Skip to main content
. 2020 Dec;10(6):1954–1978. doi: 10.21037/cdt-20-414

Table 5. Actual diagnostic performance of computational FFRCTA when compared with invasive FFR in detecting physiologically significant lesions that need revascularization (cut-off ≤0.80).

Studies Sample size [patients, vessels] Pearson correlation coefficient Agreement (Bias ± SD: virtual index vs. FFR) Overall diagnostic accuracy AUC
DISCOVER-FLOW* [2011] (126) 103 [159] 0.68 0.02±0.116 84% (per vessel) 0.90
DeFACTO* [2012] (127) 252 [407] 0.63 0.06 73% (per vessel) 0.81
HeartFlow NXT* [2014] (128) 251 [484] 0.82 0.02±0.074 86% (per vessel) 0.93
Kim et al. [2014] (131) 44 0.60 0.006 77%
Renker et al. [2014] (132) 53 0.66 0.92
Coenen et al. [2015] (133) 106 [189] 0.59 −0.04±0.13 74.6% 0.83
Kruk et al. [2016] (123) 90 [96] 0.67 −0.01±0.095 74% (per vessel) 0.83
Ko et al. [2017] (124) 42 [78] 0.57 −0.065±0.137 83.9% (per vessel) 0.88

*, multicenter studies. FFR, fractional flow reserve; FFRCTA, fractional flow reserve form computed tomography angiography; AUC, area under the ROC curve; SD, standard deviation.