Skip to main content
. 2020 Dec 16;26(23-24):1359–1368. doi: 10.1089/ten.tea.2020.0191

Table 1.

Evaluation of Random Forest Classifier and Random Forest Regressor Models Using Prediction Accuracy Score

wt% PPF 85 85 85 85 85 85 85 85 85 85 85 85 90 90 90 90 avg
Pressure (bar) 2.0 2.0 2.0 2.0 2.5 2.5 2.5 2.5 2.5 3.0 3.0 3.0 2.5 3.0 3.0 4.0
Speed (mm/s) 5.0 7.5 10.0 15.0 5.0 7.5 10.0 15.0 20.0 5.0 7.5 10.0 5.0 5.0 7.5 5.0
RFc (P.A. score) 0.98 0.99 0.82 0.54 0.99 0.99 0.99 0.62 0.68 0.93 0.95 0.97 0.27 0.41 0.77 0.00 0.74
RFc correct prediction  ×  ×  ×  
RFr (P.A. score) 0.98 0.99 0.82 0.75 1.00 1.00 1.00 0.63 0.74 0.93 0.92 0.97 0.27 0.04 1.0 0.00 0.75
RFr correct prediction  ×  ×  ×  

The P.A. scores are given across all leave-one-out configurations (PPF composition-pressure-speed) and the average is included. The correct/incorrect predictions are noted (correct if P.A. score is higher than 0.5).

RFc, random forest classifier; RFr, random forest regressor; P.A. score, prediction accuracy score; PPF, poly(propylene fumarate).