
Multi-needle Localization with Attention U-Net in US-guided HDR 
Prostate Brachytherapy

Yupei Zhanga), Yang Lei, Richard L.J. Qiu, Tonghe Wang
Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 
USA

Hesheng Wang
Department of Radiation Oncology, New York University, New York, NY, USA

Ashesh B. Jani, Walter J. Curran, Pretesh Patel, Tian Liu, Xiaofeng Yang
Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 
USA

Abstract

Purpose: Ultrasound (US)-guided high dose rate (HDR) prostate brachytherapy requests the 

clinicians to place HDR needles (catheters) into the prostate gland under transrectal US (TRUS) 

guidance in the operating room. The quality of the subsequent radiation treatment plan is largely 

dictated by the needle placements, which varies upon the experience level of the clinicians and the 

procedure protocols. Real-time plan dose distribution, if available, could be a vital tool to provide 

more subjective assessment of the needle placements, hence potentially improving the radiation 

plan quality and the treatment outcome. However, due to low signal-to-noise ratio (SNR) in US 

imaging, real-time multi-needle segmentation in 3D TRUS, which is the major obstacle for real-

time dose mapping, has not been realized to date. In this study, we propose a deep learning-based 

method that enables accurate and real-time digitization of the multiple needles in the 3D TRUS 

images of HDR prostate brachytherapy.

Methods: A deep learning model based on the U-Net architecture was developed to segment 

multiple needles in the 3D TRUS images. Attention gates were considered in our model to 

improve the prediction on the small needle points. Furthermore, the spatial continuity of needles 

was encoded into our model with total variation (TV) regularization. The combined network was 

trained on 3D TRUS patches with the deep supervision strategy, where the binary needle 

annotation images were provided as ground truth. The trained network was then used to localize 

and segment the HDR needles for a new patient’s TRUS images. We evaluated our proposed 

method based on the needle shaft and tip errors against manually defined ground truth and 

compared our method with other state-of-art methods (U-Net and deeply supervised attention U-

Net).

Results: Our method detected 96% needles of 339 needles from 23 HDR prostate brachytherapy 

patients with 0.290 ± 0.236 mm at shaft error and 0.442 ± 0.831 mm at tip error. For shaft 

localization, our method resulted in 96% localizations with less than 0.8 mm error (needle 
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diameter is 1.67 mm), while for tip localization, our method resulted in 75% needles with 0 mm 

error and 21% needles with 2 mm error (TRUS image slice thickness is 2 mm). No significant 

difference is observed (P = 0.83) on tip localization between our results with the ground truth. 

Compared with UNet and deeply supervised attention U-Net, the proposed method delivers a 

significant improvement on both shaft error and tip error (P < 0.05).

Conclusions: We proposed a new segmentation method to precisely localize the tips and shafts 

of multiple needles in 3D TRUS images of HDR prostate brachytherapy. The 3D rendering of the 

needles could help clinicians to evaluate the needle placements. It paves the way for the 

development of real-time plan dose assessment tools that can further elevate the quality and 

outcome of HDR prostate brachytherapy.
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deep learning; multi-needle localization; prostate brachytherapy; total variation regularization; 
ultrasound images

1. INTRODUCTION

Prostate cancer is the most common cancer affecting the male population, which accounts 

for nearly 20% of new cancer diagnoses in 2019. It is the second leading cause of cancer-

related mortality1 among males in the USA. Radiation therapy plays an important role in 

terms of managing the disease. High dose rate (HDR) prostate brachytherapy, which 

emerged in the early 1990s, is currently offered to prostate cancer patients with 

intermediate- to high-risk disease as boost treatment together with pelvic external beam 

radiation therapy, and to patients with low risk disease as the monotherapy option.2,3 It 

gains attractions to patients and radiation oncologists due to its excellent dose conformity to 

target and sparing of adjacent organs, and its HDR hypofractionation scheme which is 

preferable to prostate cancer that has a postulated lower α/β-ratio than normal tissue.4,5

A common HDR prostate brachytherapy typically involves few steps: a) inserting 12–20 

catheters (needles) into the prostate under the guidance of transrectal ultrasound (TRUS) 

imaging; b) CT (and/or MRI) scanning patient for anatomy delineations and catheter 

digitization; c) treatment planning by optimizing source dwell positions and dwell times in 

the implanted needles; and d) delivering planned treatment by dwelling the radioactive 

source through the implanted needles. Although the current process has been widely 

implemented in clinics, there are still a few drawbacks in steps a and b. First, the CT scan 

(and/or MRI scan) adds extra steps in the clinical workflow. It prolongs patients’ length of 

stay and raises the total medical cost. Besides, moving patients on and off the scanner table 

increases the risk of inducing needle shifts.6 An ideal situation will be only using single 

imaging modality, such as TRUS. Secondly, the clinicians, given real-time visualization of 

the needles by TRUS, place needles in operating room (OR) solely based on their 

experiences now. Without an objective evaluation method, the experience-based needle 

placement could lead to suboptimal needle pattern, leaving little room for treatment plan 

quality improvement later in the planning stage. Real-time dosimetric information of 

treatment plan, if can be provided in OR, would enable oncologists to make objective 

judgment calls for the needle placement. Thirdly, the task of manually contouring the 
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needles and identifying the needle tips is tedious, slow, and prone to human errors. It hinders 

the possibility to have real-time treatment planning in OR, which could be a big step further 

from the current practice. An accurate and quick needle segmentation method is of imminent 

need.

Efforts have been made trying to address these issues. TRUS-only and MRI-only HDR 

prostate brachytherapy techniques have been invented to streamline the entire practice.7,8 

Apparently, TRUS-based approach, compared to MRI-based counterparts, bears drastically 

less cost and is widely available. However, TRUS images often suffer from serious noise, 

speckles, and artifacts while needles are difficult to distinguish from those image 

corruptions. Needles tend to have similar appearance as artifacts and speckles, confounding 

the traditional automatic localization method.9 While having multiple inserted needles, the 

interplays among them could lead to the partially overlapped trajectories in TRUS images. 

The needles far away from the probe could deliver low TRUS signals and are therefore 

difficult to be identified from the background noise.9–11 In contrast, the physics of the rapid 

dose falloff from the source puts high penalties on inaccurate needle localizations. Tiong A. 

et al. has shown the source must be localized to within 3mm for acceptable dosimetric 

uncertainty.12 It further imposes rigorous demands upon the auto-localization method. 

Given all the reasons above, automatic multi-needle localization in the TRUS, which is of 

great benefits, is technically challenging.

Many approaches have been proposed in the literature for localization of single needle10 and 

needle-like instrument.13 Uherčík et al. used a threshold method to separate the needle 

voxels from background and then designed a needle fitting model with the random sample 

consensus (RANSAC) algorithm,11 which was improved using Kalman filter in the work of 

Zhao et al.14 Pourtaherian et al. introduced several enhancement and normalization 

processes for image preprocessing and adopted linear discriminant analysis (LDA) and 

linear support vector machine (SVM) for voxel classification, followed by using the 

RANSAC algorithm.13 Beigi et al. trained a probabilistic SVM using the temporal features 

for pixel classification and computed the probability map of the segmented pixels, followed 

by using Hough transform for needle localization.15 Besides, a hybrid camera- and US-

based method was designed in the work of Daoud et al. to localize and track the inserted 

needle.16 Recently, deep convolutional neural networks (CNNs) show the capabilities on 

learning hierarchical features to build the mappings from data space to objective space.17 

Because of the power of nonlinear fitting, CNNs have been shown to achieve outstanding 

performance on various medical image-based tasks,18 such as segmentation,19–23 cancer 

diagnosis,24 and localization.10 For needle segmentation and localization, Pourtaherian et 

al. trained a CNN model to identify the needle voxels from other echogenic structures and 

also built a fully convolutional networks (FCN) to label the needle parts, where both 

methods were followed by RANSAC for needle-axis estimation and visualization.25 And 

they also made an attempt on adopting dilated CNNs to localize the partially visible needles 

in US images.26 In addition, to implement automatic needle segmentation in MRI, Mehrtash 

et al. presented a deep anisotropic 3D FCN with skip-connections10 that is inspired by the 

3D U-Net model.27 Multi-needle detection in 3D US images for US-guided prostate 

brachytherapy is lacking attention in current studies. Zhang et al. recently proposed an 

unsupervised sparse dictionary learning-based method to detect the needles by the difference 
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between the reconstructed needle images and the original needle images, where the position-

specific dictionaries were learned on the no-needle images.28 However, this method suffered 

time cost in use and did not consider the manual contours available in the clinic.

In this paper, we propose a deep learning model, a variant of the U-Net,29,30 to segment and 

localize the needles from the 3D US images. Our model adopts the attention gate31 to treat 

the small object issue and adopts a weighted total variation (TV) regularization to encode the 

spatial continuity of needle shaft. To the best of our knowledge, this is the first attempt using 

the attention U-Net as the answer for multi-needle localization in 3D US images. The 

designed network is computationally efficient, which allows the whole volumetric US 

images to be used for the training process and the trained network to be used for real-time 

needle tracking. It cuts the human effort and provide needle digitization within a second, 

which can assist the needled placement procedure. Using it as one of the building blocks, a 

real-time HDR planning system can be built to help clinicians make RT plan and evaluate it 

in the OR, potentially eliminating the need of MRI/CT scans and even have the treatment 

delivered in OR.

2. MATERIALS AND METHODS

2.A. Data and data annotation

The data used in this study consist of 1024 × 768×N × 23 3D TRUS images produced from 

23 patients who received HDR prostate brachytherapy in our institution, where N is the slice 

number ranging from 26 to 40. Those US images were scanned with the Hitachi Hi Vision 

Avius (Model: EZU-MT30-S1, Hitachi Medical Corporation, Tokyo, Japan) US system 

equipped with a transrectal probe (Model: HITACHI EUP-U533). All US B-mode images 

were acquired using the same settings: 7.5-MHz center frequency, 17 frames per second, 

thermal index <0.4, mechanical index 0.4, and 65-dB dynamic range. In general, 12–19 

(depending on patient prostate size) Nucletron ProGuide Sharp 5F catheters were placed 

under the TRUS guidance. The catheter length is 240 mm and its outer diameter is 1.67 mm. 

The US examination was performed by an experienced urologist. An example slice is shown 

in [Fig. 1(a)].

VelocityAI 3.2.1 (Varian Medical Systems, Palo Alto, CA) was used by an experienced 

physicist to manually mark all the trace points on each slice. These annotations are 

considered as the ground truth. For brevity, in this paper, needle shaft is defined as the line 

fitted on the needle trajectory, where needle trajectory is the set of center points of the 

needle on all related slices; needle tip is defined as the center point of needle shaft at the 

most distal slice. In the TRUS images, a needle can be identified by the white susceptibility 

artifacts around its truth shaft, as shown in [Fig. 1(a)]. Besides, there is another key fact that 

all susceptible artifacts from a needle shaft are continuous through multiple adjacent slices. 

As a result, the annotation tool allows the physicist to label several pivotal slices from needle 

tips to its base, and then yields the needle trajectory through linear interpolation. Ground 

truth needle segmentation label maps were accordingly generated by placing circle points 

with 1.67 mm diameter on all intersections, as shown in [Fig. 1(b)]. The corresponding mask 

images were employed as the learning-based target, as shown in [Fig. 1(c)].
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2.B. Deep supervised attention U-Net with TV regularization

The proposed deep learning-based needle segmentation approach consists of two major 

parts, that is, the training stage and the segmentation stage. In the training stage, our 

approach was fed with the pair of needle images [Fig. 1(a)] and their corresponding mask 

images [Fig. 1(c)] to build the nonlinear mappings from the images to the masks. Figure 2 

outlines the schematic workflow of our proposed method. To train the designed network, we 

use a window of size 576 × 576 × 16 voxels to extract patches from the needle images and 

its mask images. The network delivers the mapped results of the given needle images and 

then matches the mapped result with its corresponding mask images in the deep-supervision 

loss function, followed by updating the network weights toward error reduction according to 

the objective error. In addition, the data augmentation, such as rotation, flipping, and scaling, 

was used to enlarge the variety of the training data.

After our network was trained with these data, it was then used to segment the needles from 

the US images of a new patient following the segmentation stage in Fig. 2. These resulted 

3D image patches were merged into the segmented images that show the needle’s 

localization. Finally, the localizations were used to visualize and check the needle insertions 

in the process of prostate brachytherapy.

2.B.1. U-Net—Our approach is based on the classical U-Net which is a popular deep 

learning architecture for biomedical image segmentation.30 The U-Net contains a 

contracting path to capture context and an expansive path that enable precise localization. 

The contracting path is a typical dawn-sampling architecture using convolution with 

rectified linear unit (ReLU) and max pooling operation. In the expansive path, each step is 

performed by up-sampling the feature map and up-convolution with ReLU, where the 

feature maps are merged through skip connections to combine coarse-level maps from the 

contracting path and fine-level predictions.

This network architecture is shown as the core of Fig. 2. With this architecture, the U-Net is 

trained by decreasing the following cross entropy loss function29:

Lunet(x) = ∑
x ∈ Ω

w(x)log p(l(x))(x) , (1)

where x ∈ Ω is the pixel position with Ω ∈ ℤ2, K is the number of classes, w(x) represents a 

weight map for introducing an importance to x, ℓ(x) denotes the true label of x, and

pk(x) = exp ak(x)
∑k′ = 1

K exp ak′(x)
, (2)

where ak(x) denotes the activation at x in feature channel k ∈ {1, 2, …, K}. The U-Net is 

then trained with the stochastic gradient descent (SGD) and can be used fast in image 

segmentation. In this study, we adopt the U-Net in 3D image segmentation, that is, Ω ∈ ℤ3, 

which is referred to FCN. In addition, data augmentation is essential to teach the network the 

desired invariance and robustness properties, especially when there are only few available 

training samples.
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2.B.2. Attention gates—To capture a large receptive field for semantic contextual 

information, standard CNN architectures are used to gradually downsample the feature map. 

However, it remains difficult to reduce false-positive predictions for small objects,32 like the 

needles in this study. An imposing solution to this issue is integrating attention gates (AGs) 

in a standard CNN model, which aims to progressively suppress feature response in 

irrelevant background regions. AGs are realized by a series of attention coefficients, α ∈ [0, 

1], to identify the activations relevant to the specific task. The attention coefficients can be 

formulated as31:

α = σ2 qatt x, g; Θatt , (3)

where x is the fine-level map, g is the coarse-level map, σ2(·) represents the sigmoid 

activation function,

qatt = ψT σ1 W x
Tx + W g

Tg + bg + bφ, (4)

and Θatt is to characterize AG by a set of parameters containing linear transformations W x
T , 

W g
T , ψ(·), and the bias terms bg, bφ. These AG parameters can be trained with the standard 

back-propagation updates. In addition, the AG strategy has been integrated into U-Net 

model, that is, the attention U-Net.31

2.B.3. TV Regularization—TV regularization was first proposed to remove the noise in 

an image via minimizing it and a fidelity term.33 The aim of TV is to shrink the total 

variation (TV), that is, the total gradient at a pixel, while the noise pixel usually results in a 

great TV. This regularization has been successfully applied in medical image processing, 

such as MRI reconstruction34 and registration.35 The TV norm can be defined as:

∥ f ∥TV = ∫ ∥ ∇f(x) ∥1 dx, (5)

where ▽f (x) is the gradient of an image f at a pixel x. While TV regularization is isotropic, 

this study uses additive weights to highlight the gradient at z-axis more than x-axis and y-

axis. The reason is shown in Fig. 3, where the needles have a strong continuity structure in 

z-axis. To this end, we adopt the weighted TV as:

∥ f ∥TV = ∫ ∥ ωT ∇f x ∥1 dx, (6)

where ω is the weight vector containing a greater entry for z-axis.

2.B.4. The used loss function—In this study, we integrate the weighted TV 

regularization into the U-Net to arrive at the loss function used for needle segmentation and 

localization, which is formulated as:

L(x) = Lunet(x) + λ ∥ f ∥TV , (7)
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where Ω ∈ ℤ3 and λ is the trade-off parameter. Note that this loss function degrades into the 

loss of the U-Net or the loss of the attention U-Net, when λ = 0. TV regularization is a 

continuous non-smooth objective, but it was simply calculated on the resulting images. 

Therefore, the combined objective can be optimized similar to training of a CNN, which was 

stated in the work of Liu et al.36 In this paper, we employed the SGD algorithm on the 

designed deep network like the U-Net.29

2.B.5. Network learning with deep supervision—Deep supervision, a deep network 

learning strategy, is to introduce companion objective function for each hidden layer.37 In 

the process of back propagation, the loss at each hidden layer is computed with the overall 

objective function and the companion objective function. With the consideration of the 

hidden layer loss, deep supervision can make all learned features more discriminative and 

can alleviate the common problem of vanishing gradients. Since this strategy has been 

effectively used in medical image segmentation,38 we in this study also employ deep 

supervision to learn the proposed deep network model. For clarity, Table I summarizes the 

proposed deep learning method.

2.B.6. Method test—We used the fivefold cross validation at the level of patient to 

evaluate the proposed method on our US image dataset. That is, we divided the dataset into 

in total five subsets, three subsets of five patients each and two subsets of four patients each, 

to conduct five tests by alternately using the five subsets as test set. In each test, we trained 

the proposed deep learning-based model shown in Table I on four of the five subsets. Then, 

the trained model was used to segment all the images in the test subset. After five runs, all 

the patients’ US images were segmented as the results that were followed by various 

evaluations.

For the hyperparameters in the propose model, we set ω = [0.2, 0.2, 0.6] in Eq. (6) and λ = 

0.5 in Eq. (7) simply, while the other parameters were set as that in U-Net. In network 

learning per run, we set the learning rate to 2e–4 and terminated the training at 300 epochs 

where the training error was not observed a significant decrease. Note that the fivefold cross 

validation was used for method evaluation, while the model could be retrained on all data for 

the clinical practical use.

2.C. Evaluation metrics

To evaluate the results, we computed the metrics including needle shaft localization error, 

needle tip localization error, and needle detection accuracy. For needle shaft localization, we 

detected circles from the segmented images and then obtained their center positions. The 

needle shaft localization error is to evaluate needle localizations at all image slices, defined 

as:

Esℎaft = 1
N ∑i = 1

N ∥ oi − ti ∥2 , (8)

where N is the number of all center position in computation, oi represents the predicted 

position for the ith center, and ti is the ground truth position for the ith center. The needle tip 
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localization error aims to measure the error of needle tip positions on the needle direction, 

defined as:

Etip = 1
M ∑i = 1

M |li − si|, (9)

where M is the number of needles in computation, li indicates the predicted length for the ith 

needle, and si is the ground truth length for the ith needle. Needle detection accuracy aims to 

evaluate the detection performance at the needle level, defined as:

Acc = 1
M # |li − si| ≤ τi: i = 1, 2, …, M , (10)

where τi was here set as 10% of the ith needle insertion length and #{A} counts the elements 

in a set A.

Besides, we calculated the common indexes for all needle shaft locations at needle center 

level, including

Precision = # Detection Set ∩ Grovend Tℎutℎ Set
# Detection Set

Recall = # Detection Set ∩ Ground Trutℎ Set
# Ground Trutℎ Set

and F1 = 2 · Precision · Recall
Precision+Recall ,

(11)

to quantitatively evaluate the proposed method. We compared the proposed method with U-

Net27 to show the necessity of deep-supervised attention strategy and deep-supervised 

attention U-Net31 (DSA U-Net for short) to show the necessity of TV regularization. Paired 

t tests were performed to evaluate whether there are significant differences between our 

automatic segmentation results and manual delineations.

3. RESULTS

3.A. Overall Evaluation

Figure 4 exhibits 2D visualizations of the segmentation results at five slices from US 

images. As is shown in the five slices, U-Net has 15 incorrectly detected points highlighted 

with the yellow circles and two missed points highlighted with the blue triangles; DAS U-

Net has 13 incorrectly detected points and two missed points; while, our method has two 

missed points on the 28th slices. For overall observation, Fig. 5 displays the 3D visualization 

of the segmentation results. From Fig. 5, both U-Net and DSA U-net result in a couple of 

incorrectly detected points while our method achieves superior performance.

To have multi-view evaluations, we summarized the overall performance of the detections at 

both the needle level and the center level. At the needle level, Table II summarizes the 

average shift localization error (Eshaft), the average tip localization error (Etip), and the 

detection accuracy (Acc) on the 339 needles, as well as their standard deviations. Table III 

lists the P values on tip errors and shaft errors using the two-sample t test to show the 

difference between our method and other compared methods. In these results, our method 

Zhang et al. Page 8

Med Phys. Author manuscript; available in PMC 2020 December 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



detects 96% needles with 0.292 mm shaft error and 0.442 mm tip error, which is statistically 

significantly better on various metrics than U-Net and DSA U-Net. These significant 

improvements make the needle digitation more accurate to subsequently have a precise does 

planning.

At the needle center level, Table II summarizes the statistical indexes in Eq. (11) calculated 

from all needle centers on all 2D US slices. From these results at center level, our method 

achieves the highest precise while U-Net achieves the highest recall among the three 

methods. However, our method delivers the best performance on the synthesized F1.

3.B. Results on shaft error

Figure 6 lists the average needle shaft localization errors for all patients. As can be seen, our 

method did not produce a shaft localization with more than 0.4 mm error. For most patients, 

the shaft error can be limited under 0.3 mm in our method, while both U-Net and DSA U-

Net have many bad shaft localizations with greater errors (even greater than 0.5 mm). Our 

method leads to the error from 0.21 mm to 0.40 mm, while U-Net and DSA U-Net are from 

0.24 mm to 0.54 mm and from 0.24 mm to 0.49 mm. In all, our method consistently 

achieved a lower average error than U-Net and DSA U-Net at every patient.

Figure 7 shows the distribution of all shaft localization centers, where the probability is 

computed by #{localization error in the interval}/# {all localizations} and the interval is 

from 0 mm to1 mm with step 0.1 mm. From these probabilities in Fig. 7, our method has 

96% localizations with less than 0.8 mm error, while both U-Net and DSA U-Net have 90% 

localizations. Moreover, our method has about 78% localization with less than 0.4 mm error 

while both U-Net and DSA U-Net have 70% localizations. Note that the diameter of the 

used needle is 1.67 mm.

3.C. Results on tip error

Figure 8 shows the counts of the needles with different tip localization errors. As is shown, 

our method has 75% needle tips with 0 mm error, while U-Net and DSA U-Net respective 

have 66% and 69% tips. From [Fig. 8(a)], our method leads to 11% needle tips with 2 mm 

error shorter than ground truth, while U-net and DSA U-Net have 11% and 9% tips, 

respectively. However, our method has 21% needle tips with 2 mm absolute error, while U-

Net and DSA U-Net have 27% and 26% tips, respectively. Moreover, the compared methods 

both results in more detected tips with greater than 4 mm errors than our method.

Figure 9 shows the percentiles of each tip error in all errors, where 0.25, 0.5, and 0.75 

indicate the first quartile, the median, and the third quartile, respectively. From Fig. 9, our 

method leads to the range from 14% to 89% at 0 mm error, while U-Net and DSA U-Net is, 

respectively, from 12% to 77% and from 13% to 81%. The three methods all deliver 0 mm at 

the three quartiles, but our method has a greater percentile of 0 mm (75%) than other two 

methods (65% and 68%), which cause large deviations in Table II.
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3.D. Comparisons with sparse dictionary learning and parameter discussion

The multi-needle detection method, ORDL, proposed by Zhang et al. employed a graph 

dictionary learning method39 to learn the feature set that excludes needle features from the 

no-needle US images, and then rebuilt the needle images to obtain the difference between 

the original images and the reconstructed images, followed by refinements on the difference 

images corresponding to needles. Here, we trained ORDL on 71 no-needle images and 

tested on our 23 needle images. The evaluated overall results were: Eshaft = 0.286 ± 0.227 

(mm), Etip = 0.741 0.665 (mm), and Acc = 0.941. The P values from comparisons with our 

method are 0.173 on Eshaft and less than 0.001 on Etip. In comparison with ORDL, our 

method has a significant improvement on tip detection, a higher performance on correctly 

detected needle number, and a comparable accuracy on shaft detection. However, our 

method tackles a patient in less than 1 sec, while ORDL takes about 38 sec per patient.

The parameter λ in our method aims to introduce the importance of TV regularization. We 

here discussed this parameter to have an insight into this regularization, by varying the λ in 

{0.1, 0.3, 0.5, 1, 2}. The evaluation results on each λ are summarized in Table IV. From the 

results in Table IV, the parameter λ has a little impact when it is in [0.3, 2]. But the small 

regularization could decrease the performance on needle detection, like λ = 0.1, while our 

method degenerates into DSA U-Net when λ = 0. A relatively large λ is needed to highlight 

the importance of the TV regularization. We in this paper simply set λ = 0.5 in all 

experiments.

4. DISCUSSIONS AND CONCLUSIONS

Exact knowledge of needle positions is essential to accomplish reliable dosimetry of HDR 

prostate brachytherapy. Multi-needle localization in TRUS images is a difficult task since 

TRUS images inherently have more noise, speckles, and artifacts than CT and MRI, and 

inserted needles suffer severe artifacts and worse detectability. Current manual catheter 

digitization process is labor intensive and prone to errors, which prevents real-time treatment 

planning and dosimetric evaluation during needle insertion. Alternatively, this study 

presented an automatic method for accurate needle segmentation and localization in US 

images by adopting a deep learning-based model.

More specifically, we integrate AGs into standard U-net to suppress feature response in 

irrelevant background. The needle’s z-axis continuity is also encoded via TV regularization. 

The network architecture of U-Net is employed to combine both ideas and then trained by 

deep-supervision strategy. On the used dataset, DSA U-Net deliveries better performance 

than U-Net, showing the effeteness of deep supervised attention strategy. Our method 

achieves better performance than DSA U-Net, showing that our method can benefit from 

both the TV regularization and the deep-supervised attention. These significant 

improvements comparing with U-Net and DSA U-Net could make the US-based multi-

needle digitization more accurate to subsequently have a precise does planning.

Overall, on the 3D US images from 23 prostate patients, our method delivers a decent 

performance in terms of various metrics in comparison with clinically used needle 

segmentation manually contoured by physicists in the 339 needles, our method overall 
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detected 96% needles with 0.290 ± 0.236 mm at shaft error and 0.442 ± 0.831 mm at tip 

error. The maximum shaft error is 1.6mm, well within the recommended 3mm criteria by 

Morton’s paper2. In addition, our method achieved a high precision (0.967) on shaft 

localization as shown in Table IV. In addition, the deep learning-based method can tackle 

needle localization within 1 sec, while an experience physicist takes about 15–20 min to 

manually digitize all catheters. With these advantages, the proposed method can be used to 

aid the physicist to localize the needle positions and tips in the digitization step of the US-

guided HDR prostate brachytherapy and hence achieve an accurate does planning. Besides, 

this method has a potential of supporting a real-time needle tracking system.

Our proposed real-time multi-needle detection method can be used to simplify the HDR 

treatment workflow. Combined with current automatic prostate segmentation method on 

TRUS,20 it is now possible to build a real-time treatment planning system in the OR. With 

such a system, physicians will be able to adjust the needle pattern in the OR based on the 

knowledge of achievable dose distribution. Moreover, it could allow skipping the step of CT 

scan, reducing the risk of needle shifts over the entire process. Potentially, it would enable 

treatment right after needle placement in OR room, which decreases the patient’s overall 

stay and cost and entails logistical issues such as patient transportation. All those 

innovations have a potential of leading to better clinical outcomes for patients.

Several limitations in clinical practices could be shown as follows. (a) Although the 

proposed method detects most needles and spots, the results are still needed to be checked 

by a physicist. Due to the given needle number, the manual work is greatly reduced to the 

missed needs and spots. (b) The proposed method has a potential of a real-time application 

to minimal human intervention and cognitive load. Some refinements are needed to improve 

our results toward a totally automatic real-time use.28 (c) The manual needles in our dataset 

were made by an experience physicist and checked by other two physicist to ensure the 

correction. Both the uncertainty and possible errors in manual needles that may affect our 

method are not considered in our method. We leave these problems in the future works.

Overall, the proposed method can achieve an adequate performance on multi-needle 

detection in TRUS images for HDR prostate brachytherapy. Since there is no assumption 

regarding the prostate images, this method can also be used for other object detection 

assignments in 3D US images, such as implanted seeds in low dose rate (LDR) 

brachytherapy or any fiducial markers. More importantly, it paves the way for real-time 

adaptive HDR prostate brachytherapy in the OR and other innovations in the HDR prostate 

brachytherapy space. In the future, the novel deep learning method will be evaluated on 

more patient data and various other clinical situations.
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Fig. 1. 
An example of US slice with needles (a), its annotations (b), and its mask image (c).
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Fig. 2. 
The schematic workflow of the proposed method.
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Fig. 3. 
A needle-directional profile of 3D needle US image that has in total 29 slices. The yellow 

lines are needles and the red arrows indicate noise.
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Fig. 4. 
The 2D visualization of needle detections in US slices. The rows from top to down 

corresponds to the US images, ground truth, U-Net, DSA U-Net, and the proposed method, 

respectively. The columns from left to right, respectively, corresponds to the 1th, 7th, 14th, 

21th, and 28th slice of the US images. The yellow circles show the incorrect localizations, 

and the blue triangles show the missed localizations.
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Fig. 5. 
The 3D visualization of the detected needles. Different colors indicate different needles, 

where the black arrows indicate the incorrect detections.

Zhang et al. Page 18

Med Phys. Author manuscript; available in PMC 2020 December 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Needle shaft localization error on all patients with the three methods.
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Fig. 7. 
The error distributions of the shaft localization center with the three methods.
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Fig. 8. 
The tip localization error distributions in terms of standard difference (a) and absolute 

difference (b).
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Fig. 9. 
The distribution of the tip localization error with the three methods.
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Table I.

The summary of the proposed deep model.

Method: TV-regularized deep supervised attention U-Net

Input Data: 3D image patches of needle US and Mask.

Network Architecture: U-Net with 23 Iayers29 and attention gate31

Overall Loss Function: As shown in Eq. (7)

Companion Loss Function: As shown in Eq. (7)

Training Strategy: SGD algorithm and deep supervision36,37

SGD, stochastic gradient descent.
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Table III.

P values from t tests on the evaluation results at the needle level.

U-Net vs Our Method DSA U-Net vs Our Method

P value on Eshaft <0.001 <0.001

P value on Etip 0.003 0.019
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