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ABSTRACT: Diabetes mellitus (DM) is a chronic metabolic disease, the third
killer of mankind. The finding of potent drugs against diabetes remains
challenging. In the present study, coumarin derivatives with known biological
activity against diabetic protein have been used to predict functional groups’
positions on coumarin derivatives. α-Glucosidase is a brush border membrane-
bound lysosomal enzyme from the hydrolase enzyme family. It plays an important
role in the metabolism of glycoproteins. Inhibitors of lysosomal α-glucosidase can
reduce postprandial hyperglycemia. Due to this, lysosomal α-glucosidase is a good
therapeutic target for drugs. A total of 116 coumarin derivatives with IC50 values
against lysosomal α-glucosidase were selected for a CADD (computer-aided drug
design) approach to identify more potent drugs. Pharmacophore modeling and
atom-based 3-QSAR of 116 active compounds against lysosomal α-glucosidase
were performed and identified positions and types of groups to increase activity.
We performed molecular docking of 116 coumarin derivatives against the
lysosomal α-glucosidase enzyme, and three compounds (isorutarine, 10_, and 36) resulted in a docking score of −7.64, −7.12, and
−6.86 kcal/mol. The molecular dynamics simulation of the above three molecules and protein complex performed for 100 ns
supported the interaction stability of isorutarine, 10_, and 36 with the lysosomal binding site α-glucosidase.

■ HIGHLIGHTS

• Coumarin derivatives as promising antidiabetic drugs
against lysosomal α-glucosidase

• 116 biologically active coumarin derivatives used to
generate a pharmacophore model

• AANRR, ANRR, AAANR, and AANR hypotheses
generated with a best survival score of 4.79

• Highly significant IC50 QSAR model of coumarin
derivatives with an R2 of 0.94

• Promising drug-like derivatives against lysosomal α-
glucosidase with binding energy exceeding −7.50 kcal/
mol

• Highly stable lysosomal α-glucosidase inhibitors with an
average RMSD below 0.3 nm over 100 ns

■ INTRODUCTION
Diabetes mellitus (DM) is characterized by elevated blood
glucose levels known as hyperglycemia, a chronic metabolic
illness caused by low insulin secretion or insulin resistance.1 An
International Diabetes Federation (IDF) estimate indicated
that 151 million adults lived with diabetes in 2000 with an
estimate of 438 million by 2025, although 25 million with 463
million diabetic patients had already surpassed it.2 In diabetes,
slow reduction in the blood glucose level and control of

subsequent complications in tissues independent of insulin
cause serious issues such as the lens glomerulus, nerves,
vascular cells, and retinal disorders.3,4 Lysosomal α-glucosi-
dase, an enzyme from the hydrolase enzyme family (EC
3.2.1.20), plays an important role in the metabolic process such
as cellular glycosylation of proteins and food storage and
utilization and breakdown of α-(1−4)-glycosidic linkage of
sugar (glycoprotein and carbohydrates).5−9 Lysosomal α-
glucosidase is a ubiquitous brush border membrane-bound
enzyme majorly present in the intestine.8−10 α-Glucosidase
inhibitors (AGIs) can suppress postprandial hyperglycemia.
Thus, lysosomal α-glucosidase is an effective curative target for
the treatment of diabetes, cancer, obesity, human immunode-
ficiency virus (HIV/AIDS), and other degenerative dis-
eases.11−16 There are several inhibitors of lysosomal α-
glucosidase, such as acarbose, nojirimycin, voglibose, N-
butyldeoxy nojirimycin, and miglitol, clinically used for the
treatment of diabetes mellitus/target for type-II diabetes.16−22
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Acarbose, miglitol, and voglibose, inhibitors of lysosomal α-
glucosidase, have a similar structure to saccharides (sugar
moieties); thus, the carbohydrate site of lysosomal α-
glucosidase binds with these inhibitors.23−25 IFD and AACE
(American Association of Clinical Endocrinologists) recom-
mended AGIs as first-line antidiabetic drugs.26 However, side
effects like liver disorders such as lactic acidosis, abdominal and
flatulence discomfort, and diarrhea are common for prescribed
antidiabetic drugs in most cases. These side effects of the
present drug have prompted scientists to investigate and design
new inhibitors of lysosomal α-glucosidase with fewer side
effects.27,28 Recently, heterocyclic compounds like triazole,
quinazoline, luteolin, coumarin, and their derivatives have been
documented as AGIs.29−31

Oxygen-containing molecules such as coumarin (benzopyr-
an-2-one) derivatives are well known to possess various
medicinal activities such as antiacetylcholinesterase, anticancer,
anti-HIV activity and HIV-1 protease inhibition, antiviral,
lipoxygenase inhibition, and anticlotting activities.32−37 Natu-
rally and synthetically derived coumarin derivatives have been
experimentally proven as antidiabetic agents.38−40 Moreover,
coumarin hybrid/derivatives molecules have widely been
found to possess various pharmacological properties including
lysosomal α-glucosidase inhibition. In the literature study, we
found coumarin derivatives as potent inhibitors of lysosomal α-
glucosidase.39,41,42 It is known that a high dose (7000 mg
daily) of coumarins may cause toxicity like carcinogenicity and
hepatotoxicity.43 In view of this, incorporating new or more
pharmacophore properties in the existing molecules of
coumarin derivatives may help create new structural entities
that increase the activity with a minimum side effect.
Investigation and identification of drugs using wet-lab

methods are time-consuming and expensive work. Thus, the
prediction of inhibitors against the new target using computa-
tional methods based on theoretical models is important.
Several computation methods have also been used to develop
and design AGIs such as docking, QSAR (dimensional
quantitative structure−activity relationship), pharmacophore
modeling,44,45 etc.
In the present study, we have performed a computational

analysis of coumarin derivatives as AGIs (compounds are taken
from the literature). Lysosomal α-glucosidase crystal structure
enzymes are used in this study, and the study is performed by
evaluating molecular docking, the pharmacophore analysis, and
functional group properties of compounds involved in the
activity. The pharmacophore properties/features are used for
pharmacophore modeling and 3D-QSAR (three-dimensional
quantitative structure−activity relationship), which will in-
crease the activity after incorporating in the structures.

■ RESULT AND DISCUSSION
Determination of the Pharmacophore Model. Ligand-

based molecular drug design depends on the compassion of
known drugs with the biological activity against the target of
interest. A molecule is a required minimum basic characteristic
of the structure to bind to the target, and a pharmacophore
model can be developed using these molecules.46 The
coumarin derivatives tested as inhibitors for lysosomal α-
glucosidase39,47−52 were used in the present study to develop a
pharmacophore model and find out basic features of chemicals
for the inhibitory activity effect. Approaches based on ligands
consider pharmacophoric points to check analogy, 3D or 2D
shape, and chemical features. About four to six variants of

molecules were used to generate pharmacophore models. With
these filtering criteria, 32 molecules were matched out of the
33 active compounds. A, H, R, N, and D pharmacophoric
features were selected for creating sites. Pharmacophore
models with AANRR, ANRR, AAANR, and AANR hypotheses
were generated for all dataset molecules. Then all pharmaco-
phoric molecules were finally scored by scoring function
analysis. The scoring method comprises the alignment of
volume overlap, selectivity score, number of ligands matched,
vectors, and site scores. The selection of the pharmacophore
hypothesis model was based on the variant with a survival
score of 4.789, volume score of 0.517, and selectivity score of
2.291. The best model (i.e., the AANRR hypothesis model)
has two hydrogen bond acceptors (A), one atom with a
negative charge (N), and two aromatic rings (R) and was
related to the 5-point hypothesis. Figure 1 presents the
(AANRR) pharmacophore hypothesis with alignment, and this
hypothesis was used for the generation of the 3D-QSAR model
of lysosomal α-glucosidase.

The generated alignment and distances of the best
pharmacophore model for active molecules and inactive
molecules are shown in Figure 1. Distance between features
may help in the activity by substitution of appropriate groups.

Building and Validation of Atom-Based 3D-QSAR.
Atom-based 3D-QSAR studies for coumarin derivatives were
performed using the Phase module of Maestro to figure out the
effect of dimensional adjustment of structural features on
lysosomal α-glucosidase inhibition. For the lysosomal α-
glucosidase model, the molecules with the experimental dataset
were randomly divided into a test set of 33 molecules and a
training set of 78 molecules. A total of 9 PLS factors were
taken to perform statistical data. Table 2 shows the statistical
details of the atom-based 3D QSAR model based on the
random selection method of the test set. Predicted activities of
the training and test sets of compounds are similar, indicating
that the hypothetically derived model of coumarin will show
better activity than taken coumarin derivatives. The predictive

Figure 1. Alignment of the best pharmacophore model for active
molecules and inactive molecules. (A) The included feature of the
selected hypothesis: AANRR the hydrogen bond acceptor (sphere
with arrow A1 and A5 with pink color), negative group (red sphere
N9), and aromatic ring (circle R10 and R12). (B) The distances
between various features in the generated pharmacophore models.
(C) The alignment of active and inactive ligands on pharmacophoric
properties.
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Table 1. Pharmacophoric Model of QSAR Building Datasets and Results

title of the ligand
pharm
set

QSAR
Set

num sites
matched

site
score

vector
score

volume
score fitness

experimental
IC50 (μM)

experimental
pIC50 (μM)

predicted activity
pIC50 (μM)

1 active training 5 0.956 0.576 0.591 2.124 8.32 5.08 5.721
4c active training 5 0.956 0.576 0.582 2.115 4.43 5.354 5.747
5a active training 5 0.935 0.577 0.585 2.097 1.47 5.833 5.781
5b active training 5 0.935 0.577 0.576 2.088 3.38 5.471 5.806
9b active training 5 0.954 0.892 0.89 2.736 6.42 5.192 5.889
9c active training 5 0.954 0.892 0.878 2.724 1.71 5.767 5.904
10a active test 5 0.934 0.893 0.866 2.693 4.61 5.336 5.958
10b active training 5 0.934 0.893 0.842 2.67 2.11 5.676 5.941
14a active training 5 0.926 0.792 0.595 2.313 3.55 5.45 5.718
17a active test 5 1 1 1 3 3.87 5.412 5.839
17c active training 5 1 0.881 0.973 2.854 4.17 5.38 5.865
18b active training 5 0.958 0.882 0.952 2.791 9.35 5.029 5.927
10_ active training 5 0.616 0.421 0.376 1.413 0.86 6.066 5.466
11_ active test 5 0.387 0.791 0.436 1.614 2.82 5.55 5.527
6a active training 5 0.145 0.622 0.386 1.153 0.12 6.921 5.866
6e active test 5 0.039 0.85 0.409 1.298 0.59 6.229 6.064
6f active training 5 0.039 0.85 0.409 1.298 0.11 6.959 6.058
6h active test 5 0.273 0.798 0.295 1.366 0.51 6.292 5.415
6k active training 5 0.137 0.623 0.382 1.142 0.12 6.921 5.888
6l active training 5 0.039 0.85 0.406 1.295 0.51 6.292 6.083
6n active test 5 0.039 0.85 0.401 1.29 0.14 6.854 6.075
3f active training 5 0.221 0.763 0.265 1.248 2.53 5.597 5.609
3h active test 5 0.322 0.823 0.382 1.527 9.27 5.033 5.69
3i active test 5 0.219 0.762 0.264 1.244 5.83 5.234 5.6
4 inactive test 4 0.309 0 0.465 0.773 2567 2.591 3.94
5 inactive training 4 −0.022 0 0.415 0.393 280.38 3.552 4.136
6 inactive test 4 0.202 0 0.279 0.481 60.88 4.216 3.953
7 inactive test 3 0.414 0 0.237 0.525 1000 3 3.86
8 inactive training 4 −0.022 0 0.471 0.449 69.6 4.157 4.252
9 inactive training 4 0.309 0 0.515 0.823 118.29 3.927 4.065
10_ inactive training 4 −0.022 0 0.426 0.404 1000 3 4.152
11 inactive training 4 0.309 0 0.48 0.789 16.39 4.785 3.983
13 inactive training 4 0.309 0 0.461 0.77 13.46 4.871 3.956
14 inactive training 4 0.202 0 0.293 0.495 212.72 3.672 3.943
15 inactive training 4 0.309 0 0.465 0.774 29.05 4.537 3.919
18 inactive training 4 0.309 0 0.479 0.788 86.91 4.061 3.953
19 inactive training 4 −0.022 0 0.438 0.416 1000 3 4.157
20 inactive training 4 0.309 0 0.47 0.778 1000 3 4.041
22 inactive training 4 0.202 0 0.304 0.506 1000 3 3.9
23 inactive training 4 0.309 0 0.514 0.823 25.48 4.594 4.041
24 inactive test 4 0.309 0 0.494 0.803 27.42 4.562 4.136
25 inactive training 4 0.309 0 0.51 0.818 11.49 4.94 4.075
26 inactive training 4 0.309 0 0.496 0.805 1000 3 3.94
27 inactive test 4 0.257 0 0.219 0.477 70.26 4.153 3.962
29 inactive training 4 0.551 0 0.248 0.799 29.89 4.524 3.941
30 inactive training 4 0.309 0 0.48 0.789 19.04 4.72 3.949
31 inactive test 4 0.309 0 0.475 0.784 19.08 4.719 3.965
32 inactive training 4 0.309 0 0.48 0.789 1000 3 3.929
35 inactive test 4 0.309 0 0.49 0.799 10.81 4.966 4.149
38 inactive training 4 0.551 0 0.259 0.81 20.23 4.694 3.925
39 inactive test 4 0.551 0 0.259 0.81 13.09 4.883 3.926
40 inactive test 3 0.415 0 0.235 0.523 1000 3 3.842
41 inactive training 4 0.202 0 0.275 0.477 13.43 4.872 4.166
42 inactive training 4 0.551 0 0.254 0.804 39.08 4.408 3.922
44 inactive training 4 0.309 0 0.484 0.793 1000 3 4
45 inactive training 4 −0.022 0 0.442 0.42 1000 3 4.209
46 inactive training 4 0.309 0 0.48 0.789 1000 3 4.013
47 inactive test 4 0.309 0 0.484 0.793 35.71 4.447 3.982
nodakenin inactive test 4 0.097 0 0.163 0.26 250 3.602 3.825
nodakenetin inactive training 4 0.055 0 0.287 0.342 720.29 3.142 3.906
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ability and statistical significance of the QSAR model increase
with the number of PLS factors up to 9. The squared predictive
correlation coefficient (Q2) should be more than 0.60 for a
good model.53 In the selection of the best model, it was found
that a statistically significant regression model of hypothesis
AANRR was supported by values of F of 136.0 and of variance

ratio of P = 6.26 × 10−43, which indicates a high degree of
confidence. Standard deviation (SD) with a lower value of 0.26
and RMSE (root-mean-square error) value of 0.66 indicates
that the dataset taken for the QSAR model generation was
significant to be considered for analysis. An R2 value of 0.94 of
random set selection shows a good pharmacological activity

Table 1. continued

title of the ligand
pharm
set

QSAR
Set

num sites
matched

site
score

vector
score

volume
score fitness

experimental
IC50 (μM)

experimental
pIC50 (μM)

predicted activity
pIC50 (μM)

umbelliferone inactive test 4 0.309 0 0.331 0.639 629.87 3.201 3.855
3’R-O-acetyl-4’S-
tigloylkhellactone

inactive training 4 0.549 0 0.363 0.912 93.39 4.03 4.016

isorutarine inactive training 4 0.551 0 0.301 0.852 250 3.602 3.947
decursidin inactive training 4 0.849 0 0.51 1.359 79.09 4.102 4.096
22’-isopropyl
psoralene

inactive training 4 0.982 0 0.591 1.573 85.82 4.066 4.266

4a inactive training 4 0.982 0 0.62 1.602 11.57 4.937 4.27
9a inactive training 4 1 0 0.973 1.973 22.73 4.643 4.685
13a inactive training 4 0.922 0 0.584 1.505 16.99 4.77 4.207
13b inactive training 4 0.922 0 0.57 1.492 14.44 4.84 4.208
13c inactive test 4 0.922 0 0.557 1.478 17.98 4.745 4.208
17b inactive training 4 0.996 0 0.864 1.86 11.62 4.935 4.66
18a inactive training 4 0.957 0 0.845 1.801 13.65 4.865 4.505
1_ inactive training 4 0.309 0 0.348 0.657 52.7 4.278 3.853
2_ inactive training 4 0.502 0 0.279 0.781 94.25 4.026 4.017
4’ inactive test 4 0.308 0 0.365 0.673 96.1 4.017 3.828
5_ inactive training 4 0.308 0 0.349 0.657 50.53 4.296 3.845
8_ inactive training 3 0.537 0 0.314 0.673 35.3 4.452 4.137
6b inactive training 4 0.473 0 0.186 0.659 100 4 4.055
6j inactive training 4 0.473 0 0.184 0.656 100 4 4.045
6o inactive training 4 0.473 0 0.184 0.657 100 4 4.047
3a inactive test 4 0.364 0 0.393 0.757 12.71 4.896 4.237
3d inactive training 4 0.364 0 0.386 0.75 46.42 4.333 4.23
3e inactive training 4 0.364 0 0.408 0.771 44.76 4.349 4.241
9d active training 5 0.954 0.772 0.865 2.591 3.1 5.509 5.887
6c active training 5 0.039 0.85 0.41 1.299 0.92 6.036 6.054
6d active test 5 0.137 0.623 0.389 1.149 1.62 5.79 5.877
6g active training 5 0.501 0.807 0.311 1.618 0.09 7.046 5.46
6i active test 5 0.039 0.85 0.4 1.289 0.42 6.377 6.051
6m active training 5 0.039 0.85 0.401 1.29 0.13 6.886 6.067
3g active training 5 −0.086 0.608 0.246 0.768 5.64 5.249 5.225
3j active training 5 0.218 0.762 0.265 1.245 5.21 5.283 5.609
12 inactive training 4 0.309 0 0.48 0.788 19.39 4.712 3.97
16 inactive training 4 0.309 0 0.474 0.783 10.16 4.993 3.94
17 inactive training 4 0.202 0 0.273 0.474 11.54 4.938 3.953
21 inactive test 4 −0.022 0 0.411 0.389 1000 3 4.181
33 inactive training 4 0.309 0 0.472 0.781 1000 3 3.976
34 inactive training 4 0.309 0 0.494 0.803 18.8 4.726 4.116
36 inactive training 4 0.551 0 0.242 0.793 247.34 3.607 3.942
43 inactive test 4 0.551 0 0.253 0.804 1000 3 3.924
angeloylkhellactone inactive training 4 0.549 0 0.362 0.911 264.26 3.578 4.011
4-hydroxy Pd-C-III inactive training 4 0.568 0 0.376 0.944 77.3 4.112 4.057
4′-methoxy Pd-C I inactive test 4 0.568 0 0.371 0.94 89.19 4.05 4.055
decursinol inactive training 4 0.849 0 0.426 1.275 65.29 4.185 3.956
umbelliferon 6-
carboxylic acid

inactive test 4 0.748 0 0.365 1.113 172.1 3.764 3.998

4b inactive test 4 0.982 0 0.605 1.588 14.37 4.843 4.268
14b inactive training 4 0.924 0 0.567 1.491 11.83 4.927 4.199
4_ inactive test 4 0.308 0 0.347 0.655 38.85 4.411 3.861
7_ inactive test 4 0.309 0 0.345 0.654 56.2 4.25 3.874
3b inactive training 4 0.364 0 0.394 0.757 34.35 4.464 4.237
3c inactive test 4 0.644 0 0.229 0.873 25.35 4.596 3.956
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Table 2. Statistics for Pharmacophore AANRR

factor SD R2 R2 CV R2 scramble stability F P RMSE Q2 Pearson-r

1 0.6432 0.6217 0.5576 0.2071 0.99 133.1 8.91 × 10−19 0.66 0.6147 0.8008
2 0.5147 0.7608 0.6507 0.317 0.969 127.2 1.41 × 10−25 0.67 0.6133 0.799
3 0.4389 0.8282 0.6886 0.4326 0.937 126.9 3.97 × 10−30 0.66 0.6226 0.8005
4 0.4135 0.8494 0.6953 0.5202 0.924 110 2.92 × 10−31 0.7 0.5734 0.7741
5 0.3702 0.8809 0.6901 0.5946 0.863 113.8 4.21 × 10−34 0.71 0.5641 0.7739
6 0.3429 0.8991 0.6781 0.6536 0.853 112.9 8.94 × 10−36 0.73 0.531 0.7528
7 0.3107 0.9183 0.6533 0.715 0.831 120.4 3.88 × 10−38 0.76 0.501 0.7455
8 0.288 0.9307 0.6423 0.7583 0.808 124.2 1.02 × 10−39 0.78 0.4637 0.7214
9 0.2613 0.9437 0.6347 0.7941 0.765 136 6.26 × 10−42 0.83 0.397 0.6972

Figure 2. Regression plot of experimental vs predicted pIC50 values for the training set (A) and test set (B).

Figure 3. Visual representation of atom-based 3D-QSAR human GAA models. (A) H-bond donor - light blue color indicates a positive coefficient
or increase in activity and light orange shade cubes indicate a negative coefficient or decrease inactivity. (B) Hydrophobic - green shade indicates a
positive coefficient, and purple shade cubes indicate a negative coefficient. (C) Negative ionic - light red cubes indicate a positive coefficient, and
yellow cubes indicate a negative coefficient. (D) Electron-withdrawing - pale red cubes indicate a positive coefficient, and light green cubes indicate
a negative coefficient. (E) Others, bluer shade cubes indicate a positive coefficient, and pink cubes indicate a negative coefficient.
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correlation. Figure 2 reveals the linear plot of actual pIC50
values versus predicted activity for the test set and training set.
Each of the models’ effectiveness was predicted from the
calculated coefficient of correlation for the randomly selected
test set with diverse structures of base (coumarin) compound.
A Q2 value of 0.39 of the test set (squared correlation) also
suggests better predictability of the atom-based 3D-QSAR
model. The Q2 value is a more reliable and robust statistical
parameter than R2 since it is obtained by the randomly divided
external validation of the test set model.
Atom-Based PHASE 3D-QSAR Model Analysis. Sub-

stituent group and atom contribution in the biological activity
whether negatively and or positively could be estimated by the
three-dimensional virtualization characteristics of the atom-
based 3D-QSAR model. Figure 3 reveals the three-dimensional
characteristics of the atom-based QSAR model and models
represented by color cubes, and the coefficient value is coded
by color (Table 3).

Positive coefficient colors indicate an increase in the
biological activity, while the negative coefficient’s color
indicates decreased inactivity. The visualization of coefficient
color helps characterize a decrease and increase in the activity
of the ligand. This visualization might prove which functional
groups were favorable and unfavorable at particular positions
in a compound.
The cubes by color code represent the atom-based 3D-

QSAR model for lysosomal α-glucosidase shown by the
volume of occlusion maps in Figure 3 (H-bond donor,
hydrophobic, negative ionic, electron-withdrawing, and
others). The favorable and unfavorable regions of interactions
are symbolized in occlusion maps. Figure 3A shows the maps
of H-bond donor groups in which light blue color cubes
indicate the suitable position of H-bond donor groups in the
benzopyrone ring and phenyl ring with oxygen. Improvements
in the binding affinity of lysosomal α-glucosidase inhibitors can
be gained by substituting H-bond donor groups on the
benzopyrone ring (coumarin ring) moieties at the C3, C5, and
C7 positions, while activity can also increase by the addition of
the H-bond donor in the attached carbon rings and oxygen
atoms. This suggests that this analysis points toward the
positive potential of the H-bond donor quality of compounds.
It was fundamental for the lysosomal α-glucosidase inhibition
activity at a specific position. However, the C4 and C7
positions were not supportive of H-bond donor groups.
Figure 3B reveals the volume occlusion map for a

hydrophobic feature, which illustrates the 3D arrangement of
favorable hydrophobic interaction. The green cubes show
positive coefficients. The addition of hydrophobic groups at
the C4 and C5 positions of the coumarin ring may increase
molecules’ activity, and substitution at carbon atoms in the
third and fifth phenyl rings can also increase the activity.

However, positions 1, 2, 3, 6, 7, and 8 of the coumarin ring
were not favorable for the hydrophobic substation, and it may
decrease the activity. Overall, the green cubes are more so, the
hydrophobic substitution can increase the lysosomal α-
glucosidase inhibition activity.
The negative ionic feature’s volume occlusion map is shown

in Figure 3C in which the light red color indicates the positive
coefficients. It illustrates the spatial geometry of supportive
ionic interactions to the acceptor groups at the C3, C4, and C5
of the coumarin ring. Moreover, two carbon positions of the
attached third ring are favoring the negative ionic group’s
substitution, and it can increase the activity, while positions C2
and C8 of coumarin were not favorable for negative ionic
substitution.
Electron-withdrawing volume occlusion maps (Figure 3D)

show pale red cubes. These red-colored cubes on the C3, C7,
and C8 positions of the coumarin ring and some carbons on
the third and fifth attached phenyl ring favor the substitution of
electron-withdrawing groups, which can increase the lysosomal
α-glucosidase inhibition activity. However, other positions
have not supported electron-withdrawing groups’ substitution,
and it may decrease the activity.
Figure 3E reveals the volume occlusion map for other

features. The cyan-colored cubes favor the lysosomal α-
glucosidase inhibition activity, while pink-colored cubes were
not considered for the activity prediction.
Overall, the all-atom model generated by atom-based 3D-

QSAR depicts that substitution at all positions of the coumarin
ring except 1 and 2 and oxygen and carbon atoms of attached
phenyl rings by different groups like the H-bond donor,
hydrophobic, negative ionic, and electron-withdrawing groups
play an important role in the lysosomal α-glucosidase
inhibition activity.

Molecular Docking Study. A molecular docking study
was performed to investigate the molecules’ mode of binding
against the human diabetes mellitus enzyme. Lysosomal α-
glucosidase (PDB ID: 5KZX) has a good resolution of 2.0 Å.
The docking analysis of coumarin derivatives’ dataset showed a
good docking score and interaction with central residues of
amino acids in the active site of the receptor (Table S1). The
negative energy value manifests the molecular docking results
that minimize the binding energy value.54 Docking results with
lysosomal α-glucosidase protein, compound isorutarine, 10_,
and 36 were good compounds and revealed a better docking
score at the target protein site. If we study the binding mode of
the isorutarine molecule, it showed a good docking score of
−7.64 kcal/mol and made hydrogen bonds with Phe490,
Thr491, and Arg608 amino acids with an oxygen atom and
hydroxide groups. A docking score of −7.12 kcal/mol is shown
for compound 10_ forming hydrogen bonds with Val358,
Arg608, and Tyr609 amino acids with an oxygen atom and a
hydroxyl group. The binding mode of molecule 36 showed a
docking score of −6.86 kcal/mol, and hydroxyl groups of the
molecule form hydrogen binding with Val358 and Arg608
amino acids. The molecules were also interacting with other
amino acids by forming hydrophobic interactions; this
interaction also plays a significant role in the activity. The
2D and 3D ligand interaction and binding surface (3D)
diagrams are shown in Figure 4A−C.The protein and 3D
ligand−protein interaction diagram structure is given in Figure
S2.

Binding Free Energy Analysis. The binding free energies
of docked complexes were calculated by using the MM/GBSA

Table 3. Colors for the Positive and Negative Coefficients

S.N. parameter
color of the positive

coefficient
color of the negative

coefficient

1 H-bond donor (D) light blue light orange
2 hydrophobic (H) green purple
3 negative ionic (N) light red yellow
4 electron-

withdrawing (W)
pale-red light-green

5 other (X) cyan pink
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Prime module of Maestro 12.0. Molecular mechanics assess the
enthalpic contribution of docked complexes. A DGbind negative
value of MM/GBSA indicates better binding of the receptor
and ligand molecules. The free binding energy value obtained
from MM/GBSA calculations of ligand−protein complex
interactions is highly reproducible and stable and separate
from the solvation of the receptor.55 The free binding energy
of the docked ligand−protein complex is shown in Table S2.
The best three docked complexes show DGbind of −76.74,
−52.26, and −45.38 with isorutarine, 10_, and 36 ligands,

respectively. These complexes showed better binding energy;
they show stable binding, and modification according to the
QSAR model may increase the activity against lysosomal α-
glucosidase. A post docking program, MD simulation analysis
of the best three docked complexes was performed to employ
the accurate ranking of binding affinities.

ADME Analysis. The QikProp module of Maestro 12.0 was
used to perform the computational prediction of adsorption,
distribution, metabolism, and excretion (ADME) properties.
ADME properties of drug molecules have garnered consid-

Figure 4. 2D ligand interaction diagram (left) and binding solid surface diagram (right): (A) isorutarine, (B) compound 10_, and (C) compound
36.
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erable attention from researchers for new drug development
and discovery, and they are cost-effective and high-
throughput.56 About 17 pharmacologically significant and
physically relevant parameters of all the docked 116 ligand
molecules were determined (Table S1). Some parameters like
molecular weight, octanol/water partition coefficient (QP
log(Po/w)), water/gas partition coefficient (QP log Kp),
accept HB, donor HB, percentage human oral absorption,
brain−blood partition coefficient (QP log BB), solubility,
dipole, and SASA calculated values of drugs within the range
show drug-likeness of compounds. These properties give
information that the ligand/s are showing drug-likeness
properties. For all 116 compounds, the calculated values of
parameters are in the range of drug-likeness (Table S1). So, the
ADME properties show that all the compounds may be
considered as a drug on the animal.
Another web tool, SWISS ADME, was also used to predict

the best docked three molecules’ drug-likeness. Isorutarine is
predicted to not cross the brain barrier and adsorb as it is
present outside of the predicted egg model (white circle),
whereas molecule 10_ and 36 showed good absorbance based
on the location of molecules inside the egg (Figure 5 A).
Compound 10_ showed accessibility to the blood−brain
barrier (inside the egg yolk). Compound isorutarine is
estimated to be actively effluxed by P-glycoprotein (P-gp)

(blue dot), while molecule 10_ and 36 are predicted as
nonsubstrate of P-gp (red dot).57 Analysis of bioavailability
radar exhibits that isorutarine is polar (Figure 5B), and it may
not be orally bioavailable. All three compounds isorutarine,
10_, and 36 possess most of the drug-likeness properties
(range is pink color) (Figure 5B−D).

MD Simulation Analysis. To complement the docking
results, molecular dynamics simulations of the protein and the
protein−ligand complexes were performed to study the
interactions’ dynamic behavior. The molecular dynamics help
analyze several factors, including the conformation of ligands,
cofactors, protonation states, and entropies that affect in silico
predictions. The Ramachandran map of the simulated
structures suggests their stability exhibiting strong stereo-
chemical geometries.
The maps containing the residues in the favored, allowed,

and outlier regions for the studied systems are shown in Figure
6. It is seen that the complexes of the protein ligated with
isorutarine, compound 10_, and compound 36 show three
(Val-547, Leu-769, 881), ten (Met-122, Thr-175, Thr-191,
Tyr-209, Asp-282, Asp-404, Ala-565, Gln-776, 794, 863), and
eight (Thr-80, Ala-97, Met-122, Leu-208, Leu-291, His-395,
Asp-404, Glu-471) outlier residues in the general region,
respectively, while there were no outlier residues in the
unligated protein.

Figure 5. Plots as generated by Swiss ADME: (A) the boiled-egg model, (B) properties of isorutarine, (C) properties of compound 10_, and (D)
properties of compound 36.
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Further, the RMSD graphs of the simulations were analyzed
to study the amino acid trajectories; it is seen that no
significant change in the Cα atoms from the initial structure
was shown during MD simulations. With the complex of ligand
36 showing a maximum of around 0.35 nm deviation from the
initial structure while the protein and other complexes showing
deviations below 0.3 nm, it is observed that the trajectories
were stable for the whole simulation time (Figure 7A). To
understand the stability of the ligand, the RMSD plots of the
ligand for Cα atoms of the protein were generated. These
ligand RMSD plots suggest that the ligand interactions with
the protein were very stable throughout the simulation time
except for isorutarine, which showed major deviations ranging
below 0.5 nm (Figure 7B). Thus, these protein−ligand
complexes were considered for further analysis.

To further evaluate the protein stability and understand the
effects of ligand on the protein structure’s flexibility, the mean
per residue fluctuation of the protein backbone was studied
using RMSF analysis. The root-mean-square fluctuation
(RMSF) of all the Cα atoms of the protein over the simulation
time indicated that the protein showed high fluctuation when
ligated with isorutarine as compared to other ligands. The
results also indicate that the protein gained flexibility due to
the ligation of isorutarine (Figure 7C) significantly affecting
the overall binding of isorutarine with the protein. To
understand the ligand’s changes, the RMSF of the ligands
was generated and analyzed for the atom-wise fluctuations of
the molecule. These residues majorly showed RMSF values of
<0.2 nm suggesting their stability in interactions (Figure 7D).

Figure 6. Ramachandran plot depicting stereochemical geometry for (A) unligated protein, (B) protein ligated with isorutarine, (C) protein ligated
with compound 10_, and (D) protein ligated with compound 36.
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Further, to understand the protein’s stability with respect to
its secondary structure, the distribution of the secondary
structure elements (SSE) was generated using DSSP. The
secondary structure timeline evolution (Figure S3A−D) and
the SSE percentage (Figure 8A−D) for compounds 10_, 36,
isorutarine, and unligated protein indicate that the deviation in
the secondary and tertiary structure conformations was
negligible with a 100 ns simulation period. All the SSE were
found to be persistent and transient, further revealing the
protein stability.
The radius of gyration (Rg) revealing the mass-weighted

root-mean-square distance of atoms from their center of mass
is studied to analyze the compounds’ stability. The competence
and shape of the protein structures throughout the simulation
time of 100 ns can be seen in the plot of Rg (Figure 9A).
Throughout the simulation, the unligated protein and protein
ligated with compounds 10_, 36, and isorutarine displayed a
similar pattern in terms of the Rg value with Rg scores ranging
majorly below 2.90 nm. To further examine, the solvent-
accessible surface area (SASA) was studied to analyze the
changes in the hydrophilic and hydrophobic residues (Figure
9B). The SASA results showed that all the ligated proteins
showed a similar or higher SASA value than the unligated
protein, retaining accessibility throughout the simulation time.
To quantify the strength of the interactions between the

ligand and receptor, the nonbonding energies and hydrogen
bonding between protein and the ligands throughout the

simulation time were also studied and are presented in Figure
9C,D. The graph reveals that the ligand residues interacted
with the protein for the whole simulation time. Ligand 36
shows significantly better binding energy than ligand 10_ and
isorutarine in terms of Coulomb interaction energy, while
isorutarine shows better interactions with protein in terms of
Lennard-Jones interaction energy. Overall, the contacts and
binding energies between the studied ligands and the protein
suggest that the ligated protein complexes are stable (Figure
10A,B).
The essential dynamic analysis was performed using large-

scale motion data during the simulation to support the results.
The data was assessed using PCA analysis. The eigenvectors’
plot revealed that all the ligated proteins acted similarly to the
unligated protein, confirming the ligation’s stability at 300 K
(Figure 11). The subspace pertaining to the eigenvectors is
considered from the largest associated eigenvalues during the
protein dynamics. The ligated and unligated proteins’ overall
flexibility was investigated using a covariance matrix generated
from the Cα atomic positional fluctuations.

■ CONCLUSIONS
In recent times, due to lifestyle changes, diabetes has become a
global burden on human health, making it a major area of
biological research. Lysosomal α-glucosidase (GAA) is a
therapeutic target for drugs involved in diabetes. Given this,
to inhibit GAA activities, we generated the pharmacophore and

Figure 7. Graphs as generated during molecular dynamics: (A) RMSD-Cα atoms, (B) RMSD-Ligands, (C) RMSF-Cα atoms, and (D) RMSF-
Ligands.
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atom-based QSAR models of 116 coumarin derivatives using
experimental IC50 values. The results of QSAR based on the
test set suggest that it is a capable and reliable model for a wide
range of structures related to coumarin. We further predicted
these coumarin derivatives’ binding capability against lysoso-
mal α-glucosidase to determine their inhibitory activities using
molecular docking studies. The molecular docking studies
suggest that the coumarin derivatives could act as promising
agents toward inhibiting GAA.
Further, the ADMET properties of the coumarin derivatives

suggest their drug-likeliness. The top three scoring compounds
from molecular docking studies were subjected to molecular
dynamics simulations to study their binding stability. With an
average RMSD of 0.25 nm, all the ligated proteins showed
promising binding stabilities with isorutarine showing the
highest stability with RMSD below 0.25 nm for the whole
simulation time. The RMSF changes in interaction energies,
hydrogen bond formation, and secondary structure evolution
were studied among other simulation studies to validate the
protein−ligand binding stability further. With an average
RMSF and radius of gyration of about 0.10 and 2.87 nm,
respectively, the ligands are said to show high binding stability
toward the protein. The PCA analysis and binding energy
studies suggest that among the studied compounds, majorly,
compound 10_ could be considered as a promising drug
toward lysosomal α-glucosidase.

■ MATERIALS AND METHODS
Dataset and Tools. All 116 structures of coumarin

derivatives with their IC50 (μM) against lysosomal α-
glucosidase selected for the present study were taken from
the reported literature39,47−52 (Table 1). The enzyme
lysosomal α-glucosidase inhibition study was performed
spectrophotometrically using the same literature from where
the activities of coumarin derivative compounds were taken.47

DMSO (10% final concentration) as control and acarbose as
the standard inhibitor of lysosomal α-glucosidase were used.
The percentage of enzyme lysosomal α-glucosidase inhibition
for each compound was calculated using the following formula

= [ − ]

×

%inhibition (abs control abs sample)/abs control

100

IC50 values of inhibitors were calculated from the nonlinear
regression curve using the Logit method.
All the taken compound structures were drawn using 2D

Sketcher of Maestro 12.0 of Schrödinger LCC, 2019 (Figure
S1). All the in silico studies were performed on Window 10
operating systems with 12GB RAM, 1 TB hard disc, and
NVIDIA graphics. The pharmacophore hypothesis and 3D-
QSAR model were generated in the Phase module, and
docking and free binding calculation were performed using
glide and Prime modules of Maestro. The molecular dynamics
(MD) simulation was performed using GROMACS 2018 set
up at the Central Computing Facility of Indian Institute of
Information Technology Allahabad. The human lysosomal α-
glucosidase enzyme’s crystal structure was retrieved from the

Figure 8. SSE plots generated using DSSP: (A) unligated protein, (B) isorutarine ligated protein (C), protein ligated with compound 10_, and (D)
protein ligated with compound 36.
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Protein Data Bank (PDB) and was used for the molecular
docking study.
Data Preparation. The 2D drawn structures of coumarin

derivatives were converted to a 3D structure using the LigPrep
module of Maestro 12.0 (Schrödinger 2019 LLC, USA), using
the default settings. The specified chirality was retained, salts
were removed, hydrogens were added, stereoisomers were
generated, the ionization states were generated at a pH range
of 7.0 ± 2.0 using the Epik module, and the energy
minimization of molecules was performed using the

OPLS2005 force field.58 The X-ray crystal structure of protein
lysosomal α-glucosidase (PDB ID: 5KZX) with 2.0 Å
resolution was downloaded from the RSCB Protein Data
Bank (PDB) (https://www.rcsb.org/search). The retrieved
protein structure of lysosomal α-glucosidase was prepared
using the protein preparation wizard of Schrödinger Maestro
12.0.59 The process includes preprocessing by using ionization
states, assigning bond orders, creating disulfide bonds, adding
side-chain residues and missing atoms, and creating zero-order
bonds to metals. PROPKA pH 7.0 and sample water

Figure 9. Structural and interaction plots generated during molecular dynamics: (A) the radius of gyration Rg, (B) solvent-accessible surface area
SASA, (C) H-bond protein−ligand, and (D) H-bond protein−protein.

Figure 10. Nonbonded interaction energy graphs: (A) short-range Coulombic potential and (B) short-range Lennard-Jones potential.
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orientations were used to optimize the structure, and
restrained minimization was performed using the force field
OPLS2005 until RSMD reached 0.30 Å.
Creating Pharmacophore-Based Models. The Phase

module of Maestro has a tool to develop a pharmacophore
model. The IC50 (μM) values of compounds were converted
into pIC50 (μM) using a negative logarithm. The activity
threshold of pIC50 = 5.0 μM was applied to set active from
inactive compounds; i.e., the molecules with a pIC50 value
above 5 μM are active (32 molecules) and below are inactive
(79 inactive). Each ligand structure is elaborated by a set of

pharmacophore sites representing various features of the
structure. The type of structure, position of atoms, and the
direction of characters defined the pharmacophore sites. In the
hypothesis, the setting phase has acceptor of H-bond (A),
donor of H-bond (D), hydrophobic (H), positive ionizable
(P), negative ionizable (N), and aromatic ring (R)
pharmacophore features. The method of pharmacophore was
to find the best alignment and common features. To identify
the common hypothesis of the pharmacophore, an active
analog method was used, in which common pharmacophores
were plucked from the set of active ligand conformers using a

Figure 11. Projection of the motion of the protein in the phase space along the first two principal eigenvectors at 300 K: (A) unligated protein, (B)
protein ligated with isorutarine, (C) protein ligated with compound 10_, (D) protein ligated with compound 36, and (E) unligated protein (black)
vs ligated protein (isorutarine − red, 10 _ − green, 36 − blue).
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partitioning method that groups common pharmacophores
according to their inner site distances. The generated
pharmacophores were scored to identify active molecules and
to obtain the best hypothesis.60 Common pharmacophores
with statistically significant values were chosen for molecular
alignments.

μ = − μpIC50 ( M) 6 log 10(IC50 M)

Building of 3D-QSAR Models. The Phase module of
Maestro 12.0 provides the basis for generating the 3D-QSAR
models by using molecules’ activity. 3D-QSAR based on
pharmacophore does not consider molecule features beyond
the model of the pharmacophore. This requires the attention
of the whole molecular structure; therefore, an atom-based 3D-
QSAR model is adventitious in analyzing the structure−activity
relationships. In the atom-based model, 3D-QSAR alignment
of the Phase module was used, where a ligand is treated as a set
of overlapping van der Waals spheres.60,61 In this alignment,
each atom is set into a simple rule, which are the following six
categories:

1. Atoms with a positive ionic charge (P);
2. Atoms with negative ionic charges (N);
3. Hydrogens attached to polar atoms classified as

hydrogen bond donors (D);
4. Nonionic nitrogen and oxygen classified as electron-

withdrawing (W);
5. Carbons, halogens, and C−H hydrogens classified as

hydrophobic (H); and
6. Other types of atoms classified as miscellaneous (X).

Atom-based 3D-QSAR modeling was performed using the
selected hypothesis by splitting the dataset of compounds into
training and test sets in a ratio of 70% training and 30% test set
by using the random selection method. Atom-based 3D-QSAR
models were developed for lysosomal α-glucosidase inhibitory
activities by using the AANRR hypothesis. The model has
generated using 78 ligands as a training set and a grid spacing
of 1.0 Q. Three PLS factors were developed by 3D-QSAR
modeling and further predicted ligands’ prediction activities
with the test set.
Molecular Docking and ADME/T. Maestro’s glide

module was used to perform molecular docking with the
lysosomal α-glucosidase (PDB ID: 5KZX) enzyme receptor
binding site. The receptor grid’s binding site was predicted
using the SiteMap module of glide Maestro 12.0, and the
receptor grid was generated using the receptor grid generation
wizard with the first site predicted by Sitemap. The docking of
the ligands with grid generated receptor lysosomal α-
glucosidase (PDB ID: 5KZX) was performed on the virtual
screening workflow in which QikPro was used for ADME/T
properties of ligands in filtering. Epik was used to generate
possible states at pH 7.0 ± 2, and flexible docking with glide
Extra Precision (XP) was used to obtain the best and accurate
result of docking. QikProp of Maestro was used to calculate
the various descriptor values used in this study that provide
information about the ligand/s regarding their drug-likeness.
Free Binding Energy/MM-GBSA Calculation. The

prime module of Maestro 12.0 (Schrödinger, LLC, New
York, NY, USA) calculates the binding free energy of docked
ligand/s using the molecular mechanics-generalized Born
surface area (MM-GBSA) method. MM-GBSA has a
continuum solvent model, the solvent model of VSGB.62

The following equation was used to calculate the binding
energy

Δ = − [ + ]G E E Ec L R

where Ec is the enegy of the complex, EL is the energy of the
ligand, and ER is the energy of the receptor.

Molecular Dynamics Simulation. The ligands with
promising docking scores were subjected to MD simulations
to study their conformational flexibility and binding stability
using GROMACS (2018.2).62 As the force field parameters in
the CHARMM3663,64 are largely available only for protein
molecules, the force field parameters for the ligands used in
this study were generated using CHARMM General Force
Field (CGenFF) version 4.1.65 The CGenFF interface66 was
used to generate topological, atomic, and charge parameters.
Later, the proteins and the ligands topologies were merged,
solvated, minimized, and equilibrated by an ad-hoc bash script.
The TIP3P water model was used to solvate the protein−
ligand complex. The system was further neutralized by adding
Cl-/Na+ ions as required before minimizing the structure
complex until the maximum force per atom was below 10.0 kJ/
mol subjecting to the steepest descent algorithm. Further, to
equilibrate the system, the NVT and NPT conserved
ensembles were generated under constant temperature,
volume, and pressure of 300 K and 1 bar, respectively, with
a simulation time of 100 ps for each. After the equilibrated
system was subjected to production runs of 100 ns with a time
step of 2 fs using the leapfrog algorithm at a constant
temperature and pressure of 300 K and 1 bar, respectively. The
generated trajectory snapshots were analyzed using GRO-
MACS analysis toolkit utilities, and the graphs were generated
using MATLAB.
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