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Abstract

Attenuation correction (AC) of PET/MRI faces challenges including inter-scan motion, image 

artifacts such as truncation and distortion, and erroneous transformation of structural voxel-

intensities to PET mu-map values. We propose a deep-learning-based method to derive synthetic 

CT (sCT) images from non-attenuation corrected PET (NAC PET) images for AC on whole-body 

PET/MRI imaging.

A 3D cycle-consistent generative adversarial networks (CycleGAN) framework was employed to 

synthesize CT images from NAC PET. The method learns a transformation that minimizes the 

difference between sCT, generated from NAC PET, and true CT. It also learns an inverse 

transformation such that cycle NAC PET image generated from the sCT is close to true NAC PET 

image. A self-attention strategy was also utilized to identify the most informative component and 

mitigate the disturbance of noise. We conducted a retrospective study on a total of 119 sets of 

whole-body PET/CT, with 80 sets for training and 39 sets for testing and evaluation.

The whole-body sCT images generated with proposed method demonstrate great resemblance to 

true CT images, and show good contrast on soft tissue, lung and bony tissues. The mean absolute 

error (MAE) of sCT over true CT is less than 110 HU. Using sCT for whole-body PET AC, the 

mean error of PET quantification is less than 1% and normalized mean square error (NMSE) is 

less than 1.4%. Average normalized cross correlation on whole body is close to one, and PSNR is 

larger than 42 dB.

We proposed a deep learning-based approach to generate sCT from whole-body NAC PET for 

PET AC. sCT generated with proposed method shows great similarity to true CT images both 

qualitatively and quantitatively, and demonstrates great potential for whole-body PET AC in the 

absence of structural information.
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1. Introduction

The emerging hybrid system, PET/MRI has attracted enormous attention in both research 

and clinical applications for the last decades (Quick 2014, Vandenberghe and Marsden 

2015). MRI produces no ionization radiation, resulting in significantly reduced radiation 

dose comparing to PET/CT. MRI also provides superior soft tissue contrast as well as 

functional information such as perfusion and diffusion. However, predicting the attenuation 

correction (AC) factors from MR images is challenging. MR signal is related to tissue’s 

proton density and magnetic relaxation properties, which is not correlated to electron density 

required for AC. There is no one-to-one mapping to convert MR signals to linear attenuation 

coefficients. A number of studies have been performed to develop accurate AC map from 

MR images. The most straightforward MR-based AC (MRAC) is to segment MR image into 

different tissue types, such as air, lung, tissue, fat and bone, and assign the corresponding 

linear attenuation coefficients at 511 keV (Zaidi et al 2003, Hofmann et al 2009, Fei et al 
2012)]. Segmenting lung and cortical bone are particularly difficult because the two only 

produce weak signals with conventional MR sequences. Though ultrashort echo time (UTE) 

pulse sequences has been investigated for bone visualization and segmentation, its 

performance is limited by high level of noise and image artefacts (Catana et al 2010, 

Keereman et al 2010). Moreover, due to considerable long acquisition time, the application 

of UTE MR sequence is usually limited to brain imaging or small field-of-view. Atlas–based 

techniques provide an alternative approach to the MRAC problem. This technique utilizes 

the co-registration of MR image and CT templates to predict a pseudo-CT or sCT and obtain 

an attenuation map (Hofmann et al 2008, 2011, Malone et al 2011). The merit of atlas–based 

AC methods is that it predicts attenuation maps on a continuous scale, which outperforms 

segmentation-based AC methods in some applications. However, registration is 

computational costly, especially when multiple registrations are required. Moreover, the 

accuracy of this technique highly depends on the registration accuracy, while accurate 

registration is not always guaranteed due to organ morphology and variability across 

patients.

Besides the issues mentioned above, both of segmentation-based and atlas-based methods 

face common challenges, such as image artefacts and lengthy acquisition times. Truncation 

happens when patient body falls out of field of view, and usually results in imaging 

distortion and missed tissue contours. Truncation artefacts may be less of an issue for brain 

imaging, but is critical in whole body MRI due to the unavoidable extended image volumes 

(Hofmann et al 2011). It is reported that arm truncation artefacts could result in standardized 

uptake value (SUV) estimation errors over the arm in the range of 16%–57% (Schramm et al 
2012). Even accepting the imperfections, one may find that MR images are not always 

available due to the prolonged scanning time of PET/MRI on whole body imaging. 

Compared to brain imaging, PET/MR is quite limited for whole-body applications, majorly 

due to the considerably increased acquisition time. For conventional PET/CT, the PET 
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duration is the limiting factor, which takes 2–3 min per bed position while whole-body 

PET/MRI usually takes 5–10 min or even longer for each bed position primarily due to the 

lengthy MR sequences (Lindemann et al 2018). Though the acquisition time can be reduced 

by eliminating some MR sequences while keeping acceptable AC accuracy, sequences, such 

as T1-weighted Dixon-type sequences (Martinez-Möller et al 2009, Lindemann et al 2018) 

and UTE sequences (Robson and Bydder 2006, Keereman et al 2010, Berker et al 2012), 

have to be performed for the sole purpose of AC. Lengthening acquisition time increases 

patient discomfort and patient motion, and reduces patient throughput. Therefore, it is 

desirable to find alternative AC methods without the help of MR images.

The development of deep learning has demonstrated tremendous potential in computer 

vision as well as medical imaging. Deep learning could help to generate sCT from MR 

images to predict AC map (Spuhler et al 2018, Yang et al 2019). Different from those 

approaches, we want to make full use of existing NAC PET, and develop a method that make 

use of NAC PET to synthesize CT images for AC. This paper is organized as follows. 

Section 2 presents how we structured a cycle-generative-adversarial-network (CycleGAN) to 

establish the transformation between NAC PET and CT. In section 3, we described the 

validation studies. We then discussed the limitations and potentials of the proposed methods 

in section 4, ad concluded in section 5.

2. Methods

2.1. CT synthesis from NAC PET

We propose a new AC method by using a sCT-aided strategy. Figure 1 outlines the schematic 

flow chart of this CT synthesis process. The method consists of two major steps: the training 

step and the synthesis step. In the training step, CT images were used as the learning-based 

target of corresponding NAC PET images. A 3D CycleGAN network (Harms et al 2019) 

architecture was employed to learn the mapping between CT and NAC PET. The CycleGAN 

architecture structures the transformation to be a closed loop by introducing both a targeted 

mapping (NAC PET to CT) and an inverse mapping (CT to NAC PET). The input patch size 

for the CycleGAN architecture was set to 64 × 64 × 64. Each patch was extracted from NAC 

PET and CT images by sliding the window with overlap size of 18 × 18 × 18 to its 

neighbouring patches.

The generator architecture we used is a self-attention U-Net, which was structured with 

encoding path, decoding path and long skip connections. As shown in the generator 

architecture of figure 1 (upper part), after two convolution layers with max-pooling 

operators (which is called the encoding path) to reduce the feature map sizes, the feature 

map went through nine dense blocks and then two deconvolution layers and a tanh layer 

(which is called the decoding path) to perform end-to-end mapping, i.e. equal-sized input 

and output. The tanh layer works as a nonlinear activation function and makes it easy for the 

model to generalize or adapt to a variety of data and to map structures with similar CT 

intensities to different structures on NAC PET, such as heart and bladder. The dense block is 

implemented by six convolution layers. A first layer is applied to the input to create k feature 

maps, which are concatenated to the input. A second layer is then applied to create another k 
feature maps, which are again concatenated to the previous feature maps. The operation is 
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repeated five times then the output of these layers goes through the last layer to shorten the 

feature maps to k. In the long skip connection, three attention gates (AGs) were used to 

focus on identifying the most informative features from the feature maps extracted from the 

encoding path. In order to enforce a closed loop, two generators and two discriminator were 

utilized.

The discriminator architecture of CycleGAN was used as a typical fully convolutional 

network (FCN), where the input patch was either the output of the generators, the true CT or 

NAC PET. The input patch went through three convolution layers followed by pooling layer 

to reduce the output size. The sigmoid operation was used to polarize this output.

During the synthesis stage (lower part of figure 1), the patches were extracted from the NAC 

PET image and fed into the trained generator, which maps NAC PET patches to sCT 

patches. Finally the sCT used for PET AC was obtained by patch fusion.

2.2. Self-attention

In order to well represent the image patch in our generators, a long skip connection was used 

to concatenate the high-frequency information from the encoding path to low-frequency 

information from the decoding path to integrate multi-level features. However, high-

frequency information often include irrelevant and uninformative components since NAC 

PET images contain a large amount of noise. These components may prevent the model 

from obtaining an accurate mapping from NAC PET to CT. In order to overcome this 

challenge, we used a self-attention strategy on the feature maps generated from the encoding 

path to identify the most informative component and mitigate the disturbance of noise. 

Previous work demonstrated that by integrating attention gates (AGs) into a standard U-Net 

model, the most relevant semantic contextual information can be captured without enlarging 

the receptive field, which is highly beneficial for organ localization (Mishra et al 2018). As 

for our study, clear identification of organ outlines is important to estimate the intensity 

values inside each structure.

As is shown in AG architecture of figure 1, the feature maps extracted from the coarse scale 

were used in gating to disambiguate irrelevant and noisy responses in skip connections. This 

is performed immediately prior to the concatenation operation to merge only relevant 

activations. By using AGs, the most salient features from the encoding path are highlighted 

and are passed through the long skip connection.

2.3. Loss function

As described above, the network relies on continuous improvement of a generator network 

and a discriminator network. The accuracy of both networks is directly dependent on the 

design of their corresponding loss functions. The original cycle-GAN study optimized the 

networks in tandem according to a two-part loss function, consisting of an adversarial loss 

and a cycle consistency loss. The adversarial loss function, which relies on the output of the 

discriminators, applies to both the NAC-to-CT generator (GNAC−CT) and the CT-to-NAC 

generator (GNAC−CT) and the CT-to-NAC generator (GCT−NAC), but here we present only 

formulation for GNAC−CT for clarity. The adversarial loss function in this work is defined by
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Ladv GNAC−CT, DCT, INAC, ICT = SCE DCT GNAC−CT INAC , 1 (1)

where INAc is the NAC image and GNAC−CT(INAC) is the output of the NAC-to-CT 

generator, i.e. the sCT image. DCT is the CT discriminator which is designed to return a 

binary value indicating whether a pixel region is real (from a CT) or fake (from a sCT), so 

this measures the number of incorrectly generated pixels in the sCT image. The function 

SCE (·, 1) is the sigmoid cross entropy (SCE) between the logits obtained by discriminator 

and a unit as label.

The cycle consistency loss function in this work consists of a compound loss function. In the 

original cycle-GAN paper, this loss function constrained the inverse transformation, which 

in this work would be cycle image to original image, for both generators. In addition to these 

constraints, we minimize the distance between the synthetic image and the original image, 

which we call the synthetic consistency, to directly enforce them to have same intensity 

distribution. The first component of the loss function is the mean absolute loss (MAL):

MAL GNAC−CT, GCT−NAC = 1
n ICT

λloss 
cycle 

MAE GCT−NAC GNAC−CT INAC , INAC

+ MAE GsCT−CT GCT−sCT ICT , ICT + λloss 
syn 

MAE GCT−sCT ICT − IsCT + MAE GsCT−CT IsCT − ICT

(2)

where n(·) is the total number of pixels in the image, λloss 
cycle  and λloss 

syn   are parameters which 

control the cycle consistency and synthetic consistency, respectively. The symbol MAE 

denotes the mean absolute error (MAE) between two images.

The second component of the loss function is the gradient magnitude distance (GMD). 

Between any two images, the GMD is defined as:

GMD(Z, Y ) = ∑
i,j,k

Zi, j, k − Zi − 1, j, k − Y i, j, k − Y i − 1, j, k
2

+ Zi, j, k − Zi, j − 1, k − Y i, j, k − Y i, j − 1, k
2

+ Zi, j, k − Zi, j, k − 1 − Y i, j, k − Y i, j, k − 1
2

(3)

where Z and Y are any two images, and i, j, and k represent pixels in x, y, and z. To provide 

additional clarity in this work, we define a gradient magnitude loss (GML), which is a 

function of the generator networks

GML GNAC−CT, GCT−NAC = λdist 
cycle  GMD GCT−NAC GNAC−CT INAC , INAC

+ GMD GNAC−CT GCT−NAC ICT , ICT
+ λdist 

syn GMD GCT−NAC ICT , IsCT + GMD GNAC−CT INAC , ICT .
(4)

The total cycle- and synthetic-consistency loss function is then optimized according to
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Lcyc GNAC−CT, GCT−NAC = λMALMAL GNAC−CT, GCT−NAC +
λGMLGML GNAC−CT, GCT−NAC

(5)

where λMPL and λGML are tuning parameters that balance the MPL and GML functions. 

The global generator loss function can then be written

GCT−NAC, GNAC−CT = argmin
GCT−NAC, GNAC−CT

λadv Ladv GNAC−CT, DCT, INAC, ICT + Ladv GCT−NAC, DNAC, ICT, INAC
+ Lcyc GNAC−CT, GCT−NAC

(6)

where λadv is a regularization parameter that control the weights of the adversarial loss. The 

discriminators are optimized in tandem with the generators according to

DCT, DNAC = argmin
DCT, DNAC

SCE DCT GNAC−CT INAC , 0 + SCE DCT ICT , 1

+ SCE DNAC GCT−NAC ICT , 0 + SCE DNAC INAC , 1 .
(7)

The hyperparameter values from equations (6) and (7) are listed as follows: λadv = 1, 

λloss 
cycle  = 10, λloss 

syn  = 1, λMPL = 1, λGML = 1. Since it will be more difficult to generate an 

accurate cycle image from a real image due to the two transformations introduced, the value 

of λloss 
cycle  should be larger than λloss 

syn  .

2.4. Validation and evaluations

A retrospective sample of 119 whole-body FDG oncology patient datasets were collected for 

model training (80 sets) and evaluation (39 sets). All PET data were acquired with 

Discovery 690 PET/CT scanner (General Electric) using a body mass index (BMI)-based 

administration protocol of either 370 MBq (BMI < 30) or 444 MBq (BMI ⩾ 30) followed by 

a 60 min uptake period. Emission data were collected based on BMI for 2.5 min (BMI ⩾ 
25), 2min (18.5 < BMI < 25) or 1.5 min (BMI ⩽ 18.5). Images were reconstructed with a 3D 

ordered-subset expectation maximization (OSEM) algorithm (3 iterations, 24 subsets) with 

time-of-flight and corrections for attenuation, scatter, randoms, normalization and deadtime 

(Iatrou et al 2004). A post-image Gaussian filter of 6.4 mm was applied to all images. The 

reconstruction matrix was 192×192 with a pixel size of 3.65 × 3.65 × 3.27 mm3

The accuracy of sCT is quantified as MAE, which is calculated as,

MAE = 1
N ∑

i ∈ V

ICT(i) − IsCT(i)
ICT(i) (8)

where ICT and IsCT are true CT and sCT intensities, N is the number of voxels, and i 
represents index of each voxel on CT and sCT images. We also calculated the normalized 

cross correlations (NCC) to quantify the structure similarity between CT and sCT. NCC is 

defined as,
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NCCCT =
∑i ∈ V

1
N ⋅ ICT(i) − mean ICT IsCT(i) − mean IsCT

std ICT ⋅ std IsCT
(9)

where mean (·) and std (·) calculates the mean and standard deviation (STD) intensity inside 

the ROI volume.

The performance of proposed method on PET quantification is quantified with mean error 

(ME), normalized mean square error (NMSE) and peak signal to noise ratio (PSNR) 

calculated inside those contoured volumes,

ME = 1
N ∑

i ∈ V

I(i) − I′(i)
I(i) (10)

NMSE = I − I′ 2
2

I 2
2 (11)

PSNR = 10log10
N ⋅ max I′(i) 2

I − I′ 2
2 . (12)

ME and NMSE are averaged over all the voxels, i, inside the contoured organs or whole-

body volume, V. The organs and whole body were delineated on CT images, where N is the 

total number of PET voxels inside the volumes. I and I′ are PET intensities after AC with 

true CT and sCT respectively. max (·) is the max intensity inside the delineated volume. The 

NCC is calculated to quantify the intensity and structure similarity between AC PET (AC 

performed with true CT) and sCT AC PET (AC performed with sCT).

NCCPET =
∑i ∈ V

1
N ⋅ (I(i) − mean(I)) I′(i) − mean I′

std(I) ⋅ std I′ . (13)

We randomly selected 80 sets out of totally 119 sets of whole-body PET images for model 

training, and then applied the well-trained model on the remaining 39 sets of images to 

evaluate the reliability of the proposed method. Regions of interest (ROI) were delineated 

over brain, lung, heart, bilateral kidneys, liver, whole-body and lesions, as indicated in the 

patient’s clinical report.

3. Results

Figure 2 shows the side-by-side comparison of sCT and true CT on one patient. The sCT 

images generated with the proposed method demonstrate great resemblance to true CT 

images. sCT images not only recover lung, soft tissue and bony structures such as humerus 

and femur, but also demonstrate good contrast on fat and soft tissues around extremities, as 

indicated by the red arrows in figure 2. The proposed method obtained MAE of 108.9 ± 19.1 

HU, NCC of 0.854 ± 0.031, and PSNR larger than 22.3 ± 1.27 dB on the 39 testing datasets.

Dong et al. Page 7

Phys Med Biol. Author manuscript; available in PMC 2020 December 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The qualitative sCT AC PET reconstruction results on one representative patient are 

illustrated in figure 3. sCT images generated with the proposed method show anatomical 

structures that are close to those on true CT images. Lung and the bone of extremities can be 

clearly visualized on sCT. After sCT AC, the generated PET images are almost identical to 

the PET images corrected with true CT (figures 3(c) and (d)). Figure 4 shows the profile 

comparison and joint histogram of AC PET and sCT AC PET. The PET profile generated 

with sCT AC matches the true AC PET profile very well. The joint histogram shows a 

distribution that is close to the line of identity, which indicates great correlation between AC 

PET and sCT AC PET. Figure 5 shows sCT and sCT PET images on another patient. 

Similarly, sCT shows great contrasts on lung, soft tissue and bone structures. The PET 

images after sCT AC demonstrate excellent matching to the groundtruth AC PET images. 

The quantitative results are shown in figure 6, where the image profile is greatly enhanced.

The quantitative AC results are listed in table 1. The ME on the whole-body volume 

obtained with the proposed method is 0.12% ± 2.98%, and NMSE is 1.36% ± 1.08%. NCC 

is close to one, indicating excellent correlation between the PET images obtained with the 

proposed method and the groundtruth PET images. The ME and NMSE calculated on brain, 

heart, left kidney, right kidney liver and lesion are from −1.06% to 3.57%, and from 0.43% 

to 1.80%, respectively. The quantification on lung volume is challenging due to tissue 

inhomogeneity, and the proposed method was able to obtain average ME and NMSE of 

10.72% and 6.50%.

4. Discussion

We proposed a deep learning-based method to synthesize CT images with only NAC PET 

images for AC of whole body PET images. We trained and evaluated the proposed model 

with 119 sets of whole-body PET images. The evaluation demonstrated excellent 

quantitative accuracy of sCT as well as sCT AC PET. The proposed Cycle GAN model uses 

only NAC PET images for AC, which has great potential to avoid lengthy MR acquisition 

used only for AC map estimation.

Synthesizing CT images with NAC PET images are inherently difficult due to the 

considerably low spatial resolution and limited anatomical information provided by NAC 

PET images. However, the proposed method demonstrates competitive results when 

compared to MRAC methods in literature. Hofmann et al proposed a MRAC method 

combined atlas and pattern-recognition, and applied this method on both brain and whole 

body imaging (Hofmann et al 2008, 2011). This AC method obtained a mean PET 

quantification error of 3.2% ± 2.5% SUV on brain imaging and 7.7% ± 8.4% SUV on whole 

body PET images with 14.0% ± 11.4% SUV in thorax region. Paulus et al implemented a 

model-based bone segmentation method on Dixon sequence, and obtained SUV 

quantification errors of 2.7% and 5.2% on normal soft tissue and soft tissue lesions (Paulus 

et al 2015). The proposed method obtains whole body ME of less than 1% and NMSE less 

than 2% within common organs, and around 1% quantification errors on lesions.

The possibility of using NAC PET to perform AC was investigated in literature. Liu et al 
trained a deep convolutional encoder-decoder network for brain CT synthesis from NAC 
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PET images (Liu et al 2018). The network generated pseudo-CT with MAE of 111HU, 

resulted with average errors of less than 1% on the whole brain region and these results are 

well matched to our findings. The MAE on sCT with the proposed CycleGAN is less than 

110 HU, and the ME on PET quantification is less than 1%.

The sCT shows more blurring patterns around lung, as shown in figure 2. This is due to 

respiratory motion over the duration of the bed acquisitions covering the thorax. Deriving 

sCT directly from NAC PET, the proposed method tends to propagate the respiratory motion 

to sCT. This suggests that the proposed CT synthesis scheme could possibly mitigate the 

mis-registration or mis-alignment between NAC PET and CT, since sCT is directly 

generated from NAC PET. This improvement was also studied in (Liu et al 2018). In the 

future, we will validate HU accuracy and corresponding AC accuracy with motion-averaged 

CT and PET scans.

The OSME iterations and FWHM of post-smoothing kernels majorly change the noise level 

the NAC PET images. In order to evaluate the effect of different noise level on our proposed 

method, we conducted study to test the robustness of the proposed method under different 

noise levels. Specifically, we added different level of noise (Gaussian distribution with 

different standard deviation with different ratio 5%, 10%, 20% and 30%) into the NAC 

PETs, generated the sCTs using our original trained model and then performed some 

comparisons. The MAE on sCT is 108.4 ± 9.7 HU, 115.7 ± 11.1 HU, 115.7 ± 11.1 HU, 

116.7 ± 11.2 HU and 117.3 ± 11.3 HU on no noise, 5% noise, 10% noise, 20% noise and 

30% noise images. The corresponding ME on whole-body PET is 0.12% ± 3.01%, 0.20% ± 

3.35%, 0.21% ± 3.58%, 0.21% ± 4.53% and 0.22% ± 4.68% respectively. Based on these 

results, the proposed method is robust to different noise.

Although lung and the bone of extremities can be clearly visualized on sCT, the sacrum and 

coccyx are not predicted precisely in figures 3(b) and 5(b). The reason may be that the PET 

artifacts caused by extreme activity contrast in the pelvic region would be influential on sCT. 

The other reason may be the intensity of bladder is much larger than the rest region in NAC 

PET image. Thus, for the batch normalization, the intensity of other contrast region, such as 

the bone in the torso, is reduced. This would affect the accuracy of bone in the torso. In our 

future work, one solution is to use a threshold to clip the intensity value of bladder region in 

NAC PET image. Another solution is to train a specific model only for pelvic site to solve 

this problem.

In table 1, the solid organs are almost negative ME values (overestimation) except for both 

kidneys and lesion. The reason may be caused by the large variance of intensity values for 

whole body NAC PET images. As we trained the model on patches and used a uniformed 

normalization (x − x) / x99 − x5 , where x is the mean intensity, x99 and x5 are the 99th and 

5th percentile intensities. Since x99 of NAC PET is higher in brain, heart and bladder, the 

uniform normalization would reduce the contrast of other organs in NAC PET image. The 

low contrast region would be a challenge for proposed model to predict the accurate CT 

intensity value. In future, we will work on region-based networks to predict the sCT for 

different sites.
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The proposed method synthesized CT images from NAC PET images, which was then used 

for PET AC. Though designed for the propose of AC in PET/MRI imaging, the proposed 

method was implemented and evaluated with PET/CT data in this study. The quantification 

performances could be affected by MR coil attenuation and differences in protocol and 

machine setting on PET/MRI data. With appropriate scanning protocol and machine 

calibration, their impact on the quantification accuracy could be minimized. In the future, we 

will implement the proposed method with PET/MRI data for further validation.

The proposed method was designed to serve AC for PET/MR system, and could be applied 

to PET/CT studies. Though CT-based AC methods is the prevailing method, it has it has 

limitations (Berker and Li 2016, Mehranian et al 2016). Misalignment between CT and PET 

due to patient motion could result in errors when calculating AC factors (Mehranian et al 
2016). Moreover, the CT imaging dose is undesirable in some applications, such as 

paediatric imaging due to the increased radiosensitivty of these patients. Depending imaging 

parameters and scanning length, a whole body PET/CT scan could result in 13–32mSv total 

effective dose (Huang et al 2009). It results in more imaging dose when serial PET/CT scans 

are required for restaging or assessing treatment response. The proposed method estimates 

AC maps with only NAC PET images, and has the potential to obtain accurate AC without 

the need of extra CT doses.

5. Conclusion

In this work, we proposed a deep learning-based method to synthesize CT images with only 

NAC PET images for whole body PET AC. The method demonstrates excellent sCT 

estimation accuracy and PET quantification accuracy and has great potential to facilitate AC 

in hybrid systems without the need of additional scans.
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Figure 1. 
The schematic flow diagram of the proposed method. The upper part shows the training 

procedure, and the lower part shows the CT synthesis procedure.
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Figure 2. 
Comparison of true CT and sCT images on a female received breast implants. From left to 

right, the four columns are NAC PET, true CT, sCT, and difference images between CT and 

sCT (unit: HU). The top two rows show two transverse slices, and the last row shows one 

coronal slice.
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Figure 3. 
Qualitative results on Patient 1. Images are (a) true CT, (b) sCT, (c) AC PET and (d) sCT AC 

PET. The dashed line on (c) indicates the position of a sagittal cranial-caudal profile 

displayed in figure 4.
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Figure 4. 
Quantitative results on Patient 1. Images are PET image profiles (left) and joint histograms 

(right) of AC PET and sCT AC PET. The red line in the right figure is the line of identity.
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Figure 5. 
Qualitative results on Patient 2, whom is a female received breast implants. Images are (a) 

true CT, (b) sCT, (c) AC PET and (d) sCT AC PET. The dashed line on (c) indicates the 

position of a sagittal cranial-caudal profile displayed in figure 6.
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Figure 6. 
Quantitative results on Patient 2. Images PET image profiles (left) and joint histograms 

(right) of AC PET and sCT AC PET.
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Table 1.

AC performances on 39 sets of whole-body PET images. Data are reported as mean ± STD.

ROI ME NMSE NCC PSNR (dB)

Brain −1.05% ± 3.94% 0.43% ± 0.0.78% 0.981 ± 0.014 31.6 ± 4.1

Lung 10.72% ± 7.71% 6.50% ± 4.17% 0.854 ± 0.067 25.5 ± 4.9

Heart −0.67% ± 8.4% 1.40% ± 1.22% 0.964 ± 0.034 27.6 ± 3.9

Lt kidney 2.45% ± 9.13% 1.41% ± 3.12% 0.975 ± 0.069 32.3 ± 8.2

Rt kidney 3.57% ± 10.36% 1.50% ± 2.88% 0.983 ± 0.059 31.9 ± 7.9

Liver −1.06% ± 7.047% 1.80% ± 2.29% 0.856 ± 0.136 25.5 ± 5.2

Lesion 1.07% ± 9.01% 0.91% ± 1.31% 0.972 ± 0.024 27.9 ± 6.3

Whole body 0.12% ± 2.98% 1.36% ± 1.08% 0.988 ± 0.009 42.6 ± 3.4
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