vein ROI.

Quantification/Measurement
In echocardiography, doctors can diagnose most heart diseases by 
observing the shape and movement of the heart and evaluating 
abnormalities in blood flow. In obstetrics, diagnostic workflows exist 
for fetal development measurements to estimate gestational age 
and to diagnose fetal growth disorders and cerebral anomalies.

Conventional measurements require manual operations with 
several clicks, which is a tedious, error-prone, and time-consuming 
job. Recently, AI-based quantification tools have been applied in 
a wider range of clinical applications and research is underway to 
achieve faster and more accurate diagnoses in combination with 
detection tools. 

Measurements of the volume of the LV and ejection fraction 
(EF) in two-dimensional echocardiography have a high uncertainty 
due to inter-observer variability of manual measurements and 
acquisition errors such as apical foreshortening. Smistad et al. 
[88] proposed a real-time and fully automated EF measurement 
and foreshortening detection method. This method measured the 
amount of foreshortening, LV volume, and EF by employing deep 
learning features including view classification, cardiac cycle timing, 
segmentation, and landmark extraction. Furthermore, Jafari et al. 
[10] introduced a feasible real-time mobile application on Android 
mobile devices wired or wirelessly connected to a cardiac POCUS 
system for estimating the left ventricular ejection fraction. 

Measuring the fetal growth index is a routine task, and it is 
important to improve the accuracy and efficiency of the work 
through automatic measurements [89]. Kim et al. [9] introduced 
a deep learning-based method for automatic evaluations of fetal 
head biometry by first measuring the biparietal diameter and head 
circumference, followed by checking plane acceptability, and finally 
refining the measurements. Sobhaninia et al. [90] suggested a 
new approach in automatic segmentation and estimation for fetal 
HC. Using a multi-task deep network based on the structure of 
Link-Net [91] and an ellipse tuner, smoother and cleaner elliptical 
segmentation resulted in comparison to what was obtained using 
a single-task network. It was recently reported that, in detecting 
the fetal head and abdomen, many vague images where detection 
seemed unlikely with traditional methods actually produced 
meaningful results [92], showing the potential of more robust and 
stable technology.

Conclusion

A review of the most recent applications of deep learning on 
ultrasound imaging applications has been presented herein. 
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Following a brief introduction to CNNs and their domains of 
application, including classification, detection, segmentation, 
and generation, some recent studies on ultrasound imaging 
were summarized, focusing on the role played by deep learning 
in scanning, diagnosis, image enhancement, quantification and 
measurement, and workflow efficiency improvement. One of the 
most important requirements for practical use of these technologies 
in ultrasonography is real-time implementation. The availability of 
peripheral computational processing technology, therefore, is a key 
ingredient for rapid adaptation and usage.  

Deep learning-based diagnosis undoubtedly has tremendous 
future potential. It will surely expand and provide doctors, and 
society as a whole, with various benefits including better accuracy, 
efficient performance, and cost reduction. However, some hurdles 
should be overcome. Insufficient accumulation of medical imaging 
data could cause difficulties in verifying clinical validity and 
utility for practical purposes [93]. For the same reason, but from 
a different point of view, regulatory agencies such as the Food 
and Drug Administration (FDA), China National Medical Products 
Administration (NMPA), and the South Korean Ministry of Food 
and Drug Safety (MFDS) are working on risk management and 
discussing whether deep learning based algorithms should be 
allowed to be incorporated into medical devices. There is also a 
longstanding controversy regarding the proper level of accuracy in 
AI diagnoses. A shared understanding now exists that AI can, even 
if not at the level of an expert, still reduce simple human errors and 
contribute to enhancing average diagnostic accuracy by providing 
a second opinion to a doctor’s decision [94]. Furthermore, the new 
development of multi-parameter and multi-modal diagnoses may 
possibly lead to the next level of comprehensive diagnostic tools for 
medical professionals.

Image quality enhancement due to deep learning is expected 
to start with postprocessing of the images first and eventually to 
cover ultrasound beamforming, contributing to fundamental image 
quality improvement. The application of advanced beamforming 
technology, which has been studied for several decades but has not 
been successfully applied in general, could also be expected through 
deep learning. Workflow enhancement is the most active domain 
of applications, especially for commercial implementation. Recently, 
regulatory agencies, including the FDA and MFDS, have been 
cautiously easing regulations on CADe. These changes would simplify 
regulatory review and give patients more timely access to CADe 
software applications. The FDA believes that these special controls 
will provide a reasonable assurance of safety and effectiveness [95]. 
Easing regulations in this field implies that qualified doctors can 
enhance their workflow and improve productivity by routinely using 
these technologies in their daily practice. Improved productivity will 

be perceived by not only healthcare professionals, but by society as 
a whole in the form of cost reduction and financial efficiency.

Finally it should be mentioned that government and healthcare 
authorities will play the paramount role in these innovations. 
Standardized and unified guidelines and regulations have yet to 
be developed. Active discussions and workshops are going on 
among many parties involved, such as the International Medical 
Device Regulators Forum. Participation in such initiatives is strongly 
recommended for academia, industry, research centers, and 
governing institutions.
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