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Abstract

With the development of multi-model neuroimaging technology and gene detection technology, 

the efforts of integrating multi-model imaging genetics data to explore the virulence factors of 

schizophrenia (SZ) are still limited. To address this issue, we propose a novel algorithm called 

group sparse of joint non-negative matrix factorization on orthogonal subspace (GJNMFO). Our 

algorithm fuses single nucleotide polymorphism (SNP) data, function magnetic resonance imaging 

(fMRI) data and epigenetic factors (DNA methylation) by projecting three-model data into a 

common basis matrix and three different coefficient matrices to identify risk genes, epigenetic 

factors and abnormal brain regions associated with SZ. Specifically, we introduce orthogonal 

constraints on the basis matrix to discard unimportant features in the row of coefficient matrices. 

Since imaging genetics data have rich group information, we draw into group sparse on three 

coefficient matrices to make the extracted features more accurate. Both the simulated and real 

Mind Clinical Imaging Consortium (MCIC) datasets are performed to validate our approach. 

Simulation results show that our algorithm works better than other competing methods. Through 

the experiments of MCIC datasets, GJNMFO reveals a set of risk genes, epigenetic factors 

and abnormal brain functional regions, which have been verified to be both statistically and 

biologically significant.
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1. Introduction

IMAGING genetics is an emerging field in brain research [1, 2], which uses brain imaging 

technology evaluate the influence of genes on individuals, and discusses how genes affect 

the neural structure, the brain function and the resulting pathology of the nervous system[3–

5]. Studying on correlation between genetic variables and imaging variables will facilitate 

mental disease research like schizophrenia (SZ).

Canonical Correlation Analysis (CCA)[6] is a typical method which is used to find the 

relationship between genetic and brain imaging data. However, high dimensionality problem 

featured by high dimension variables and limited sample size in both data sets remains 

to be a challenge for quantitative analysis. To overcome this issue, feature selection is 

often integrated in current computational models. For instance, Wright and Parkhomenko 

et al.[7, 8] built sparse canonical correlation analysis (SCCA), in which L1-norm aims 

to extract significant features through sparse canonical variables and L2-norm is used to 

relieve overfitting problems. Since SCCA doesn’t consider the prior information of data, 

several researchers developed SCCA by adding prior information as constraint conditions. 

Lin However, a CCA-based model can only find a pair of canonical correlation variables 

(i.e. one of the modules) at the same time. In order to obtain the second pair, the third pair 

or even all the canonical correlation variables, we need dimensionality problem featured 

by high dimension variables and limited sample size in both data sets remains to be 

a challenge for quantitative analysis. To overcome this issue, feature selection is often 

integrated in current computational models. For instance, Wright and et al. [9] proposed 

group sparse CCA(GSCCA), in which the group information of data was considered. Du 

et al.[10] proposed structure CCA algorithm, in which the spatial structure information of 

imaging genetics datasets was employed. Moreover, to take advantage of the complementary 

information of multiple datasets, three or more datasets need to be integrated, Witten 

et al.[8] proposed sparse Multi-modal CCA (SMCCA) to find the maximum correlation 

among three or more datasets. Recently, Hu et al.[11] developed an adaptive SMCCA as an 

extension of the two-module SCCA model.

However, a CCA-based model can only find a pair of canonical correlation variables (i.e.one 

of the modules) at the same time. In order to obtain the second pair, the third pair or even 

all the canonical correlation variables, we need to gradually build new CCA model based on 

the results of the previous step, leading the model to be more complex and time-consuming. 

The extended model of the non-negative matrix factorization (NMF) algorithm can help to 

overcome these limitations.

Non-negative matrix factorization [12, 13] is a low-dimensionality reduction approach 

which has been widely used to analyze imaging genetics datasets since it is useful 

for learning parts-based representation. NMF decomposes the non-negative object matrix 
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into the non-negative basis matrix and the coefficient matrix. Considering the group 

and structure information as prior, Kim et al.[14] proposed a group sparse non-negative 

matrix factorization (GSNMF) algorithm. GSNMF imposed L1,q-norm to realize sparse 

representation at the level of groups[15]. On the basis of NMF, Zhang et al.[16] proposed 

joint non-negative matrix factorization (JNMF) algorithm which projected multi-modal 

datasets into a common space for multiple data fusion. Since JNMF hadn’t taken into 

account data prior information, and Wang et al.[13] proposed group sparse joint non-

negative matrix factorization (GSJNMF) by combing JNMF and GSJNMF. In these 

works, each row of the coefficient matrix is equivalent to a canonical correlation variable 

in CCA model. That is, JNMF and GSJNMF can identify multiple sets of canonical 

correlation variables simultaneously. However, this NMF-based approach did not consider 

the correlation between basis vectors, which may lead to extract unimportant features from 

coefficient matrix.

To this end, we propose a novel model named group sparse of joint non-negative matrix 

factorization on orthogonal subspace (GJNMFO). GJNMFO enforces both orthogonal and 

group sparse constraints in matrix decomposition and projects multi-modal data into a 

low-dimensional orthogonal space. Compared to the previous NMF-based methods, our 

model has the following advantages. First, we use the idea of joint non-negative matrix to 

fuse multi-modal imaging genetics data, which can make full use of the complementary 

information between multi-modal data. Second, GJNMFO projects multi-modal data into 

a common basis matrix. We employ orthogonal constraint on basis matrix to reduce the 

correlation between the basis vectors, which helps discard unimportant features in the rows 

of coefficient matrix. Third, since the imaging genetics datasets have rich group information 

(i.e., brain voxel can be group by brain functional regions, SNP sites and DNA methylation 

CpG sites can be grouped by gene), we draw into group sparse constraint on coefficient 

matrices to make the extracted genetic variables and imaging variables more accurate.

We validate GJNMFO algorithm with both the simulated and real datasets. Simulation 

results show that our algorithm can identify significant features in multi-modal dataset, 

and outperform than other existing algorithms, i.e., GSJNMF and JNMF. Results by using 

the Mind Clinical Imaging Consortium (MCIC) data demonstrate that our algorithm find 

the reveals a set of risk genes (PLA2G4A, INSIG2, etc.), epigenetic factors (C10orf26, 

MTERF, etc.) and abnormal brain regions (Hippocampus, Occipital_Inf, etc.) closely related 

to schizophrenia.

The rest of this paper is organized as follows. In Section II, we propose GJNMFO algorithm 

and give the numerical optimization, significance estimation and parameter selection 

strategy. In Section III, we compare the performance of GJNMFO, GSJNMF and JNMF 

on the simulated data, then use GJNMFO algorithm to analyze the SNP, DNA methylation 

and fMRI datasets of SZ. Some concluding remarks are given in Section IV.

Peng et al. Page 3

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2021 December 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2 Materials and Methods

2.1 NMF and Extension

NMF has been widely used in data mining and pattern recognition [16–20]. The basic 

description of NMF model is: given a non-negative matrix X ∈ ℝ+
m × n, we aim to find two 

low-rank non-negative matrices W ∈ ℝ+
m × r and H ∈ ℝ+

r × n such that

min
W, H

X − WH F
2 s . t .  W, H ≥ 0 (1)

where m and n are the number of samples and features, respectively. r is the number of 

components, and ∥·∥F is the Frobenius norm. Here, W and H are called basis matrix and 

coefficient matrix, respectively. As shown in Eq. (1), X can be represented by a linear 

combination of r basis components with relevant coefficients.

Although NMF algorithm performed well on the low-dimensional representation via single 

matrix decomposition, there was an urgent need to find the connections of two or multiple 

matrices. Joint non-negative matrix factorization (JNMF) was then proposed to address this 

issue by decomposing multiple input matrices into one common shared basis matrix and 

multiple corresponding coefficient matrices. In this way, JNMF can find the association 

among multi-modal datasets via different coefficient vectors under the common basis vector. 

As shown in Fig.1, JNMF decomposes multiple input datasets into one common shared basis 

matrix and multiple different coefficient matrices.

Denote X1 ∈ ℝ+
m × n1, X2 ∈ ℝ+

m × n2, …, XK ∈ ℝ+
m × nK as input matrices, JNMF can be 

formulated as:

min
W, Hi

∑
i = 1

K
Xi − WHi F

2 s . t .  W, Hi ≥ 0 (2)

where m and ni represent the number of samples and features in Xi (i=1, 2, 3), respectively. 

On the basis of JNMF, Wang et al.[13] proposed group sparse joint non-negative matrix 

factorization (GSJNMF) by considering prior group information as constrain imposed on 

JNMF.

However, these JNMF-based algorithms did not take the correlation between columns 

of basis matrix into account, so there may be a linear correlation between the basis 

vectors. This may cause these JNMF-based algorithms extract the insignificant features 

from coefficient matrix. To this end, we propose a novel algorithm, named group sparse joint 

non-negative matrix factorization on orthogonal subspace (GJNMFO).

2.2 The Proposed Method

GJNMFO is a JNMF-based method, aiming to discover the potential relationship among 

multi-modal datasets. Considering the group information of each dataset, i.e. the brain 

imaging is divided into different ROIs, and the nucleotides belongs to different genes, 
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we use group information as constraint to the coefficient matrices. Meanwhile, in order 

to ensure that the basis matrix is full-rank, we impose orthogonal constraint on the basis 

matrix. Specifically, for the i-th modal dataset, the features can be divided into di group by 

utilizing the prior information. Then we employ GJNMFO to decompose the multi-model 

input data Xi to one common shared basis matrix W and multiple corresponding coefficient 

matrices Hi, as shown in Fig. 2. Since Hi is composed by features which also contain the 

same group information as input, here we impose group sparse constraint on Hi to extract 

the significant group of features. In addition, for the common matrix W, we use WTW-I as 

orthogonal constraint guarantee full-rank and remove the linear correlation of components. 

Thus, the objective function of GJNMFO is formulated as follows:

min
W, HK

∑
i = 1

K 1
2 Xi − WHi F

2 + λi Hi ςi + γ WTW − I F
2  s . t .  W, H1, H2, ⋯,

HK ≥ 0
(3)

where λi and γ are regularization parameters. γ ≥ 0 controls orthogonality of the vectors in 

W (i.e. The larger the γ, the more orthogonal the basis vector is.[21]) and λi control sparsity 

at the group level. For the input matrix Xi, assuming that ni features consist of di disjoint 

groups, we have ςi:

ςi = ς1
i , ς2

i , ⋯, ςdi
i  s . t .  ςU

i ∩ ςV
i = ∅ , U ≠ V , ∪

J = 1

di ςJ
i = 1, 2, ⋯, ni (4)

where ςJ
i  is the column index set which belongs to J-th group in Xi. The group information 

contained in the features of the original data Xi is projected to the coefficient matrix Hi by 

GJNMFO algorithm.

For non-negative coefficient matrix H ∈ ℝ+
r × n, we assume that each row index set of H is 

divided into d disjoint groups according to X, and each group has |ςJ | elements respectively. 

The group norm Hj ⋅ ςJ of the J-th group in the j-th row is defined as:

Hj ⋅ ςJ = ∑
α ∈ ςJ

Hjα
2

1
2

(5)

where ςJ is the column index set that belongs to the J-th group in the j-th row of H. Then the 

group norm of matrix coefficient H can be defined in the following manner:

H ς = ∑
j, J

Hj ⋅ ςJ = ∑
j, J

∑
α ∈ ςJ

Hjα
2

1
2

(6)

It should be noted that Hj ⋅ ςJ is the L1,2-norm ∥·∥1,2 if one row of Hj. belongs to a single 

group. Since the number of elements in each group in the coefficient matrix is different, 

calculating the group norm by Eq. (6) will have different sparsity for each element in Hi. In 
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order to overcome this problem, we add the size of each group in Eq. (6) to form the final 

group norm, i.e. ‖Hi‖ς is defined in the following manner:

Hi ς = ∑
j, J

ςJ
i ∑

α ∈ ςJ
i

Hi jα
2

1
2

(7)

where ςJ
i  is the number of elements in J-th group in Hi.

It is straightforward to show that problem (3) is non-convex and it is hard to solve it directly. 

We propose an efficient algorithm based on ALS approach. Let Ψ ∈ ℝm × r and Φi ∈ ℝr × ni

be the Lagrange multipliers to constraint W ≥ 0 and Hi > 0 respectively. Then the Lagrange 

function L has the following expression:

L = ∑
i = 1

K 1
2 Xi − WHi F

2 + λi Hi ςi + γ WTW − I F
2 + ∑

i = 1

K
tr ΦiHi

T

+ tr ΨWT
(8)

where tr(·) is trace operation. Taking the partial derivative to W and Hi (i=1, 2, …, K) of L, 

we then obtain:

∂L
∂W = ∑

i = 1

K
WHi − Xi Hi

T + 4γ WWTW − W + Ψ (9)

∂L
∂Hi

= WT WHi − Xi + λi
∂ Hi ςi

∂Hi
+ Φi (10)

According to the Karush-Kuhn-Tucker conditions[22] Ψ pqWpq = 0 and (Φi)pq(Hi)pq = 0, we 

get the following equations for Wpq and (Hi)pq.

∑
i = 1

K
WHiHiT pqWpq + 4γ WWTW pqWpq = ∑

i = 1

K
XiHiT pqWpq

+ 4γWpqWpq WTWHi + λi
∂ Hi ςi

∂Hi pq
Hi pq = WTXi pq Hi pq

Then we can get the update equations as follows:

Wpq = Wpq
∑i = 1

K XiHi
T

pq + 4γWpq

∑i = 1
K WHiHi

T
pq + 4γ WWTW pq

(11)
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Hi pq = Hi pq
WTXi pq

WTWHi + λi
∂ Hi ςi

∂Hi pq
(12)

where

∂ Hi ςi
∂Hi pq

=
ςJ

i Hi pq

∑α ∈ ςJ
i Hi pα

2 (13)

The iteration termination condition for GJNMFO is ∣ Lk+1 − Lk ∣/∣Lk+1 ∣ ≤ τ , where τ is 

a predefined tolerance error, we generally set τ = 10−6. Lk+1 and Lk are the (k + 1) − th 

and k − th reconstruction errors, respectively. The k-th reconstruction error Lk is defined as 

follows:

Lk = ∑i = 1
3 Xi − W(k)Hik F / Xi F

Where W(k) and Hi
(k) represent W and Hi obtained at the k-th iteration, respectively. The 

pseudocode of GJNMFO algorithm is shown in Algorithm 1.

As GJNMFO projects multi-model data into a common orthogonal space W, we use each 

basis component in W as the ‘building block’ to explore the correlation of different datasets. 

In original NMF, the maximum value of each column in Hi is usually used to define 

variable’s membership[23]. In this way, each variable can belong to one and only one 

module. However, some variable may not be active in any module or may be active in 

multiple modules with multiple functions [16]. Based on this problem, we calculate the 

z-score of each element in each row of H1, H2, H3 by the following formula.

zuv = xuv − μu
δu

(14)

where μu and σu represent the mean and variance of the u-th row in Hi, respectively. The 

Q-th basis vector wQ is only related to the Q-th row of Hi (i=1, 2, …, K, Q=1, 2, …, r). 

We select element zuv> T to form index set of features SQ = s1
Q, s2

Q, ⋯, sK
Q , where si

Q is the 

sub-index set of feature selected from the Q-th row in Hi and T is a predefined threshold. 

Each variable set SQ can be regarded as a module (or building block).
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3 Experiments and Results

The purpose of GJNMFO algorithm is to explore the biomarkers of schizophrenia, i.e. to 

identify risk genes, epigenetic factors and abnormal brain functional regions. In this paper, 

we use X1, X2, and X3 to represent SNP, fMRI, and DNA methylation datasets, respectively. 

We use GJNMFO to decompose X1, X2, and X3 to obtain r (where r is the numbers of 

components) modules. We adopt permutation test to evaluate which modules are significant.

3.1 Significance Estimation

For the Q-th module SQ = s1
Q, s2

Q, s3
Q , assume that AQ = a1, a2, ⋯, al1 , BQ = b1, b2, ⋯, bl2

and CQ = c1, c2, ⋯, cl3  where ag bt ce are column vectors selected from X1, X2, and X3 

according to s1
Q, s2

Q and s3
Q, respectively. Based on the above assumption, the mean of 

correlations among the three types of datasets in a module can be expressed as follows:

ρ* = 1
3

1
l1l2 ∑

g = 1

l1
∑
t = 1

l2
ρ ag, bt

2 + 1
l1l3 ∑

g = 1

l1
∑

e = 1

l3
ρ ag, ce

2

+ 1
l2l3 ∑

t = 1

l2
∑

e = 1

l3
ρ bt, ce

2
(15)

For a given matrix CQ, we randomly change the order of the row vectors of the matrices AQ 

and BQ in Q-th module, and repeat this process Δ times. For each permutation, ρ* is used 

as the null hypothesis of mean correlation, and ρθ* is the new mean correlation coefficient 
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calculated by Eq. (15) after the row of permutation matrix AQ and BQ. The significance of 

the test statistic can be estimated by

P‐value  = θ ∣ ρθ* ≥ ρ*, θ = 1, 2, ⋯, Δ /Δ (16)

Where |·| denotes the number of times ρθ* ≥ ρ*. If the P-value is less than 0.05, we consider 

this module is significant.

3.2 Parameter Selection

In GJNMFO, we tune five parameters r, γ, λ1, λ2 and λ3. Since determining r is still 

a challenging problem (if r is too small may lead to a large tolerance error and hinder 

the extraction of hidden skeletons in data. if r is too large, the purpose of low-rank 

decomposition of matrix cannot be achieved, which is also not conducive to mining the 

hidden skeleton in data), we generally set r≈0.1* min(m, n1, n2, n3). γ is used to control 

the orthogonality of the column vectors in the basis matrix W. If the value of γ is too large, 

the basis vectors are too sparse, so that the tolerance error of the objective function Eq. (3) 

is large. If the value of γ is too small, the correlation between the basis vectors cannot be 

reduced. We selected a variable γ based on the number of iterations. It can be defined as 

follows:

γk = γ0
1 − ξ
1 − ξk (17)

where k is the number of iterations and γ0 = 0.1. A smaller ξ causes faster changes 

of γk and vice versa. The value range of ξ is 0 ≤ ξ < 1. According to experience, we 

usually make ξ = 0.1. λ1, λ2 and λ3 are used to constrain ςi in the coefficient matrix 

Hi (i=1, 2, 3) respectively. According to Ref. [13], the value range of λ1, λ2 and λ3 is 

0.1 × 1
2n ∣ n = 1, 2, ⋯, 10 . We use the grid search method to find the optimal value of the 

objective function Eq. (3). Finally, when | Lk+1 − Lk |/| Lk+1 | ≤ τ and the reconstruction error 

is the smallest, the corresponding λ1, λ2 and λ3 are the optimal parameters of the model.

3.3 Simulations

In order to test the effectiveness of GJNMFO algorithm, we construct four sets of simulated 

datasets and then compare the performance of JNMF, GSJNMF and GJNMFO. Finally, we 

analyze the SNP, fMRI and DNA methylation datasets to identify risk genetic variables, 

epigenetic factors and abnormal brain ROIs.

3.3.1 Construction the Simulated Data—Owing to the group number and the feature 

number in each group may not equal, so we generate 4 cases of simulation datasets based 

on the different group structure information. In each case, there are 3 matrices Xi (i=1, 2, 3) 

consisting of several disjoint groups. The details of the number of groups and features in 4 

cases are shown in Table I.

To imitate group structure information, features of the same group are generated by the same 

seed vector. Assuming that a group contains n features, it can be defined as follows:
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α[n] = βi ∣ βi = α + lηi, i = 1, 2, ⋯n (18)

where α ∈ ℝm is a seed vector, and it is generated from a standard normal distribution. 

ηi ∈ ℝm is known as Gaussian noise. ℓ denotes a variable that represents the noise level. 

According to Eq. (18), we construct the simulated data of the four cases. The details are 

shown in table II.

The numbers (i.e. 1~20, 41~60, 1~15 etc.) in table II indicate the column index of the 

feature in Xi. In each case, there are two correlated modules in the three data matrices. 

For example, in module1 of case1, 1~20 features of X1, 41~60 features of X2, and 81~100 

features of X3 are generated by the same seed vector. In simulated data, the row of Xi 

(i=1,2,3) in each case represents a sample, the column of Xi represents a feature. The sample 

number m of Xi is equal in all cases, and in this study, m = 40.

To ensure that the Xi (i=1, 2, 3) satisfies the non-negative constraint, we pre-process the 

datasets in the following four steps. Firstly, we use the z-score method to standardize each 

column of data, so that the mean value of each column is 0 and the variance is 1. Secondly, 

we use F(x)=x-min(x) to make each column non-negative, where x is a column vector. 

Thirdly, we use the L2-norm to the unit each column vector of Xi. Fourthly, we scale all 

the Xi (i=1, 2, 3) matrices so that their Frobenius norms are equal. Through this step Xi 

(i=1, 2, 3) have the same value level. It should be noted that the above four steps are linear 

transformations. Next, we use the above simulation data to verify the performance of JNMF, 

GSJNMF and GJNMFO.

3.3.2 Analysis of Simulation Result—In our simulation data, there are two correlated 

modules in each case. Since the basis matrix W has a total of 5 column vectors, there are 

a total of 5 modules. We calculate the z-score (Eq.14) in each module and then select two 

modules which are the closest to the ground truth as the experimental result. Furthermore, in 

order to compare the performance of GJNMFO, GSJNMF and JNMF algorithms at different 

noise levels, we let ℓ=0.5, 1, 1.5 to construct the simulated data, respectively. Fig. 3 shows 

the z-score of features obtained by GJNMFO, GSJNMF and JNMF three algorithms in 

case1.

In Fig. 3, Ground truth represents the real z-score of the features in case1, and the color of 

the line represents the datasets Hi (i=1, 2, 3), where green, red and blue color represent H1, 

H2 and H3 correspondingly.

From Fig. 3(a) we can see, the z-score of GJNMFO in module 1 and module 2 are very close 

to ground truth and the line are very flat; The z-score of GSJNMF in module 1 and module 2 

are close to the ground truth, but the line becomes fluctuant. Even though JNMF can identify 

most of the significant features, it unfortunately mixes some unrelated features in module 1 

and module 2, making the line becomes more fluctuant.

When the noise level is ℓ = 1 (As it shows in Fig.3(b)), although both GJNMFO and 

GSJNMF can identify the significant features in module 1 and module 2, GJNMFO line 
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is flat in two modules, and GSJNMF’s line becomes fluctuant due to the incorporation of 

unrelated features in module 2. JNMF has not recognized the significant features in module 

2.

When noise level is ℓ = 1.5 (As it shows in Fig.3(c)), GJNMFO can accurately identify the 

meaningful features in module 1 and module 2, and the line is still flat. GSJNMF’s module 

1 is not flat because some unimportant features are selected. JNMF has not recognized the 

significant features whether it is module 1 or module 2.

We present the simulation results for case2, case3, and case4 in Appendix A. By comparing 

the simulation results in the four cases, we can conclude that GJNMFO has better anti-noise 

performance compared with the state-of-the-art algorithm GSJNMF and JNMF when the 

level of noise is high.

To analyze the reasons for the performance degradation of GJNMFO, GSJNMF, and JNMF 

when the noise level increases, we draw the correlation between any two columns in the 

basis matrix of the three algorithms at different noise levels. The results are shown in Fig. 4.

As can be seen from Fig. 4, with the increase of noise level, the correlation between the 

basis vectors of GJNMFO is always low, while the correlation between the basis vectors 

of GJNMFO and JNMF increases with the increase of noise level. When the correlation 

between basis vectors in GSJNMF and JNMF increases, some unrelated features are mixed 

and the ability to identify significant features is lost. For example, unrelated features are 

mixed in JNMF-module 2 in Fig. 3(a). Since too many unrelated features are mixed, some 

meaningful feature in GSJNMF-module 1 of Fig. 3(c) can’t to be identified. However, 

GJNMFO algorithm overcomes above problem by imposing orthogonal constraints to the 

basis matrix, which makes GJNMFO algorithm has good anti-noise performance.

In order to further discuss the effect of introducing orthogonal constraints on the basis 

matrix, we have generated a new set of simulated data X1 ∈ ℝm × n1, X2 ∈ ℝm × n2, and 

X3 ∈ ℝm × n3. Where m represents sample size, n1, n2 and n3 represent features size, and 

we set m = 80, n1 = 100, n2 = 120 and n3 = 140 in this paper. Specifically, the generation 

procedure of X1, X2 and X3 are similar to that in Ref. [10] [24] with the following four 

steps: 1) we generate vectors u1, u2 and u3 with lengths of 100, 120, and 140, respectively. 

Let u1 be a vector with 1st~10th elements as 1, 51st~60th elements as 2, 71st~90th elements 

as 2, and other elements as 0. We use the group information in u1 as a priori, i.e. ς = 

{{1, ⋯ 10}, {11, ⋯, 50}, {51, ⋯, 60}, {61, ⋯, 70}, {71, ⋯, 90}, {91, ⋯, 100}}. Let 

u2 be a vector with 1st~20th elements as 1, 31st~40th elements as 2, 81st~90th elements 

as 2, and other elements as 0. The group information of u2 is ς = {{1, ⋯, 20}, {21, ⋯, 

30}, {31, ⋯, 40}, {41, ⋯, 80}, {81, ⋯, 90}, {91, ⋯, 120}}. Let u3 be a vector with 

1st~30th elements as 2, 61st~80th elements as 1, 111st~130th elements as 2, and other 

elements as 0. The group information of u3 is ς = {{1, ⋯, 30}, {31, ⋯, 60}, {61, ⋯, 80}, 

{81, ⋯, 110}, {111, ⋯, 130}, {131, ⋯, 140}}. 2) We randomly generate a latent vector 

z of length 80 from N (0, I80×80) and normalize it to unit L2-norm. 3） We generate X1 

with each sample xi N ziu1, ΣX1  where ΣX1 jk = exp− u1 j − u1 k , X2 with each sample 
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xi N ziu2, ΣX2  where ΣX2 jk = exp− u2 j − u2 k , and X3 with each sample xi N ziu3, ΣX3

where ΣX3 jk = exp− u3 j − u3 k . 4) We use the linear transformation method mentioned in 

section 3.3.1 to make X1, X2 and X3 non-negative.

We apply GSJNMF and GJNMFO to X1, X2 and X3 respectively, and their experimental 

results are shown in Fig. 5. (a) represents the ground truth of u1, u2 and u3, where green 

represents u1, red represents u2, and blue represents u3, (b) represents estimated u1, u2 

and u3 by GSJNMF(where u1, u2 and u3 correspond to a row vector in H1, H2 and H3 

respectively), and (c) represents estimated u1, u2 and u3 by GJNMFO. We can see from Fig. 

5, u1, u2 and u3 by GJNMFO are closer to the ground truth of u1, u2 and u3 than those by 

GSJNMF, which shows that introducing orthogonal constraints on the basis matrix improves 

the accuracy on features selection.

We use the Pearson correlation coefficient to quantify the similarity between true ui and 

estimated ui by GSJNMF and GJNMFO (i = 1,2,3). As shown in Table III, the similarities 

between true ui and estimated ui by GSJNMF are 0.5713, 0.9073 and 0.7712, respectively. 

The similarities between true ui and estimated ui by GJNMFO are 0.9812, 0.9745 and 

0.9370, respectively. From Table III, we can conclude that the performance of GJNMFO 

on similarity to the ground truth is better than that of GSJNMF. Furthermore, we use heat 

map drawing the correlation between any two columns in the basis matrix of GJNMFO and 

GSJNMF. As shown in Appendix B, the color of the heat map corresponding to GJNMFO 

is significantly cooler than GSJNMF, which shows that GJNMFO gets a higher incoherence 

between basis vectors. According to Ref. [25], high incoherence between basis vectors can 

guarantee that basis vectors are as discriminative as possible, which is the fundamental 

reason that the performance of GJNMFO is better than that of GSJNMF.

In order to make the dimension of simulated data closer to real one, we construct a 

new set of simulated data which dimension is 10 times the previous, i.e. X1 ∈ ℝ80 × 1000, 

X2 ∈ ℝ80 × 1200, and X3 ∈ ℝ80 × 1400. The experimental results of GJNMFO and GSJNMF 

on this simulation data are illustrated in Appendix C, shown that GJNMFO is superior to 

GSJNMF even when the data is in a high dimension. Next, we use GJNMFO algorithm to 

analyze the risk genes, epigenetic factors and the abnormal brain ROIs of SZ.

3.4 Application on Schizophrenia Dataset

3.4.1 Real Data Preparation and Preprocessing—Schizophrenia is a complex 

mental disease in which people often characterized by brain abnormalities, genetic 

variations, and environmental factors[25]. It is very important to identify how genetics and 

environmental factors interact and affect brain function and cognition[26].

The SNP, DNA methylation and fMRI datasets used in this paper were collected by the 

Mind Clinical Imaging Consortium (MCIC) from 183 subjects, including 79 SZ patients 

(age: 34±11, 20 females) and 104 healthy controls (age: 32±11, 38 females). The fMRI 

data was collected while subjects were performing sensory motion task. Then, the data was 

pre-processed using SPM12 software and was realigned spatially normalized and resliced 
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to 3 × 3 × 3 mm. It was smoothed with a 10 × 10 × 10 mm3 Gaussian kernel and 

analyzed by multiple regression considering the stimulus and their temporal derivatives plus 

an intercept term as repressors [27]. After these steps, the dimension of fMRI data is the 

53*63*46. Then we select 41236 voxels from 116 brain regions according to the AAL brain 

atlas. The SNPs data was obtained from each subject’s blood sample. Genotyping for all 

participants was performed at the Mind Research Network, covering 1140419 SNP loci. 

Bead Studio was used to make the final genotype calls. PLINK software package (http://

pngu.mgh.harvard.edu/~purcell/plink) was used to perform a series of standard quality 

control procedures, resulting in the final dataset spanning 777,635 SNP loci [9]. The DNA 

methylation data was obtained from the blood samples of the subjects, which assessed 

by the Illumina Infinium Methylation 27 k Assay. 27481 methylation CpG sites were 

selected after quality control[28], and 9273 methylation sites were further selected after 

removing sites with variance less than 1 × 10−4. Furthermore, we use the t-test to find 

biomarkers that are only associated with SZ, and only retain variables with P-value < 0.05. 

We obtain X1 ∈ ℝ183 × 27041 SNPs loci, X2 ∈ ℝ183 × 2918 fMRI voxels and X3 ∈ ℝ183 × 1845

DNA methylation CpG sites, respectively. Moreover, as shown in Fig. 6, we group SNPs 

loci, DNA methylation CpG sites, and fMRI voxels based on genes and ROIs (e.g., SNPs 

loci belong to the same gene, fMRI voxels belong to same ROI, DNA methylation CpG sites 

belong to the same gene). Then SNP, fMRI and DNA methylation datasets are divided into 

3412, 72 and 1845 groups, respectively.

3.4.2 Experimental Results on Real Data and Discussion—We apply GJNMFO 

algorithm to SNP, fMRI and DNA methylation datasets. In our experiment, the number 

of basis vector is set to 20 according to previous work [13]. We randomly initialize a 

set of non-negative W and Hi (i=1, 2, 3), and use the grid search method to determine 

the parameters of λ1, λ2 and λ3 within the range described above. In this way, a total 

of 1000 sets of parameters need to be brought into the model for calculation. Fig. 7 is 

the reconstruction error obtained by sequentially substituting 1000 sets of regularization 

parameters into algorithm 1. We use the set of regularization parameters corresponding to 

the minimum reconstruction error for further analysis.

In Fig. 7, each point on the horizontal axis corresponds to a set of regularization parameters, 

and the vertical axis represents the reconstruction error obtained under the set of parameters. 

As can be seen from Fig. 7, when taking the 93rd group of regularization parameters, the 

reconstruction error is the smallest (i.e. the position of the red dot in Fig. 7). Parameters in 

group 93 are λ1=0.05, λ2=9.765×10−5 and λ3=0.0125.

We use this set of regularization parameters as the optimal one. To prevent the objective 

function Eq. (3) from falling into a local minimum, we repeat the whole procedure 100 

times with different initialization values. When the objective function takes the minimum 

value, the corresponding W, H1, H2 and H3 are used for further analysis. We have drawn the 

values of the objective function under 100 sets of initialization value in Fig. 8.

We can see from the Fig. 8 that the 49-th initialization value corresponds to the smallest 

objective function value (i.e. the position of the red dot in Fig. 8), so we use W, H1, H2 and 

H3 obtained here to extract risk genes, epigenetic factors and abnormal ROIs. We calculate 
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the z-score of H1, H2 and H3, and set T=3. If the element with z-score is less than T, 

then it is 0. In this way, we get a set of variables of each module, and then we use the 

above-mentioned significance test method (Eq. 16) to calculate the P-value of each module.

The modules with smallest P-value are further analyzed in this study. Table IV lists the 

genes identified by GJNMFO algorithm from the SNPs loci.

As can be seen from Table IV, we identify a total of 54 risk genes from the SNPs data 

in the 19-th module. Since the protein encoded by CNTN2 has the function of adhering 

cells to help maintain the potassium ion channel in the correct position on the nerve fibers 

which plays an important role in the process of generating nerve impulses. Therefore, its 

mutation causes the nerve cells to behave abnormally. INSIG2 is associated with metabolic 

syndrome in patients with schizophrenia[29]. Lmo4 gene plays an important role in the 

development of the auditory nervous system[30]. OLFM3 is associated with a disorder of 

the metabolic pathway leading to low expression of nerve-specific genes, which causes 

neuronal weakness[31]. The abnormalities of PLA2G4A may be involved in a subgroup of 

the Schizophrenia. MaIl et al.[32] used genome-wide association studies to demonstrate that 

multiple sites in the PLXNA2 gene are significantly associated with SZ.

In the 13-th module, we identify a total of 36 risk genes from the SNPs data. KCNK9 is 

a key factor in the excitability of cortical neurons, which may cause defects in neuronal 

migration. NGF is associated with the onset and clinical symptoms of schizophrenia[33]. 

The NTNG1 gene is located in the lpl3.3 region of chromosome 1, and it is in a linked 

region with the onset of schizophrenia. In the family studies and case-control studies of the 

Japanese population, multiple SNPs loci of this gene have been found to be associated with 

schizophrenia[34]. PDE4B is an important enzyme in the nervous system, and recent studies 

have found it to play a decisive role in DISC1 mutation-induced schizophrenia[35].

To further illustrate the biological significance of the risk genes which list in table IV, we 

test genes for over-representation analysis using ConsensusPathDB[11, 36]. Table V lists the 

gene ontology terms that obtain by gene ontology categories with P-value less than 0.01 in 

biological process.

In table V, ‘neurogenesis’ and ‘neuron differentiation’ are related to the neural activity. 

‘purinergic receptor signaling pathway’ has been confirmed to be related to neuronal 

differentiation, neuroprotection, and brain disorders[37]. G protein-coupled purinergic 

receptor is widely distributed in the nervous system and peripheral tissues, performing 

various physiological functions such as development and regeneration of the nervous 

system, regulating neurons, regulating memory function, regulating transmitter release, etc.

[38]. Through the above analysis, we can conclude that the risk genes selected by GJNMFO 

from SNPs have biological significance. Table VI lists the epigenetic factors identified by 

GJNMFO algorithm from the DNA methylation dataset.

As shown in Table VI, 4 genes related to environmental factors are selected from DNA 

methylation dataset. ‘C10orf26’ also selected by Ref.[13], which is reported as one of the 

target of miR-137 to have genome-wide significant associations with SZ[39]. When mtDNA 

is transcribed to produce RNA, ‘MTERF’ is responsible for determining the location of 

Peng et al. Page 14

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2021 December 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mitochondrial transcription termination factors, Lauritzen et al.[40] demonstrated that point 

mutations in mitochondria may be associated with cognitive impairment of mental disease. 

Therefore, ‘MTERF’ is related to mental disease. Besides, ‘LOC201164’ is considered to be 

related to neural development in Ref.[41]. ‘RAET1L’ is an additional human NKG2D ligand 

which is related to the immune system[42], and clinical studies have shown that the immune 

system and brain function of patients with schizophrenia are abnormal. Table VII lists the 

brain ROIs selected by GJNMFO and adaptive SMCCA respectively.

In table VII, GJNMFO algorithm selects a total of 4 ROIs and adaptive SMCCA selects a 

total of 6 ROIs. 3 ROIs are selected at the same time by GJNMFO and adaptive SMCCA 

algorithm. ‘Hippocampus gyrus’ is important in the consolidation of information from 

short-term memory to long-term memory, and is one of the first brain regions to suffer 

damage in mental disorders, and is also selected by Ref.[26] and Ref.[43]. The ‘occipital 

lobe’ is responsible for processing visual information. Occipital injury can make it difficult 

for schizophrenia patients to interpret complex images, recognize other people’s motives, 

and understand other people’s emotions. The volume of the ‘fusiform gyrus’ in patients with 

first-episode schizophrenia is reduced, and the reduction in the volume of the fusiform gyrus 

causes memory impairment [44]. ‘fusiform gyrus’ is selected by Ref.[13] and Ref.[26]. The 

volume of amygdala in patients with schizophrenia is 6% lower than that of normal subjects, 

and the decrease in amygdala volume is related to the recognition of facial emotions[45]. In 

order to illustrate the specific location of the abnormal brain region in brain surface, we use 

BrainNetViewer to plot the abnormal brain ROIs that selected by GJNMFO as shown in Fig. 

9.

4 Conclusion

The main contributions of this paper can be summarized as follows. Firstly, we propose 

GJNMFO algorithm, which projects the multi-modal datasets of SZ into a new common 

low-dimensional space to identify risk genes, epigenetic factors and abnormal brain ROIs. 

The GJNMFO model integrates the orthogonal and group sparse constraint on the basis 

of the JNMF model. We employ orthogonal constraint to reduce the correlation between 

basis vectors, which helps remove insignificant features in the rows of coefficient matrix. In 

addition, since the imaging genetics datasets have rich group information, we employ group 

sparse constraint into the model as prior knowledge to make the extracted genetic variables 

and imaging variables more reasonable. Secondly, we describe the numerical optimization, 

significance estimation and parameters selection of GJNMFO algorithm. Thirdly, our 

algorithm is validated on simulation data and further applied on real data analysis. 

Simulation results show that our algorithm performs better than state-of-the-art algorithms 

GSJNMF and JNMF. Experimental results on real data indicate that our algorithm can 

identify more significant genes (PLA2G4A, INSIG2, etc.), epigenetic factors (C10orf26, 

MTERF, etc.) and abnormal ROIs (Hippocampus, Occipital_Inf, etc.), which are strong 

correlation with SZ and have been reported in many previous literatures. In conclusion, 

both simulation and real MCIC experiment results show that GJNMFO algorithm has 

outperformance in multi-modal imaging genetics data analysis.
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Fig. 1. 
JNMF decomposes the multimodal imaging genetics data into a new common orthogonal 

space. w1, w2, and w3 represent basis vectors. Triangles, squares and circles represent data 

of different modalities. In Fig.1a, the original data X1, X2, ⋯, XK are projected into the 

respective basis vectors. In Fig.1b, the multimodal data XK is projected into the same set of 

basis vectors.
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Fig. 2. 
Schematic illustrating our method. Our method projects the multi-modal imaging genetics 

data into a common matrix and different coefficient matrices. The features of the original 

data XK can be divided into dK groups, which are ς1
K, ς2

K, ⋯, ςdK
K . The yellow and white in 

H1, H2, …, Hk represent non-zero and zero respectively.
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Fig. 3. 
Z-score of features obtained by GJNMFO, GSJNMF and JNMF three algorithms in case1. 

(a), (b), and (c) are z-score of features obtained by three algorithms at a noise level of 0.5, 1, 

and 1.5, respectively. Ground truth represents the real z-score of the features.
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Fig. 4. 
The correlations between any two columns in the basis matrix of GJNMFO, GSJNMF and 

JNMF at different noise levels in case1.
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Fig. 5. 
(a) represents the ground truth of u1, u2 and u3, where green represents u1, red represents 

u2, and blue represents u3. (b) Estimated u1, u2 and u3 by GSJNMF. (c) Estimated u1, u2 

and u3 by GJNMFO.
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Fig. 6. 
SNP loci, DNA methylation CpG sites and fMRI voxels can group by gene and ROI 

respectively.
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Fig. 7. 
Reconstruction errors obtained under different combinations λ1, λ2 and λ3.
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Fig. 8. 
The value of objective function with different initialization value
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Fig. 9. 
Abnormal ROIs selected by GJNMFO from fMRI data.
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TABLE I

The Number of Groups and Features in Four Cases

case 1 case 2 case3 case4

Number of groups in Xi 1 1 0 0

Number of features in each group 1 0 1 0

Statements that ‘1’ means equal and ‘0’ mean unequal. For example, in case 2, ‘1’ indicates that the number of groups among X1, X2, and X3 is 

equal, and ‘0’ indicates that the features number of each group in Xi (i=1, 2, 3) is not equal.
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TABLE II

The Column Index Set of Correlated Modules in Each Case

Dataset

column index set

casel case2 case3 case4

module1 module2 module1 module2 module1 module2 module1 module2

X1 1~20 41~60 1~15 21~29 1~20 41~60 1~100 101~230

X2 41~60 1~20 31~41 1~11 21~40 1~20 281~390 1~80

X3 81~100 61~80 50~55 7~15 81~100 121~140 410~590 171~290
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TABLE III

The correlation coefficient between estimated ui and true ui (i = 1,2,3).

methods The correlation coefficient

correlation between u1 and u1 correlation between u2 and u2 correlation between u3 and u3

GSJNMF 0.5713 0.9073 0.7712

GJNMFO 0.9821 0.9745 0.9370
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TABLE IV

The List of the Gene Select from SNPs Data

Module 
Index Gene ID (SNP)

19

CNTN2 CDH4 ABCA4 AGBL4 ALDH9A1 C1orf161 C1orf163 CNTN2 DISC1 DNAH14 DNAJC11 DPYD ELAVL4 ELTD1 
ESRRG FAM176A FAM46C FHL2 INSIG2FLJ35409 GPR177 HHAT KCNA3 KCND3 LMO4 KIRREL LOC100288925 
LOC100289242 PLA2G4ALOC284661 LOC727944 LOC730134 LRRC38 OLFM3MYADML MYCN NPHP1 OTOF PADI4 
PBX1 PLXNA2 PKP1 PRKCE QPCT RGS13 RNF144A RPS6KC1 RSBN1 SPATA1 ST6GALNAC3 TRIB2 TYW3 VAV3 
VIT

13
KCNK9 ADORA3 AIM2 AJAP1 C1orf168 C2orf3NTNG1 CCDC85A CCDC88A CDC73 CYP2J2 FAM71A NGFFEZ2EZ2 
FMO4 FMO9P GREM2 IL1R2 KIF26B LOC100129149 LOC126987 LOC644265 LOC728597 LOC730100 LRP8 LUZP1 
MGST3 NT5C1B OLFML2B PDE4B PGBD5 RHOU SLC44A5 SRBD1 USP24 VPS13D
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TABLE V

The list of the gene ontology terms

term name p-value

neurogenesis 0.00598

neuron differentiation 0.00477

purinergic receptor signaling pathway 0.00554

G protein-coupled purinergic receptor signaling pathway 0.0032

icosanoid metabolic process 0.00628
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TABLE VI

The List of the Gene Selected from DNA Methylation Data

Module Index Gene ID (DNA methylation)

 19 LOC201164 RAET1L

 13 C1orf26 MTERF
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TABLE VII

Selected ROIs (fMRI) and Corresponding Areas

GJNMFO Adaptive SMCCA

ROI name L/R volumn(cm3) ROI name L/R volumn(cm3)

Hippocampus 1.59/* Hippocampus 1.65/*

Amygdala 1.3/* Frontal_Inf_Tri 1.03/*

Occipital_Inf */1.22 Occipital_Inf */1.22

Fusiform_R */0.678 Fusiform 1.86/1.00

Temporal_Mid */1.30

Temporal_Inf 2.11/*
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