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ABSTRACT

Using a stochastic susceptible–infected–removed meta-population model of disease transmission, we present analytical calculations and
numerical simulations dissecting the interplay between stochasticity and the division of a population into mutually independent sub-
populations. We show that subdivision activates two stochastic effects—extinction and desynchronization—diminishing the overall impact
of the outbreak even when the total population has already left the stochastic regime and the basic reproduction number is not altered by the
subdivision. Both effects are quantitatively captured by our theoretical estimates, allowing us to determine their individual contributions to
the observed reduction of the peak of the epidemic.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0028972

Simple models for the spread of infectious diseases are useful
for the quantitative characterization of an epidemic as well as
for forecasting future infection numbers and guiding decision-
making for containment. Different extensions and refined ver-
sions of these models have been created to extract various fac-
tors that may be critical for the dynamics and prevention of
epidemics. Although it is well known that stochastic fluctua-
tions can alter the dynamics as well, they are often neglected
at higher infection number levels such that the contact rates
and basic reproduction number become the central quantities of
interest. In contrast, we investigate a situation in which stochas-
tic effects can quantitatively change the course of an epidemic
when infection numbers are large and contact rates remain unal-
tered. We consider an extended Susceptible–Infected–Removed
(SIR) model in which a large population is subdivided into a
certain number of sub-populations, each containing only a few
infected individuals. For the limiting case of perfect isolation, i.e.,
when the epidemic evolves independently in each sub-population
with no cross-infections, we derive analytical estimates for these
stochastic effects that together recapitulate the results of exten-
sive numerical simulations. Our central quantity of interest is
the peak total number of simultaneously infected individuals,
which we compare between the subdivided population and a
single large population with an identical reproduction number.

Our analysis suggests that regional isolation can resurrect certain
stochastic effects and thereby contribute to effective containment,
regardless of the initial distribution of infected individuals.

I. INTRODUCTION

Generic models such as the Susceptible–Infected–Removed
(SIR) model conceived by Kermack and McKendrik1 are indis-
pensable for characterizing the bulk properties of epidemics and
determining the influence of crucial parameters on the dynamics.
The contact rate between individuals, which is proportional to the
reproduction number R0, usually plays a crucial role, as its reduc-
tion through containment measures directly slows the spreading of
the disease. On a large scale (states or countries), numbers of infec-
tions during the height of an epidemic are usually large such that
deterministic mean-field descriptions are appropriate. These have
been widely used to track the course of epidemics and the effect of
interventions, for example, for the current spreading of COVID-19.2

While many details about the biology and modes of infection of
a specific disease are important for its dynamics in detailed models,3

even basic SIR models have been extended in various conceptual
directions. Besides various general topologies of the underlying con-
tact and mobility networks,4–6 so-called meta-population models
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have been used to separate the disease dynamics within local envi-
ronments from its spread between them.7 It has been shown that it
is possible to calculate effective quantities for the whole population,
such as reproduction numbers (i.e., a threshold theorem),8 the final
attack ratio,9 and criteria for persistence10 in deterministic models of
such subdivided populations.

Another important deviation from simple bulk behavior arises
through stochasticity (see Ref. 11 and references therein). Stochas-
tic versions of extended SIR and related models have been used to
calculate corrections to the outbreak threshold,12 consequences of
stochasticity for contact tracing,13 and other control schemes,14 to
only name a few. Stochastic effects are also observed in agent-based15

and meta-population models.16,17 Here, we seek to study the joint
effect of subdivision and stochasticity on the overall magnitude of an
epidemic for a fixed initial number of infected individuals in the total
population. In general, subdivision can be expected to artificially
boost fluctuations, as the infection numbers in each sub-population
can be small even when the total number of infections in the entire
population is large. We would like to quantify the ability of such
increased stochasticity to reduce the impact of the epidemic. We
deliberately refrain from applying any form of traditional contain-
ment in our model, such as further reductions in the contact rate or
contact tracing.18 In particular, we design the subdivision such that
the deterministic dynamics of the epidemic in the subdivided pop-
ulation remains unchanged compared to a single large population,
as outlined in Sec. II. This allows us to compare the peak number of
infected individuals in the entire population for each scenario both
analytically and numerically in order to extract the specific effects of
stochasticity triggered by subdivision.

II. MATHEMATICAL MODEL

A. Reaction system

We consider a population of N individuals with SIR dynamics,1

S + I
b/N−−→ I + I, I

k−→ R, (1)

with S, I, and R referring to susceptible, infected, and removed indi-
viduals, respectively, where removal with per capita rate k happens
due to recovery, quarantine, or death. The rate b corresponds to the
number of contacts per unit time an individual has with a random
other individual in the population, multiplied by the probability that
a contact between a susceptible and an infected individual leads to
transmission. The total transition rate from S to I per unit time is,
therefore, b

N
S I. The two rates b and k are related to the basic repro-

duction number R0 = b/k, which is independent of population
size. The deterministic epidemic threshold above which an outbreak
occurs isR0 = 1, and we assumeR0 > 1 throughout this study. The
population is subject to the total constraint N = S(t) + I(t) + R(t),
where we denote the number of individuals in each state by the
same letters. For simplicity, all initial conditions assume R(0) = 0
such that they are uniquely defined by N and the number of initially
infected I0 = I(0).

When a population of total size N is split up into Ns sub-
populations, we simulate Ns separate copies of the system (1), with
N, S, I and R replaced by Ni, Si, Ii, and Ri, respectively, where
the index i refers to the different sub-populations and Ni = N/Ns.

N =
∑

Ni, S =
∑

Si, I =
∑

Ii, and R =
∑

Ri refer to the popula-
tion totals. The initial number of infected individuals is distributed
either uniformly or randomly across the Ns sub-populations. All
numerical results in this study are obtained from stochastic simu-
lations of Eq. (1) using the Gillespie algorithm.19 To account for the
inherent stochasticity of the system, several realizations, i.e., identi-
cal simulations with different random number generator seeds, are
simulated for each parameter set. We report the number of real-
izations as well as distributions, averages, and standard deviations
across the results as appropriate. Our main figure of interest is the
peak number of infected individuals Imax or, equivalently, the peak
infected fraction of the population γ = Imax/N. These could be con-
sidered a measure for the impact of the epidemic and the strain
on the health care system and public health resources such as the
agencies that perform contact tracing and testing.

B. Deterministic behavior

The reaction scheme (1) results in the deterministic mean-field
equations,

dS

dt
= −

b

N
S I, (2a)

dI

dt
=

b

N
S I − k I, (2b)

dR

dt
= k I, (2c)

which give rise to two regimes in the dynamics. During the initial
regime, I starts off from an initial value I(0) = I0, rises exponentially
∼ I0 e(b−k)t, and saturates to a peak value,

Imax ≡ γ N ≈
(

1 −
k

b

[

1 + log(b/k)
]

)

N, (3)

where the approximation for the maximum fraction of infected
individuals 0 < γ < 1 is valid as long as the entire population is
initially susceptible; i.e., S(0) ≈ N.20 In the secondary regime when
the recovery dynamics dominates, I decays to zero exponentially, as
the number of susceptibles decreases below the value necessary to
sustain spreading.

In this deterministic system, a subdivision into Ns smaller sub-
populations of size N/Ns will have no effect since Eq. (2) remains
invariant when S, I, R, and N are scaled by the common fac-
tor 1/Ns. Relative to their individual sub-population sizes Ni, the
same dynamics are observed in all sub-populations and the dynam-
ics of the population totals S =

∑

Si, I =
∑

Ii, and R =
∑

Ri are
identical to those of a single large population. Therefore, the sub-
division is not analogous to cutting links in a contact network but
rather a redistribution of them since we assume that the contact
rate b remains unchanged. This conservative assumption means that
individuals in each sub-population still have the same number of
contacts per unit time as they had in the large population despite the
smaller number of individuals to choose from. While, in reality, the
contact rate b might decrease in such a situation and deterministi-
cally reduceR0 and, therefore, Imax, we intentionally keep it constant
here to extract the effects of stochasticity.
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C. Stochastic behavior

Deterministic behavior only applies if S and I are both large,
particularly only after the number of infected people I has risen to
appreciable levels. If I is still low, stochastic fluctuations determine
whether I will “take off” and develop exponential behavior even if
b > k. This effect was already considered shortly after Kermack and
McKendrick introduced the original SIR model21 and is now well-
known. However, in a subdivided population, it can significantly
alter the course of the outbreak in the total population if the ini-
tial number of infected individuals in a single sub-population is
low enough (even if the number is large in the total population).
An example for populations of N = 1 000 000 individuals split into
Ns = 10 sub-populations is shown in Figs. 1(a) and 1(b), along with
the expected dynamics of a single large population (red curve). In
one example set of ten sub-populations, only three sub-populations
(blue, yellow, and green curves) experience a significant outbreak,
and they are desynchronized with a broad distribution of individual
peak times [Fig. 1(c)]. Spontaneous extinction and desynchroniza-
tion lead to an average behavior across 100 simulations with a
significantly reduced peak (turquoise curve). Note that, on aver-
age, both the undivided large population and the sum of the smaller
sub-populations initially exhibit comparable exponential growth in
the number of infected individuals [Fig. 1(b)]. This means that,
while extinction in some sub-populations and fluctuations in timing

happen early on, their effect is only seen later during the saturation
phase.

During the initial phase, we can assume that S ≈ N and that
I follows a simple birth–death process with rates b for “birth” and k
for “death.” We shall use this analogy for derivations throughout this
study and in Appendixes A–D. We briefly recapitulate one impor-
tant result from the theory of branching processes here, namely,
that an exponentially growing population that starts from an initial
condition of I(0) = 1 has a finite extinction probability of

P0(t) =
k

b
·

e(b−k)t − 1

e(b−k)t − k/b
, (4)

which asymptotically approaches k/b at long times; see the deriva-
tion in Appendix A. This means that with probability pext

1 = k/b,
the dynamics never enters the exponentially growing determinis-
tic regime but decays back to zero due to number fluctuations.22

Therefore, for two independent lineages in the same population, the
extinction probability is pext

2 = (k/b)2, and, similarly, pext
n = (k/b)n,

as long as the total population is sufficiently large such that the
lineages do not interfere with each other. We will use these extinc-
tion probabilities and other statistics of the birth–death process to
derive analytical approximations for the effects of extinction and
desynchronization on the stochastic dynamics.

FIG. 1. Stochastic effects lower the peak in subdivided populations. (a) Time course for a population of N = 1 000 000 with I0 = 10 initially infected individuals for
Ns = 1 large population (red) and a population split into Ns = 10 sub-populations (turquoise), b = 0.2, k = 0.14. Shading indicates ±25% confidence intervals across
100 simulations. Sub-populations are shown from one simulation with Ns = 10. (b) Enlarged plot of the initial phase for the same traces as in panel (a). (c) Distribution of
peak times in sub-populations for Ns = 10. The occurrence fraction indicates the fraction of sub-populations across all simulations. The dashed line indicates the analytical
approximation, Eq. (8), with uniform n = I0/Ns = 1.
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III. RESULTS

A. Theoretical estimates for isolated sub-populations

1. Extinction

To obtain an estimate for the effect of extinction and the
distribution of infected individuals, we add up the maximum num-
bers of infected individuals in the sub-populations. Each of these
peaks is approximately γ N/Ns but only if the infection does not
stochastically become extinct during the initial stages. For large-
population sizes and values of b/k that result in a significant peak,
extinction usually happens well before the peak is reached in other
sub-populations (see Appendix B) such that these populations do
not contribute. Therefore, on average, the contribution of each sub-
population will be Is,max(n) = γ

(

1 − pext
n

)

N/Ns, where n indicates
the number of initially infected individuals in the sub-population
and pext

n is the probability that they go extinct without entering
deterministic growth as discussed above. Therefore, the total peak
number of infected individuals in all the sub-populations due to
extinction is given by Iext

max =
∑

n gnIs,max(n), where gn is the num-
ber of sub-populations with n initially infected individuals. Note that
Ns =

∑

n gn. Combining the above equations, we obtain

Iext
max = γ

N

Ns

∑

n

(

1 − pext
n

)

gn = γ N

[

1 −
∑

n gn(k/b)n

∑

n gn

]

. (5)

The above result manifestly shows that

γ ext ≡
Iext
max

N
= γ

[

1 −
∑

n

gn

Ns

(k/b)n

]

< γ (6)

holds. Note that this reduction is exclusively due to extinction, and
the simple summation of the individual maxima neglects the pos-
sible desynchronization between sub-populations, which we will
consider further below.

For example, for the ideal case where each sub-population only
contains at most one infected individual, we have

γ ext
1 = γ

I0

Ns

(

1 −
k

b

)

, (7)

where g1 = I0 is the total number of initially infected individuals in
the large population (for this to make sense, Ns ≥ I0 is required).
Since γ corresponds to the case where the population was not
split up, the peak number of infected can, therefore, be reduced by
increasing the number of sub-populations Ns or by bringing b closer
to k. Note that this is in addition to a potential decrease in the deter-
ministic peak fraction γ of infected [cf. Eq. (3)] that would result
if the subdivision also led to fewer contacts (i.e., a reduced rate b),
which we have conservatively assumed not to be the case here.

2. Desynchronization

The independent summation of maxima in different sub-
populations is a conservative estimate since fluctuations can lead to
stochastic desynchronization and thus to a further reduction of the
peak value. The distribution of peak times in the sub-populations
from the previous example is shown in Fig. 1(c). The temporal shift
between the different sub-populations can be attributed entirely to

stochastic fluctuations in the initial phase of the dynamics. Assum-
ing that this time shift accumulates while the dynamics can still be
modeled as a pure birth–death process without saturation effects,
we can derive the probability distribution for the deviation from the
mean peak time 1tpeak ≡ tpeak −

〈

tpeak

〉

as

P(1tpeak) = k(1 − k/b)[1 − (k/b)n]

× exp

(

−(b − k)
(

τ̄ + 1tpeak

)

−
k

b
e
−(b−k)

(

τ̄+1tpeak

)

)

,

(8)

where n is the initial number of infected individuals in the sub-
population and τ̄ = ln

(

γ ′k/b
)

/(b − k) with γ ′ being the exponen-
tial of the Euler constant (see Appendix C for details). Note that n
here was only used to incorporate the extinction probability, while
the shape of the distribution is based on a single initially infected
individual. Nevertheless, this result is in excellent agreement with
the measured distribution for randomly distributed infected indi-
viduals [see the dashed line in Fig. 1(c)].

We can then use this distribution to obtain a quantitative esti-
mate for the additional peak reduction due to desynchronization.
For this purpose, we approximate the deterministic time evolution
of I in the vicinity of the peak as I(t) ≈ Nγ exp

(

− 1
2

bkγ (t − tpeak)
2
)

,
which is valid as long as S(t) remains of order ∼ N (see Appendix D);
i.e., b/k is not too large. In the limit of many superimposed peaks of
this shape, with the variability of tpeak given by Eq. (8), the peak is
reduced by an additional factor α−1,

γ con =
γ ext

α
, α =

√

1 +
π 2[R0 − 1 − log(R0)]

6(R0 − 1)2
. (9)

The peak number of infected individuals, with both stochastic
effects of the confinement taken into account, similarly becomes
Icon
max = Nγ con = Iext

max/α. It is interesting to note that this reduction

factor is bounded from below by limR0→1 α−1 =
√

12/(12 + π 2)

≈ 0.7407. The desynchronization effect is, therefore, much more
limited than the extinction effect.

B. Numerical results

We consider as an example a region with a population of
8 000 000 and 500 infected individuals (I0/N ∼ 6 · 10−5) and assume
a removal rate of k = 0.14, corresponding to a realistic mean
removal time of 1/k ≈ 7 days for the recent epidemic23 (particularly
if symptomatic individuals are quickly removed from the infectious
pool through quarantining). Let us further assume that the infec-
tious contact rate is b = 0.2 (> k). This corresponds to a substantial
reduction of R0 from its initial value of 2–2.524 through mild mea-
sures such as social distancing, although the epidemic would still
spread exponentially, with infection numbers doubling about every
12 days.

If this population is allowed to mix homogeneously, the
dynamics will evolve according to the deterministic prediction with
a peak around 5% infected individuals (blue data in Fig. 2). If
instead, the population is split up and the 500 infected people
are distributed randomly across the sub-populations, the peak per-
centage of infected individuals decreases to around 3% (for 100

Chaos 30, 101102 (2020); doi: 10.1063/5.0028972 30, 101102-4

© Author(s) 2020

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 2. Epidemics for different subdivisions of the population. N = 8 000 000, b = 0.2, k = 0.14, three different values of Ns = 20, 200, and 40 individual simulations for
Ns = 1, Ns = 100, and Ns = 500, respectively. (a) Time courses (solid lines) and 2.5/97.5 percentiles (shading). (b) Distributions of the observed peak percentage γ con

(in the whole population). The occurrence fraction indicates the fraction of simulations. Analytical estimates for γ ext (dashed lines), Eq. (6), and γ con (solid lines), Eq. (9),
assume gn according to a binomial distribution. (c) Distribution of peak times in the sub-populations. The inset provides an enlarged y-axis. Dashed lines indicate analytical
approximation, Eq. (8), assuming a uniform n = I0/Ns for each case. (d) Distribution of termination times, defined as the time when I in the total population drops below I0.

sub-populations of 80 000 people) or 1% (for 500 sub-populations of
16 000 people) on average (red and yellow, respectively). In all cases,
the analytical estimate that only considers the extinction effect,
Eq. (6), is only an upper bound for the peak percentage of infected
individuals in the total population, while also considering desyn-
chronization according to Eq. (9) yields a good estimate the typical

peak values. The peak time distributions for the three different ways
of splitting up the population shown in Fig. 2(c) also agree with the
analytical estimate of Eq. (8). Note that these distributions are not
normalized since a significant fraction of sub-populations experi-
ence extinction of the epidemic and, therefore, do not exhibit a peak.
There is also a subtle, non-monotonic effect on the termination time
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FIG. 3. Plots analogous to Figs. 2(a) and 2(b) for the case Ns = 500, but with exactly one initially infected individual in each sub-population instead of a random distribution.
Analytical estimates, Eq. (6) (dashed line) and Eq. (9) (solid line), accordingly use g1 = I0 = 500.

of the epidemic [Fig. 2(d)] whose distribution is broader when the
population is split up but does not change position appreciably. Note
that the reduction for Ns = 500 sub-populations in Fig. 2 is compa-
rable (or even slightly lower) than the case where the 500 infected
individuals are not distributed randomly across the sub-populations,
but each sub-population contains exactly one infected individual. In
this case (see Fig. 3), there are no sub-populations with initially zero
infected individuals, implying that the reduction in the peak value
compared to the large homogeneous population is strictly due to
extinction and desynchronization, which are again well predicted by
the analytical estimates.

To examine the validity of our approximations across different
parameters, we varied the contact rate b and carried out numerical
simulations for values of R0 ranging between 1.14 and 2. We ana-
lyzed the resulting peak magnitudes to extract the individual contri-
butions of extinction and desynchronization, which are in excellent
agreement with our predictions of Eqs. (6) and (9), as shown in
Fig. 4. The contribution of extinction alone was estimated numer-
ically by summing maxima in different sub-populations, regardless
of their timing. Overall, the simulations confirm the relative impor-
tance of the extinction effect, whereas the additional reduction by
desynchronization plays a smaller role. Figures 4(a) and 4(b) show
the case where Ns = I0 = 100, i.e., number of sub-populations and
initially infected individuals is the same, and exactly one infected
individual is placed in each sub-population. This serves to demon-
strate the maximum effect of extinction, whereas in Fig. 4(c), a large
share of the peak reduction is due to sub-populations containing no
infections, as I0 = 100 < Ns = 500. However, the random distribu-
tion of infected individuals for Ns = I0 = 500 [Fig. 4(d)] leads to a
very similar result as in Fig. 4(b), although some of the reduction
is due to the initial distribution (i.e., sub-population without any

infections). For a high number of sub-populations Ns as in Figs. 4(c)
and 4(d) (and consequently a smaller sub-population size), devia-
tions from the theory begin to appear toward low values of b very
close to k, as the timescale of the extinction process becomes com-
parable to that of the deterministic SIR dynamics. In this regime,
the distinction between an initial stochastic phase approximated by
a birth–death process and the onset of saturation effects becomes
increasingly blurred, as we show analytically in Appendix B. In par-
ticular, this affects the estimation of the extinction contribution
(marked by black dots).

IV. DISCUSSION

Reducing the infectious contact rate b or increasing the removal
rate k directly leads to a decrease of the deterministic peak fraction
of infected, γ . The above analysis shows that, even without chang-
ing R0 = b/k, the isolation of small sub-populations can reduce the
overall peak number of infected people in the ideal case of at most
one infected individual per sub-population by an additional fac-
tor of up to I0/Ns · (1 − k/b)/α when I0/Ns < 1. One contribution
comes from the communities that have no infections and are now
protected (I0/Ns), while another contribution comes from the pos-
sibility that an infection chain in a local community stochastically
ends due to fluctuations (k/b). Stochastic desynchronization (1/α)
further reduces the peak by up to about 25% according to Eq. (9).
However, as shown by our estimates and confirmed by the numeri-
cal simulations, even outside this ideal scenario, a reduction can be
achieved, regardless of the distribution of infected individuals across
the sub-populations, and the reduction will be larger if b/k is already
close to 1. It is also worth noting that, in contrast to reductions in
R0 = b/k, the timescale of the outbreak is not increased.
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FIG. 4. Peak reduction for different subdivisions and values of b.N = 8 000 000, k = 0.14. All data points represent averages across 100 independent stochastic simulations,
and error bars indicate standard deviation. (a) Peak fraction of infected individuals for I0 = 100, Ns = 100 with each sub-population initially containing exactly one infected
individual. The symbol color indicates the reduction due to extinction (yellow) or both extinction and desynchronization (blue) as measured in simulations. Black symbols
represent the large-population control. Yellow/blue shading and solid lines indicate analytical predictions from Eqs. (6) and (9), respectively. The black line indicates the
deterministic estimate from Eq. (3). (b) Same as panel (a), plotted logarithmically and normalized by a theoretical peak fraction γ without subdivision, Eq. (3). (c) I0 = 100,
Ns = 500, each sub-population containing at most one infected individual. The yellow color now represents the reduction both to extinction and the initial distribution of
infected individuals since 400 sub-populations are initialized with I = 0. (d) I0 = 500, Ns = 500, infected individuals randomly distributed across sub-populations. Black dots
in (c) and (d) mark data points where the estimation of the extinction effect is affected by overlapping timescales between different processes (see the text and Appendix B).
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The benefits of subdivision are obvious even from a determin-
istic standpoint in the case where many regions initially contain no
infected individuals—in this case, subdivision prevents spreading
of the epidemic to disease-free communities. However, our analy-
sis shows that this advantage persists due to stochastic extinction
events and desynchronization even if the sub-populations are so
large that many or all of them initially contain infections, as long as
I0/Ns ∼ 1. Of course, increasing Ns further is always beneficial due
to the above-mentioned deterministic effect, with the trivial limiting
case of one group per household (an extremely strict lockdown). In
contrast, aiming at I0/Ns ∼ 1 could still allow for the functioning of
local socioeconomic life in fairly large sub-populations if I0 is not
too large when the subdivision happens.

While extinction has been widely considered for SIR-type
models11,21 and has been related to a minimum number of infections
necessary to cause a “major” outbreak,14 we have shown here that,
even if the dynamics in the large population is outside the stochastic
regime, it is possible to resurrect these effects by artificially sub-
dividing the population. Because of the strong exponential depen-
dence of the extinction probability on n [see Eq. (5)], it is important
to note that I0 denotes the true number of infections, including
undetected and/or asymptomatic cases. Another aspect we have
neglected here is that of cross-infections: In reality, sub-populations
cannot be perfectly isolated; therefore, local extinction might only
be temporary, as has been seen in studies of persistence.10,16 The
calculated peak reduction would be observed in the limit of small
cross-infection rates. In contrast to extinction, desynchronization
does not reveal itself on the level of a single population (except as
a difference in timing) and is, therefore, an emergent property of
the subdivision scenario, which is likely to persist in the presence of
cross-infections. In the framework presented in Sec. II A, these could
be included (without changing R0) by allowing a certain fraction
ξ of contacts across the entire population and only restricting the
remaining fraction 1 − ξ to within each sub-population. We set up
such a model in a separate study25 to investigate a potential realistic
containment strategy.

In reality, individuals will not compensate for all avoided con-
tacts outside the local sub-population with contacts within it, as we
have conservatively assumed by keeping b constant upon subdivi-
sion. Instead, isolation will naturally lead to a reduction in b, akin to
cutting links in the spreading network5 so that the effect of subdivi-
sion will be a combination of deterministic reductions in R0 and
the stochastic effects presented here. Subdivision of a population
can be complementary to containment measures, such as social dis-
tancing and electronic contact tracing,13,23 which still allow for the
functioning of local public life. However, it also does not preclude
the activation of more drastic measures in regions beginning to show
deterministic exponential behavior.25
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APPENDIX A: THE EXACT SOLUTION OF THE

BIRTH–DEATH PROCESS

Consider a population of the infected individuals I that can
undergo the following two processes:

I
b−→ I + I, I

k−→ ∅; (A1)

i.e., each I can give birth to another I with rate b or it can die with rate
k, at any time. Ignoring the stochasticity, the average behavior of the
system is described by exponential birth and death. The population
n̄(t) can be determined as follows:

dn̄(t)

dt
= (b − k)n̄(t) ⇒ n̄(t) = e(b−k)t, (A2)

where we have assumed that the initial size of the population is one.
As this is a one-step process, the probability of finding n copies of I
in the sample at time t satisfies the following master equation:

dPn(t)

dt
= k(n + 1)Pn+1(t) + b(n − 1)Pn−1(t) −

(

k + b
)

nPn(t).

(A3)

The factor of n is needed because the birth or death could happen
to anyone. Equation (A3) can be solved by an ansatz of the form
Pn ∼ fn for n ≥ 1, which together with the initial condition
Pn(0) = δn,1 gives us the solution as

Pn(t) =
n̄(1 − k/b)2

(n̄ − 1)(n̄ − k/b)

(

n̄ − 1

n̄ − k/b

)n

. (A4)

The distribution can be used to calculate the first two moments,

〈n(t)〉 =
∞

∑

n

nPn(t) = n̄(t) = e(b−k)t, (A5)

1n2 =
〈

[n − n]2
〉

=
(

b + k

b − k

)

e(b−k)t
[

e(b−k)t − 1
]

, (A6)

which reveal more interesting features about the system. First, it is
reassuring that the average population size behaves according to the
mean-field description above that predicted exponential growth or
decay. A quantity of interest is

1n2

n̄
=

(

b + k

b − k

)

[

e(b−k)t − 1
]

, (A7)

which probes whether number fluctuations follow a characteristic
Poisson behavior. In the long time limit, we have

1n2

n̄
=







∞, b > k,

k + b

k − b
, b < k,

(A8)

which shows that while a decaying population that corresponds
to b < k has a Poisson behavior, a growing population corre-
sponding to b > k has giant number fluctuations, which can be
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characterized via

1n

n̄
=

√

b + k

b − k

√

1 − e−(b−k)t, (A9)

which leads to

1n

n̄
=

√

b + k

b − k
(A10)

in the long time limit. In other words, the fluctuations scale with the
average population size when b > k and with the square root of the
average population size when b < k.

The above solution allows us to calculate the extinction prob-
ability of the population P0(t), which is an absorbing state. We
find

P0(t) = 1 −
∞

∑

n=1

Pn(t) =
k

b
·

e(b−k)t − 1

e(b−k)t − k/b
, (A11)

which is a very interesting result. When k > b, n̄ → 0 at long times,
and we obtain P0 = 1. It is no surprise that extinction at long times
is a certainty when the death rate is larger than the birth rate. How-
ever, when k < b, n̄ → ∞ at long times, and we obtain P0 = k/b,
a result that is in contradiction with the prediction of the aver-
age behavior of the system, which is exponential growth. Therefore,
number fluctuations could completely annihilate an exponentially
growing population.

APPENDIX B: TIMESCALE OF THE EXTINCTION

PROCESS AND ACCURACY OF MAXIMA DETECTION

IN SUB-POPULATIONS

Here, we derive quantitative estimates that allow us to com-
pare the timescale of the extinction process to that of the deter-
ministic peak in the SIR model. This is conceptually interesting
in its own right, but it also allows us to meaningfully differen-
tiate between “real” maxima and random transient peaks in the
number of infected individuals in sub-populations that experience
extinction.

In the pure birth–death process, the fraction of extinction
events, 0 ≤ φx ≤ 1, that have already happened by time t can easily
be calculated from Eq. (A11) as

φx(t) =
P0(t)

limt→∞ P0(t)
= 1 −

1 − k/b

e(b−k)t − k/b
. (B1)

This equation can be inverted to yield the time tx by which a fraction
φx of extinction events have happened,

tx(φx) =
1

b − k
log

(

1 − φxk/b

1 − φx

)

. (B2)

On the other hand, we can also estimate the fraction of non-extinct
populations, 0 ≤ φc ≤ 1, that will still be below a cutoff size nc at

time t,

φc(t, nc) =
nc−1
∑

n=1

Pn(t)

= 1 −
e(b−k)t − k/b

e(b−k)t − 1

(

1 −
1 − k/b

e(b−k)t − k/b

)nc

. (B3)

Evaluating φc(tx(φx), nc), therefore, yields the fraction of popula-
tions still below nc when a fraction φx of extinction events have
already happened. This expression can be inverted to yield the
simple relationship

nc(φx, φc) = 1 +
log(1 − φc)

log φx

, (B4)

giving the number of infected individuals below which a fraction φc

of non-extinct populations will still be at the time when a fraction
φx of populations destined for extinction have already reached the
extinct state.

In order to estimate the effect of extinction in our numer-
ical simulations (cf. Fig. 4), we detect the maximum number of
infected individuals in each sub-population (independent of their
timing) and compare the sum of these numbers to our estimate Iext

max

from the main text. In the sub-populations that experience random
extinction of the epidemic, the detected numerical maxima will in
reality be transient fluctuations before extinctions. These contribute
more and more asR0 = b/k → 1 when the deterministic peak value
Nγ = N

(

1 − (1 + logR0)/R0

)

20 decreases and the extinction prob-
ability 1/R0 increases. Using the estimates above, we can exclude
these false maxima based on their timing by only considering those
maxima for which

tmax > tx(φx) (B5)

and simultaneously ensuring that

nc(φx, φc) < Nγ (B6)

is fulfilled. φx and φc play the role of accuracy parameters. The first
condition ensures that false maxima are excluded with probability
φx, while the second one ensures that a pure birth–death process
would not have reached the deterministic SIR peak by the same time
with probability φc. Note that the latter is a conservative estimate,
as growth in the SIR model is significantly slowed before reaching
its peak compared to a pure birth–death process. In Fig. 4, we use
a value of φx = φc = 0.99 to exclude 99% of false maxima and still
detect more than 99% of deterministic SIR maxima except for the
data points marked as unreliable, for which Eq. (B6) is not fulfilled,
and, therefore, the extinction process and the deterministic SIR peak
are not clearly separated in time. Conversely, this also means that
for all other parameters (i.e., larger R0 = b/k), extinction usually
happens well before the deterministic SIR dynamics reaches its peak.

It is worth emphasizing that, in the limit b → k and small
populations, the distinction between an initial stochastic phase and
a deterministic time course becomes meaningless since γ eventu-
ally becomes order ∼1/N and the mean extinction time diverges.
At this point, the dynamics throughout will be dominated by ran-
dom growth of the number of infected individuals and stochastic
fluctuations will continue to contribute, even as the number of sus-
ceptibles decreases, eventually ending the epidemic (i.e., during and
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beyond the maximum). In addition, the assumption that there is no
depletion of susceptibles in the early phase (and thus the equiva-
lence to a pure birth–death process) breaks down. However, in this
study, we are interested in the regime where even sub-populations
are still large and while b is sufficiently close to k to yield a significant
extinction probability k/b, it is large enough to lead to a significant
deterministic outbreak peak. Therefore, we do not investigate this
regime.

APPENDIX C: ANALYTICAL APPROXIMATION OF THE

RELATIVE PEAK TIME DISTRIBUTION

The fact that the early phase of the dynamics in the SIR model
(when S ≈ N and I is small) corresponds to a simple birth–death
process also allows us to obtain an analytical estimate for the
peak time distributions of the sub-populations. This can be read-
ily adapted from a similar calculation performed on an equivalent
problem in evolution, where the dynamics of a small mutant sub-
population with a given selective advantage can likewise be under-
stood as a birth–death branching process,26 for which the transition
from the initial stochastic regime where extinction is still possible
to the deterministic regime of exponential growth corresponds to
the establishment of the mutation in the population (which precedes
fixation).

We obtain an approximation for the establishment time distri-
bution of the disease in a sub-population as

Pest
SIR(τ ) = k

(

1 − k/b
)

exp

(

−(b − k)τ −
k

b
e−(b−k)τ

)

, (C1)

where we have corrected for an additional minus sign missing from
Ref. 26. The variation in the timing of the later deterministic dynam-
ics is due entirely to fluctuations in this initial stochastic phase. To
compare this analytical approximation with our simulation results
for the peak time in the main text, we plot the non-normalized,
unconditional distribution,

P(tpeak) = [1 − (k/b)n]Pest
SIR

(

tpeak + τ̄ − 〈tpeak〉
)

, (C2)

which is diminished by a factor [1 − (k/b)n] [from Eq. (C1)]
accounting for the probability of extinction in a population with ini-
tially n infected individuals and has its mean shifted to the measured
mean peak time 〈tpeak〉. Here,

τ̄ ≡ 〈τ 〉 =
1

b − k
ln

(

γ ′ k

b

)

, (C3)

where γ ′ = 1.781 0724 . . . is the exponential of Euler’s constant.
We note that simply shifting the mean of the distribution is

justified because the dynamics is predominantly identical in dif-
ferent sub-populations once they are in the deterministic regime,
while only lagging by a random time span τ . This simple argu-
ment depends on the assumption that stochastic fluctuations can
be ignored before deviations from exponential behavior (i.e., satu-
ration effects) have to be considered for the deterministic dynamics.
This is true for the scenarios we consider in the SIR model since our
sub-populations still consist of thousands of individuals and we are
explicitly focusing on cases where b is not arbitrarily close to k.

APPENDIX D: ESTIMATING THE EFFECT OF

SUB-POPULATION DESYNCHRONIZATION

For estimating the peak reduction effect due to desynchro-
nization of the sub-populations, it is convenient to work with the
normalized equations for s = S/N and i = I/N, which read

ṡ = −bsi, (D1a)

i̇ = bsi − ki. (D1b)

When i reaches its peak γ = i(tpeak), new infections and recovery
balance according to Eq. (D1b) and s(tpeak) = k/b. Based on this
known value, we use the following ansatz for s:

s(t) =
k

b

(

1 + ε(t)
)

, (D2)

with ε(tpeak) = 0. Since we are interested in the regime where there
is a substantial extinction probability k/b, s(tpeak) is also still of order
1. Together with the fact that i̇(tpeak) = 0 by definition, we expect
from Eq. (D1a) that the lowest (linear) order of ε will suffice to
describe the dynamics around the peak; i.e., ε(t) ≈ ε1 · (t − tpeak)

(conversely, we expect this approximation to break down when
b � k). Substituting the ansatz into Eq. (D1a) yields ε1 = −bγ or

ε(t) ≈ −bγ (t − tpeak). (D3)

With this, we can obtain an approximation for i around the peak.
From Eq. (D1b), we know that

d log(i)

dt
= bs(t) − k = kε(t), (D4)

which can easily be solved. Together with the condition i(tpeak) = γ ,
we obtain

i(t) ≈ γ exp

(

−
1

2
bkγ (t − tpeak)

2

)

. (D5)

Now that we have an approximation for i(t) near the peak, we
can calculate how these time courses add up across individual sub-
populations by assuming that they all have the shape (D5), with
the peak time tpeak stochastically distributed according to Eq. (C2).
Defining

ī(t) = lim
Ns→∞

1

Ns

Ns
∑

j=1

i(t
j

peak; t), (D6)

where each i(t
j

peak; t) represents a time course as in Eq. (D5) with t
j

peak

drawn from the distribution (C2) for each j, we obtain an average
superposition of many sub-populations in the limit Ns → ∞,

ī(t) =
∫

dtpeak Pest
SIR(tpeak + τ̄ ) i(tpeak; t). (D7)

Note that [as compared to Eq. (C2)] we use here the normalized dis-
tribution, without the diminishing factor due to extinction, in order
to extract the reduction strictly due to desynchronization. We have
also set 〈tpeak〉 to 0 without loss of generality, as a different value
would simply shift ī(t) by the corresponding time.
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The integral in Eq. (D7) cannot be integrated in a closed form.
We, therefore, replace Pest

SIR by a normal distribution N (0, σ 2) with

the same variance σ 2 = π 2/[6(b − k)2]. It is useful to note that, as
for the normal distribution, the variance completely determines the
shape of the Gumbel distribution in Eq. (C1), which means that
the systematic error introduced by this replacement is parameter
independent. Finally, we can calculate

ī(t) =
∫

dtpeak

exp
(

−t2
peak/(2σ

2)
)

√
2πσ

i(tpeak; t)

=
γ

α
exp

(

−
1

2
bkγ

t2

α2

)

, (D8)

with

α =

√

1 +
π 2bkγ

6(b − k)2
.

The maximum of the resulting time course occurs at t = 0 (due to
our arbitrary choice of the mean for tpeak) and is ī(0) = γ /α. Since
the expected peak value without desynchronization is γ , desynchro-
nization reduces this peak value by a factor of α−1. According to
Eq. (the definition of α above), α itself depends on γ , which in
turn is a function of R0 = b/k. Using the well known approxima-
tion γ = 1 − [1 + log(R0)]/R0,20 which is valid as long as S ≈ N
initially, we rewrite α as

α =

√

1 +
π 2[R0 − 1 − log(R0)]

6(R0 − 1)2
. (D9)

While we expect the quantitative estimate to be less accurate toward
higher R0 (see above), we note that the important limits

lim
R0→∞

1

α
= 1, (D10)

lim
R0→1

1

α
=

√

12

12 + π 2
≈ 0.7407 (D11)

exist. The first one signifies that there is no peak reduction due to
desynchronization for R0 → ∞, consistent with the disappearance
of the stochastic phase at the beginning of the dynamics. The sec-
ond limit indicates a finite reduction by a factor ≈ 0.7407 toward
R0 = b/k = 1. Since the timescales of both the stochastic fluctua-
tions and the deterministic peak behavior diverge for R0 → 1 (and
are ill-defined for R0 = 1), this means that they must exhibit iden-
tical scaling behavior in order for neither of them to dominate. In
between the two extremes, 1/α increases monotonically with R0,
which implies that the maximum reduction that can be achieved by
desynchronization is about 26% and is reached close to R0 = 1. It is
important to note, however, that several assumptions even about the
deterministic time course (for example, the value of γ ) break down
when R0 is so close to 1 that γ becomes of order 1/N; therefore,
a fully stochastic treatment would be needed to fully capture this
regime. This does not limit the validity of the results in the regime
we are interested in, i.e., where sub-populations still exhibit clear
deterministic outbreaks (or extinction).
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