
Deep learning in medical image registration: a review

Yabo Fu1, Yang Lei1, Tonghe Wang1,2, Walter J Curran1,2, Tian Liu1,2, Xiaofeng Yang1,2

1Department of Radiation Oncology, Emory University, Atlanta, GA, United States of America

2Winship Cancer Institute, Emory University, Atlanta, GA, United States of America

Abstract

This paper presents a review of deep learning (DL)-based medical image registration methods. We 

summarized the latest developments and applications of DL-based registration methods in the 

medical field. These methods were classified into seven categories according to their methods, 

functions and popularity. A detailed review of each category was presented, highlighting important 

contributions and identifying specific challenges. A short assessment was presented following the 

detailed review of each category to summarize its achievements and future potential. We provided 

a comprehensive comparison among DL-based methods for lung and brain registration using 

benchmark datasets. Lastly, we analyzed the statistics of all the cited works from various aspects, 

revealing the popularity and future trend of DL-based medical image registration.
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1. Introduction

Image registration, also known as image fusion or image matching, is the process of aligning 

two or more images based on image appearances. Medical image registration seeks to find 

an optimal spatial transformation that best aligns the underlying anatomical structures. 

Medical image registration is used in many clinical applications such as image guidance 

(Taylor and Stoianovici 2003, Sarrut 2006, Yang et al 2011b, De Silva et al 2016), motion 

tracking (Fu et al 2011, Yang et al 2012), segmentation (Han et al 2008, Yang et al 2011c, 

2014, 2016, Yang and Fei 2012, Fu et al 2017), dose accumulation (Velec et al 2011, Bender 

et al 2012, Chao et al 2012, Andersen et al 2013, Samavati et al 2016, Chetty and Rosu-

Bubulac 2019), image reconstruction (Qiao et al 2006, Li et al 2010, Dang et al 2014, 

McClelland et al 2017) and so on. As table 1 shows, medical image registration is a broad 

topic which can be grouped from various perspectives. From an input image point of view, 

registration methods can be divided into unimodal, multimodal, interpatient, intra-patient 

(e.g. same- or different-day) registration. From a deformation model point of view, 

registration methods can be divided in to rigid, affine and deformable methods. From a 

xiaofeng.yang@emory.edu. 

Disclosures
The authors declare no conflicts of interest.

HHS Public Access
Author manuscript
Phys Med Biol. Author manuscript; available in PMC 2020 December 24.

Published in final edited form as:
Phys Med Biol. ; 65(20): 20TR01. doi:10.1088/1361-6560/ab843e.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



region of interest (ROI) perspective, registration methods can be grouped according to 

anatomical sites such as brain, lung registration and so on. From an image pair dimension 

perspective, registration methods can be divided into 3D to 3D, 3D to 2D and 2D to 2D/3D.

Different applications and registration methods face different challenges. For multi-modal 

image registration, it is difficult to design accurate image similarity measures due to the 

inherent appearance differences between different imaging modalities. Inter-patient 

registration can be tricky since the underlying anatomical structures are different across 

patients. Different-day intra-patient registration is challenging due to image appearance 

changes caused by metabolic processes, bowel movement, patient gaining/losing weight and 

so on. It is crucial for the registration to be computationally efficient in order to provide real-

time image guidance. Examples of such application include 3D-MR to 2D/3D-US prostate 

registration to guide brachytherapy catheter placement and 3D-CT to 2D x-ray registration 

in intraoperative surgeries. For segmentation and dose accumulation, it is important to 

ensure the registration has high spatial accuracy. Motion tracking can be used for motion 

management in radiotherapy such as patient-setup and treatment planning. Motion tracking 

could also be used to assess respiratory function through 4D-CT lung registration and to 

access cardiac function through myocardial tissue tracking. In addition, motion tracking 

could be used to compensate for irregular motion in image reconstruction. In terms of 

deformation model, rigid transformation is often too simple to represent the actual tissue 

deformation while free-form transformation is ill-conditioned and hard to regularize. One 

limitation of 2D-2D registration is it ignores the out-of-plane deformation. Nevertheless, 

3D-3D registration is usually computationally demanding, resulting in slow registration.

Many methods have been proposed to deal with the above-mentioned challenges. Popular 

registration methods include optical flow (Yang et al 2008, 2011a), demons (Vercauteren et 

al 2009), ANTs (Avants et al 2011), HAMMER (Shen 2007), ELASTIX (Klein et al 2010) 

and so on. Scale invariant feature transform (SIFT) and mutual information (MI) have been 

proposed for multi-modal image similarity calculation (Gong et al 2014). For 3D image 

registration, GPU has been adopted to accelerate the computational speed (Shams et al 

2010). Multiple transformation regularization methods including spatial smoothing (Yang et 

al 2010), diffeomorphic (Vercauteren et al 2009), spline-based (Szeliski and Coughlan 

1997), FE-based (Brock et al 2005) and other deformable models have been proposed. 

Though medical image registration has been extensively studied, it remains a hot research 

topic. The field of medical image registration has been evolving rapidly with hundreds of 

papers published each year. Recently, DL-based methods have changed the landscape of 

medical image processing research and achieved the-state-of-art performances in many 

applications (Fu et al 2018, Harms et al 2019, Dong et al 2019a, 2019c, Wang et al 2019a, 

2019b, 2019c, 2019d, 2019f, Lei et al 2019b, 2019d, 2019e, 2019f, 2019g, Liu et al 2019c, 

2019d). However, deep learning (DL) in medical image registration has not been extensively 

studied until the past three to four years. Though several review papers on DL in medical 

image analysis have been published (Litjens et al 2017, Shen et al 2017, Ker et al 2018, Liu 

et al 2018, Meyer et al 2018, Maier et al 2019, Sahiner et al 2019, Zhang and Sejdic 2019), 

there are very few review papers that are specific to DL in medical image registration 

(Haskins et al 2019b). The goal of this paper is to summarize the latest developments, 
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challenges and trends in DL-based medical image registration methods. With this survey, we 

aim to

• Summarize the latest developments in DL-based medical image registration.

• Highlight contributions, identify challenges and outline future trends.

• Provide detailed statistics on recent publications from different perspectives.

2. Deep learning

2.1. Convolutional neural network

Convolutional neural network (CNN) is a class of deep neural networks with regularized 

multilayer perceptron. CNN uses convolution operation in place of general matrix 

multiplication in simple neural networks. The convolutional filters and operations in CNN 

make it suitable for visual imagery signal processing. Because of its excellent feature 

extraction ability, CNN is one of the most successful models for image analysis. Since the 

breakthrough of AlexNet (Krizhevsky et al 2012), many variants of CNN have been 

proposed and have achieved the-state-of-art performances in various image processing tasks. 

A typical CNN usually consists of multiple convolutional layers, max pooling layers, batch 

normalization layers, dropout layers, a sigmoid or softmax layer. In each convolutional layer, 

multiple channels of feature maps were extracted by sliding trainable convolutional kernels 

across the input feature maps. Hierarchical features with high-level abstraction are extracted 

using multiple convolutional layers. These feature maps usually go through multiple fully 

connected layer before reaching the final decision layer. Max pooling layers are often used 

to reduce the image sizes and to promote spatial invariance of the network. Batch 

normalization is used to reduce internal covariate shift among the training samples. Weight 

regularization and dropout layers are used to alleviate data overfitting. The loss function is 

defined as the difference between the predicted and the target output. CNN is usually trained 

by minimizing the loss via gradient back propagation using optimization methods.

Many different types of network architectures have been proposed to improve the 

performance of CNN (Litjens et al 2017). U-Net proposed by Ronneberger et al is among 

one of the most used network architectures (Ronneberger et al 2015). U-Net was originally 

used to perform neuronal structures segmentation. U-Net adopts symmetrical contractive and 

expansive paths with skip connections between them. U-Net allows effective feature learning 

from a small number of training datasets. Later, He et al proposed a residual network 

(ResNet) to ease the difficulty of training deep neural networks (He et al 2016). The 

difficulty in training deep networks is caused by gradient degradation and vanishing. They 

reformulated the layers as learning residual functions instead of directly fitting a desired 

underlying mapping. Inspired by residual network, Huang et al later proposed a densely 

connected convolutional network (DenseNet) by connecting each layer to every other layer 

(Huang et al 2017). Inception module was first used in GoogLeNet to alleviate the problem 

of gradient vanishing and allow for more efficient computation of deeper networks (Szegedy 

et al 2015). Instead of performing convolution using a kernel with fixed size, an inception 

module uses multiple kernels of different sizes. The resulting feature maps were 

concatenated and processed by the next layer. Recently, attention gate was used in CNN to 
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improve performance in image classification and segmentation (Schlemper et al 2018). 

Attention gate could learn to suppress irrelevant features and highlight salient features useful 

for a specific task.

2.2. Autoencoder

An autoencoder (AE) is a type of neural network that learns to copy its input to its output 

without supervision (Pierre 2012). An AE usually consists of an encoder which encodes the 

input into a low-dimensional latent state space and a decoder which restores the original 

input from the low-dimensional latent space. To prevent an AE from learning an identity 

function, regularized AEs were invented. Examples of regularized AEs include sparse AE, 

denoising AE and contractive AE (Tschannen et al 2018). Recently, convolutional AE 

(CAE) was proposed to combine CNN with traditional AEs (Chen et al 2017). CAE replaces 

the fully connected layer in traditional AE with convolutional layers and transpose-

convolutional layers. CAE has been used in multiple medical image processing tasks such as 

lesion detection, segmentation, image restoration (Litjens et al 2017). Different from above-

mentioned AEs, variational AE (VAE) is a generative model that learns latent representation 

using a variational approach (Hjelm et al 2016). VAE has been used for anomaly detection 

(Zimmerer et al 2018) and image generation (Dosovitskiy and Brox 2016).

2.3. Recurrent neural network

A recurrent neural network (RNN) is a type of neural network that was used to model 

dynamic temporal behavior (Giles et al 1994). RNN is widely used for natural language 

processing (Chung et al 2014). Unlike feedforward networks such as CNN, RNN is suitable 

for processing temporal signal. The internal state of RNN was used to model and 

‘memorize’ previously processed information. Therefore, the output of RNN was dependent 

on not only its immediate input but also its input history. Long short-term memory (LSTM) 

is one type of RNN which has been used in image processing tasks (Bakker 2002). Recently, 

Cho et al proposed a simplified version of LSTM, called gated recurrent unit (Cho et al 

2014).

2.4. Reinforcement learning

Reinforcement learning (RL) is a type of machine learning that focused on predicting the 

best actions to take given its current state in an environment (Thrun 1992). RL is usually 

modeled as a Markov decision process using a set of environment states and actions. An 

artificial agent is trained to maximize its cumulative expected rewards. The training process 

often involves an exploration-exploitation tradeoff. Exploration means to explore the whole 

space to gather more information while exploitation means to explore the promising areas 

given current information. Q-learning is a model-free RL algorithm, which aims to learn a Q 

function that models the action-reward relationship. Bellman equation is often used in Q-

learning for reward calculation. The Bellman equation calculates the maximum future 

reward as the immediate reward the agent gets for entering the current state plus a weighted 

maximum future reward for the next state. For image processing, the Q function is often 

modeled as CNN, which could encode input images as states and learn the Q function via 

supervised training (Ghesu et al 2016, Liao et al 2016, Krebs et al 2017, Miao et al 2017).
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2.5. Generative adversarial network

A typical generative adversarial network (GAN) consists of two competing networks, a 

generator and a discriminator (Goodfellow et al 2014). The generator is trained to generate 

artificial data that approximate a target data distribution from a low-dimensional latent 

space. The discriminator is trained to distinguish the artificial data from actual data. The 

discriminator encourages the generator to predict realistic data by penalizing unrealistic 

predictions via learning. Therefore, the discriminative loss could be considered as a dynamic 

network-based loss term. The generator and discriminator both are getting better during 

training to reach Nash equilibrium. Multiple variants of GAN include conditional GAN 

(cGan) (Mirza and Osindero 2014), InfoGan (Chen et al 2016), CycleGAN (Zhu et al 2017), 

StarGan (Choi et al 2018) and so on. In medical imaging, GAN has been used to perform 

image synthesis for inter- or intra-modality, such as MR to synthetic CT (Lei et al 2019d, 

2019e), CT to synthetic MR (Dong et al 2019a, Lei et al 2019a), CBCT to synthetic CT 

(Harms et al 2019), non-attenuation correction (non-AC) PET to CT (Dong et al 2019d), 

low-dose PET to synthetic full-dose PET (Lei et al 2019b), non-AC PET to AC PET (Dong 

et al 2019b), low-dose CT to full-dose CT (Wang et al 2019e) and so on. In medical image 

registration, GAN is usually used to either provide additional regularization or translate 

multi-modal registration to unimodal registration. Out of medical imaging, GAN has been 

widely used in many other fields including science, art, games and so on.

3. Deep learning in medical image registration

DL-based registration methods can be classified according to DL properties, such as network 

architectures (CNN, RL, GAN etc), training process (supervised, unsupervised etc), 

inference types (iterative, one-shot prediction), input image sizes (patch-based, whole 

image-based), output types (dense transformation, sparse transformation on control points, 

parametric regression of transformation model etc) and so on. In this paper, we classified 

DL-based medical image registration methods according to its methods, functions and 

popularity in to seven categories, including (1) RL-based methods, (2) Deep similarity-based 

methods, (3) Supervised transformation predication, (4) Unsupervised transformation 

prediction, (5) GAN in medical image registration, (6) Registration validation using DL, and 

(7) Other learning-based methods. In each category, we provided a comprehensive table, 

listing all the surveyed works belonging to this category and summarizing their important 

features.

Before we delve into the details of each category, we provided a detailed overview of DL-

based medical image registration methods with their corresponding components and features 

in figure 1. The purpose of figure 1 is to give the readers an overall understanding of each 

category by putting its important features side by side with each other. CNN was initially 

designed to process highly structured datasets such as images, which are usually expressed 

by regular grid-sampling data points. Therefore, almost all cited methods have utilized 

convolutional kernels in their DL design. This explains why the CNN module is in the 

middle of figure 1.

Works cited in this review were collected from various databases, including Google Scholar, 

PubMed, Web of Science, Semantic Scholar and so on. To collect as many works as 
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possible, we used a variety of keywords including but not limited to machine learning, DL, 

learning-based, CNN, image registration, image fusion, image alignment, registration 

validation, registration error prediction, motion tracking, motion management and so on. We 

totally collected over 150 papers that are closely related to DL-based medical image 

registration. Most of these works were published between the year of 2016 and 2019. The 

number of publications is plotted against year by stacked bar charts in figure 2. Number of 

papers were counted by categories. The total number of publications has grown dramatically 

over the last few years. Figure 2 shows a clear trend of increasing interest in supervised 

transformation prediction (SupCNN) and unsupervised transform prediction (UnsupCNN). 

Meanwhile, GAN are gradually gaining popularity. On the other hand, the number of papers 

of RL-based medical image registration has decreased in 2019, which may indicate 

decreasing interest in RL for medical image registration. The ‘DeepSimilarity’ in figure 2 

represents the category of deep similarity-based registration methods. The number of papers 

in this category has also increased, however, only slightly as compared to ‘SupCNN’ and 

‘UnsupCNN’ categories. In addition, more and more studies were published on using DL for 

medical image registration validations.

3.1. Deep similarity-based methods

Conventional intensity-based similarity metrics include sum-of-square distance (SSD), mean 

square distance (MSD), (normalized) cross correlation (CC), and (normalized) mutual 

information (MI). Generally, conventional similarity measures work quite well for unimodal 

image registration where the image pair shares the same intensity distribution such as CT-

CT, MR-MR image registration. However, noise and artifacts in images such as US and 

CBCT often cause conventional similarity measures to perform poorly even in unimodal 

image registration. Metrics such as SSD and MSD does not work for multi-modal image 

registration. To develop a similarity measure for multi-modality image registration, 

handcrafted descriptors such as MI were proposed. To improve its performance, a variety of 

MI variants such as correlation ratio-based MI (Gong et al 2017), contextual conditioned MI 

(Rivaz et al 2014) and modality independent neighborhood descriptor (MIND) (Heinrich et 

al 2012) have been proposed. Recently, CNN has achieved huge success in tasks such as 

image classification and segmentation problems. However, CNN has not been widely used in 

image registration tasks until the last three to four years. To take the advantage of CNN, 

several groups tried to replace the traditional image similarity measures such as SSD, MAE 

and MI with DL-based similarity measures, achieving promising registration results. In the 

following section, we described several important works that attempted to use DL-based 

similarity measures in medical image registration.

3.1.1. Overview of works.—Table 2 shows a list of selected references that belong to 

this category. Cheng et al proposed a deep similarity learning network to train a binary 

classifier (Cheng et al 2018). The network was trained to learn the correspondence of two 

image patches from CT-MR image pair. The continuous probabilistic value was used as the 

similarity score. Similarly, Simonovsky et al proposed a 3D similarity network using a few 

aligned image pairs (Simonovsky et al 2016). The network was trained to classify whether 

an image pair is aligned or not. They observed that hinge loss performed better than cross 

entropy. The learnt deep similarity metric was then used to replace MI in traditional 
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deformable image registration (DIR) for brain T1-T2 registration. It is important to ensure 

the smoothness of first order derivative in order to fit the deep similarity metrics into 

traditional DIR frameworks. The gradient of the deep similarity metric with respect to 

transformation was calculated using chain rule. They found out that high overlap of 

neighboring patches led to smoother and more stable derivatives. They have trained the 

network using IXI brain datasets and tested it using a completely independent datasets called 

ALBERTs in order to show the good generality of the learnt metric. They showed that the 

learnt deep similarity metric outperformed MI by a significant margin.

Compared to CT-MR and T1-T2 image registration, MR-US image registration is more 

challenging due to the fundamental imaging acquisition differences between MR and US. A 

DL-based similarity measure is desired for MR-US image registration. Haskins et al 

proposed to use CNN to predict the target registration error (TRE) between 3D MR and 

transrectal US (TRUS) images (Haskins et al 2019a). The predicted TRE was used as image 

similarity metric for MR-US rigid registration. TREs obtained from expert-aligned images 

were used as ground truth. The CNN was trained to regress to the TRE as similarity 

prediction. The learnt metric was non-smooth and non-convex, which hinders gradient-based 

optimization. To address this issue, they performed multiple TRE predictions throughout the 

optimization. The average TRE estimate was used as the similarity metric to mitigate the 

non-convex problem and to expand the capture range. They claimed that the learnt similarity 

metric outperformed MI and its variant MIND (Heinrich et al 2012).

In previous works, accurate image alignment is needed for deep similarity metrics learning. 

However, it is very difficult to obtain well aligned multi-modal image pairs for network 

training. The quality of image alignment could affect the accuracy of the learnt deep 

similarity metrics. To mitigate this problem, Sedghi et al used special data augmentation 

techniques called dithering and symmetrizing to discharge the need for well-aligned images 

for deep metric learning (Sedghi et al 2018). The learnt deep metric outperformed MI on 2D 

brain image registration. Though they managed to relax the absolute accuracy of image 

alignment in network training, roughly-aligned image pairs were still necessary. To 

eliminate the need for aligned image pairs, Wu et al proposed to use stacked AEs (SAE) to 

learn intrinsic feature representations by unsupervised learning (Wu et al 2016). The 

convolutional SAE could encode an image to obtain low-dimensional feature representations 

for image similarity calculation. The learnt feature representations were used in Demons and 

HAMMER to perform brain image DIR. They showed that the image registration 

performance has improved consistently using the learnt feature representations in terms of 

the Dice similarity coefficient (DSC). To test the generality of the learnt feature 

representation, they reused network trained using LONI dataset on ADNI datasets. The 

results were comparable to the case of learning feature representation from the same 

datasets.

It was shown that combining multi-metric measures could produce more robust registration 

results compared to using the metrics individually. Ferrante et al used support vector 

machine (SVM) to learn weights of an aggregation of similarity measures including 

anatomical segmentation maps and displacement vector labels (Ferrante et al 2019). They 

have showed that the multi-metric outperformed conventional single-metric approaches. To 
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deal with the non-convex of the aggregated similarity metric, they optimized a regularized 

upper bound of the loss using CCCP algorithm (Yuille and Rangarajan 2003). One limitation 

of this method was that segmentation masks of the source images were needed at testing 

stage.

3.1.2. Assessments.—Deep similarity metric has shown its potential to outperform 

traditional similarity metrics in medical image registration. However, it is difficult to ensure 

that its derivative is smooth for optimization. The above-mentioned measures of using a 

large overlap (Simonovsky et al 2016) or performing multiple TRE predictions (Haskins et 

al 2019a) are computationally demanding and only mitigate the problem of non-convex 

derivatives. Well-aligned image pairs are difficult to obtain for deep similarity network 

training. Though Wu et al (2016) has demonstrated that deep similarity network could be 

trained in an unsupervised manner, they only tested on unimodal image registration. Extra 

experiments on multi-modal images need to be performed to show its effectiveness. The 

biggest limitation of this category maybe that the registration process still inherits the 

iterative nature of traditional DIR frameworks, which slows the registration process. As 

more and more papers on direct transformation prediction emerge, it is expected that this 

category will be less attractive in the future.

3.2. RL in medical image registration

One disadvantage of the previous category is that the registration process is iterative and 

time-consuming. It is desired to develop a method to predict transformation in one shot. 

However, one shot transformation prediction is very difficult due to the high dimensionality 

of the output parameter space. RL has recently gained a lot of attention since the 

publications from Mnih et al (2015) and Silver et al (2016). They combined RL with DNN 

to achieve human-level performances on Atari and Go. Inspired by the success of RL, and to 

circumvent the challenge of high dimensionality in one shot transformation prediction, 

several groups proposed to combine CNN with RL to decompose the registration task into a 

sequence of classification problems. The strategy is to find a series of actions, such as 

rotation and translation along certain axis by a certain value, to iteratively improve image 

alignment.

3.2.1. Overview of works.—Table 3 shows a list of selected references that used RL in 

medical image registration. Liao et al was one of the first to explore RL in medical image 

registration (Liao et al 2016). The task was to perform 3D-3D, rigid, cone beam CT 

(CBCT)-CT image registration. Specific challenges of the registration include large 

differences in field of views (FOVs) between the CT and CBCT in spine registration and the 

severe streaking artifacts in CBCT. An artificial agent was trained using a greedy supervised 

approach to perform rigid image registration. The artificial agent was modelled using CNN, 

which took raw images as input and output the next optimal action. The action space 

consists of 12 candidate transformations, which are ±1 mm of translation and ±1 degree of 

rotation along the x, y, and z axis, respectively. Ground truth alignment were obtained using 

iterative closest point registration of expert-defined spine landmarks and epicardium 

segmentation, followed by visual inspection and manual editing. Data augmentation was 

used to artificially de-align the image pair with known transformations. Different from Mnih 
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et al who trained their network with repeated trial and error, Liao et al trained the network 

with greedy supervision, where the reward can be calculated explicitly via a recursive 

function. They showed that the network training process with supervision was a magnitude 

more efficient than the training process of Mnih et al’s network. They also claimed their 

network could reliably overcome local maxima, which was challenging for generic 

optimization algorithms when the underlying problem was non-convex.

Motivated by Liao et al (2016), Miao et al proposed a multi-agent system with an auto 

attention mechanism to rigidly register 3D-CT with 2D x-ray spine image (Miao et al 2017). 

Reliable 2D-3D image registration could map the pre-operative 3D data to real-time 2D x-

ray images by image fusion. To deal with various image artifacts, they proposed to use an 

auto-attention mechanism to detect regions with reliable visual cues to drive the registration. 

In addition, they used a dilated FCN-based training mechanism to reduce the degree of 

freedom of training data to improve the training efficiency. They have outperformed single 

agent-based and optimization-based methods in terms of TRE.

Sun et al proposed to use an asynchronous RL algorithm with customized reward function 

for 2D MR-CT image registration (Sun et al 2019). They used datasets from 99 patients 

diagnosed as nasopharyngeal carcinoma. Ground truth image alignments were obtained 

using toolbox Elastix (Klein et al 2010). Different from previous works, Sun et al 

incorporated scaling factor into the action space. The action space consists of eight 

candidate transformations including ±1 pixel for translation, ±1 degree for rotation and 

±0.05 for scaling. CNN was used to encode image states and LSTM was used to encode 

hidden states between neighboring frames. Their results were better than that obtained using 

Elastix in terms of TRE when the initial image alignment was poor. The use of actor-critic 

scheme (Grondman et al 2012) allowed the agent to explore transformation parameter spaces 

freely and avoided local minima when the initial alignment was poor. On the contrary, when 

the initial image alignment was good, Elastix was slightly better than their method. In the 

inference phase, a Monte Carlo rollout strategy was proposed to terminate the searching path 

to reach a better action.

All of the above-mentioned methods focused on rigid registration since rigid transformation 

could be represented by a low-dimensional parametric space, such as rotation, translation 

and scaling. However, non-rigid, free-form transformation model has high dimensionality 

and non-linearity which would result in a huge action space. To deal with this problem, 

Krebs et al proposed to build a statistical deformation model (SDM) with a low-dimensional 

parametric space (Krebs et al 2017). Principal component analysis (PCA) was used to 

construct SDM on B-spline deformation vector field (DVF). Modes of the PCA of the 

displacement were used as the unknow vectors for the agents to optimize. They evaluated the 

method on inter-subject MR prostate image registration in both 2D and 3D. The method 

achieved DSC scores of 0.87 and 0.80 for 2D and 3D, respectively.

Ghesu et al proposed to use RL to detect 3D-landmarks in medical images (Ghesu et al 

2016). This method was mentioned since it belongs to the category of RL and the detected 

landmarks could be used for landmark-based image registration. They reformulated the 

landmark detection task as a behavioral problem for the network to learn. To deal with local 
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minima problem, a multi-scale approach was used. Experiments on 3D-CT scans were 

conducted to compare with another five methods. The results showed that the detection 

accuracy was improved by 20%–30% while being 2–3 orders of magnitude faster.

3.2.2. Assessment.—The biggest limitation of RL-based image registration is that the 

transformation model is highly constrained to low-dimensionality. As a result, most of the 

RL-based registration methods used rigid transformation models. Though Krebs et al has 

applied RL to non-rigid image registration by predicting a low-dimensional parametric space 

of statistical deformation model, the accuracy and flexibility of the deformation model is 

highly constrained and may not be adequate to represent the actual deformation. RL-based 

image registration methods have shown its usefulness in enhancing the robustness of many 

algorithms in multi-modal image registration tasks. Despite the usefulness of RL, statistics 

indicates loss of popularity of this category, evidenced by the decreasing number of papers 

in 2019. As the techniques advance, more and more direct transformation predication 

methods are proposed. The accuracy of the direct transformation prediction methods is 

constantly improving, achieving comparable accuracy to top traditional DIR methods. 

Therefore, the advantage of casting registration as a sequence of classification problems in 

RL-based registration methods is gradually vanishing.

3.3. Supervised transformation predication

Both deep similarity-based and RL-based registration methods are iterative methods in order 

to avoid the challenges of one-shot transformation prediction. Despite the difficulties, 

several groups have attempted to train networks to directly infer the final transformation in a 

single forward prediction. The challenges include (1) high dimensionality of the output 

parametric space, (2) lack of training datasets with ground truth transformations and (3) 

regularization of the predicted transformation. Methods including ground truth 

transformation generation, image re-sampling and transformation regularization methods 

have been proposed to overcome these challenges. Table 4 shows a list of selected references 

that used supervised transformation prediction for medical image registration.

3.3.1. Overview of works.

3.3.1.1. Ground truth transformation generation.: For supervised transformation 

prediction, it is important to generate many image pairs with known transformations for 

network training. Numerous data augmentation techniques were proposed for artificial 

transformations generation. Generally, these artificial transformation generation methods can 

be classified into three groups: (1) random transformation, (2) traditional registration-

generated transformation and (3) model-based transformations.

3.3.1.1.1. Random transformation generation.: Salehi et al aimed to speed up and 

improve the capture range of 3D-3D and 2D-3D rigid image registration of fetal brain MR 

scans (Salehi et al 2018). CNN was used to predict both rotation and translation parameters. 

The network was trained using datasets generated by randomly rotating and translating the 

original 3D images. Both MSE and geodesic distance were used for loss function 

calculation. Geodesic distance is the distance between two points on a unit sphere. They 

have showed significant improvement after combining the geodesic distance loss with the 
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MSE loss. Sun et al used expert aligned CT-US image pairs as ground truth (Sun et al 2018). 

Known artificial affine transformations were used to synthesize training datasets. The 

network was trained to predict the affine parameters. They have trained network which 

worked for simulated CT-US registration. However, it does not work on real CT-US pairs 

due to the vast appearance differences between the simulated and the real US. They have 

tried multiple methods to counter-act overfitting, such as deleting dropout layers, less 

complex network, parameter regularization and weight decay. Unfortunately, none of them 

worked.

Eppenhof et al proposed to train a CNN using synthetic random transformations to perform 

3D-CT lung DIR (Eppenhof et al 2018). The output of the network was DVF on a thin plate 

spline transform grid. MSE between the predicted DVF and the ground truth DVF was used 

as loss function. They achieved 4.02 ± 3.08 mm TRE on DIRLAB (Castillo et al 2009), 

which was much worse than 1.36 ± 0.99 mm (Berendsen et al 2014) of the traditional DIR 

method. They later improved their method to use a U-Net architecture (Eppenhof and Pluim 

2019). The network was trained on whole image. Images were down-sampled to fit into 

GPU memory. Again, synthetic random transformation was used to train the network. Affine 

pre-registration was required prior to CNN transformation prediction. They managed to 

reduce the TRE from 4.02 ± 3.08 mm to 2.17 ± 1.89 mm on DIRLAB datasets. Despite the 

slightly worse TRE than traditional DIR methods, they have demonstrated the possibility of 

direct transformation prediction using CNN.

3.3.1.1.2. Traditional registration-generated transformations.: Later, several groups tried 

to use traditional registration methods to register an image pair to generate ‘ground truth’ 

transformations for the network to learn. The rationale is that random transformation 

generation might be too different from the true transformation, which might deteriorate the 

performance of network.

Sentker et al used DVF generated from traditional DIRs including PlastiMatch (Modat et al 

2010), NiftyReg (Shackleford et al 2010) and VarReg (Werner et al 2014) as ground truth 

(Sentker et al 2018). MSE between the predicted and the ground truth DVF was used as loss 

function to train a network for 3D-CT lung registration. On DIRLAB (Castillo et al 2009) 

datasets, they achieved better TRE using DVFs generated by VarReg as compared to 

PlastiMatch and NiftyReg. Results showed that their CNN-based registration method was 

comparable to the original traditional DIR in terms of TRE. The best TRE values they have 

achieved on DIRLAB is 2.50 ± 1.16 mm. Fan et al proposed a BIRNet to perform brain 

image registration using dual supervision (Fan et al 2019b). Ground truth transformations 

were obtained using existing registration methods. MSE between the ground truth and the 

predicted transformations were used as loss function. They used not only the original image 

but also its difference and gradient images as input to the network.

3.3.1.1.3. Model-based transformation generation.: Uzunova et al aimed to generate a 

large and diverse set of training image pairs with known transformations from a few sample 

images (Uzunova et al 2017). They proposed to learn highly expressive statistical 

appearance models (SAM) from a few training samples. Assuming Gaussian distribution for 

the appearance parameters, they synthesized huge amounts of realistic ground truth training 
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datasets. FlowNet (Dosovitskiy et al 2015) architecture was used to register 2D MR cardiac 

images. For comparison, they have generated ground truth transformations using three 

different methods, which are affine registration-generated, randomly-generated and the 

proposed SAM-generated transformations. They showed that CNN learnt from the SAM-

generated transformation outperformed CNN learnt from randomly generated and affine 

registration-generated transformation.

Sokooti et al generated artificial DVFs using model-based respiratory motion to simulate 

ground truth DVF for 3D-CT lung image registration (Sokooti et al 2019b). For comparison, 

random transformations were also generated using single frequency and mixed frequencies. 

They tested different combinations of various network structures including U-Net whole 

image, multi-view based and U-Net advanced. The multi-view and U-Net advanced all used 

patch-based training. TRE and Jacobian determinant were used as evaluation metrics. After 

comparison, they claimed that the realistic model-based transformation performed better 

compared to random transformations in terms of TRE. On average, they achieved TRE of 

2.32 mm and 1.86 mm for SPREAD and DIRLAB datasets, respectively.

3.3.1.2. Supervision methods.: As neural network develops, many new supervision terms 

such as ‘supervised’, ‘unsupervised’, ‘deeply supervised’, ‘weakly supervised’, ‘dual 

supervised’, ‘self-supervised’ have emerged. Generally, neural network learns to perform a 

certain task by minimizing a predefined loss function via optimization. These terms refer to 

how the training datasets are prepared and how the networks are trained using the datasets. 

In the following paragraph, we briefly describe the definition of each supervision strategy in 

the context of DL-based image registration.

The learning process of a neural network is supervised if the desired output is already known 

in the training datasets. Supervised network means the network is trained with the ground 

truth transformation, which is a dense DVF for free deformation and a parametric vector of 6 

for rigid transformation. On the other hand, unsupervised learning has no target output 

available in the training datasets, which means the desired DVFs or target transformation 

parameters are absent in the training datasets. Unsupervised network was also referred to 

self-supervised network since the warped image is generated from one of the input image 

pair and compared to another input image for supervision. Deep supervision usually means 

that the differences between outputs from multiple layers and the desired outputs are 

penalized during training whereas normal supervision only penalizes the difference between 

the final output and the desired output. In this manner, supervision was extended to deep 

layers of the network. Weak supervision represents scenario where ground truth other than 

the exact desired output is available in the training datasets and used to calculate the loss 

function. For example, a network is called weakly supervised if corresponding anatomical 

structural masks or landmark pairs, not the desired dense DVF, are used to train the network 

for direct dense DVF prediction. Dual supervision means that the network is trained using 

both supervised and unsupervised loss functions.

3.3.1.2.1. Weak supervision.: Methods that use ground truth transformation generation 

were mainly supervised method for direct transformation prediction. Weakly supervised 

transformation prediction has also been explored. Instead of using artificially-generated 
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transformations, Hu et al proposed to use higher-level correspondence information such as 

labels of anatomical organs for network training (Hu et al 2018b). They argued that such 

anatomical labels were more reliable and practical to obtain. They trained a CNN to perform 

deformable MR-US prostate image registration. The network was trained using weakly 

supervised method, meaning that only corresponding anatomical labels, not dense voxel-

level spatial correspondence, were used for loss calculation. The anatomical labels were 

required only in the training stage for loss calculation. Labels were not required in inference 

stage to facilitate fast registration. Similarly, Hering et al combined the complementary 

information from segmentation labels and image similarity to train a network (Hering et al 

2019). They showed significant higher DSC scores than using only image similarity loss or 

segmentation label loss in 2D MR cardiac DIR.

3.3.1.2.2. Dual supervision.: Technically, dual supervision is not strictly defined. It 

usually means the network was trained using two types of important loss functions. Cao et al 

used dual supervision which includes a MR-MR loss and a CT-CT loss (Cao et al 2018a). 

Prior to network training, they transformed the multi-modality to unimodality registration by 

using pre-aligned counterpart images, for MR-CT registration. The MR has a pre-aligned 

CT and CT has a pre-aligned MR. The loss function has a dual similarity loss including MR-

MR and CT-CT loss. They showed that the dual-modality similarity performed better than 

SyN (Avants et al 2008) and single modality similarity in terms of DSC and average surface 

distance (ASD) in pelvic image registration. Liu et al used representation learning to learn 

feature-based descriptors with probability maps of confidence level (Liu et al 2019a). Then, 

the learnt descriptor pairs across the image were used to build a geometric constraint using 

Hough voting or RANSAC. The network was trained using both supervised synthetic 

transformations and an unsupervised descriptor image similarity loss. Similarly, Fan et al 

combined both supervised and unsupervised loss terms for dual supervision in MRI brains 

image registration (Fan et al 2019b).

3.3.2. Assessment.—In recent two to three years, we have seen a huge interest in 

supervised CNN direct transformation prediction, evidenced by an increasing number of 

publications. Though direct transformation prediction has yet to outperform the state-of-the-

art traditional DIR methods, the registration accuracy has improved greatly. Some methods 

have achieved comparable registration accuracy to the traditional DIR methods. Ground 

truth transformation generation will continue to play an important role in network training. 

Limitations of using artificially generated image pair with known ground truth 

transformations include (1) the generated transformation might not reflect the true 

physiological motion, (2) the generated transformation might not capture the large range of 

variations of actual image registration scenarios and (3) the artificially generated image pairs 

in the training stage are different from the actual image pair in the inference stage. To deal 

with the first limitations, we can use various transformation generation models. Adequate 

data augmentation could be performed to mitigate the second limitation. Domain adaption 

(Ferrante et al 2018, Zheng et al 2018) could be used to account for the domain difference 

between the artificially-generated and the true images. Image registration is an ill-posed 

problem, the ground truth transformation could help to constrain the final transformation 

prediction. Combinations of different loss functions and DVF regularization methods have 
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also been examined to improve the accuracy of registration. We expect DL-based 

registration of this category to keep growing in the future.

3.4. Unsupervised transformation prediction

It is desired to develop unsupervised image registration methods to overcome the lack of 

training datasets with known transformations. However, it is difficult to define proper loss 

function of the network without ground truth transformations. In 2015, Jaderberg et al 

proposed a spatial transformer network (STN) which explicitly allows spatial manipulation 

of data within the network (Jaderberg et al 2015). Importantly, the spatial transformer 

network was a differentiable module that can be inserted in to existing CNN architectures. 

The publication of STN has inspired many unsupervised image registration methods since 

STN enables image similarity loss calculation during the training process. A typical 

unsupervised transformation prediction network for DIR takes an image pair as input and 

directly output dense DVF, which was used by STN to warp the moving image to generate 

warped images. The warped images were then compared to fixed images to calculate image 

similarity loss. DVF smoothness constraint was normally used to regularize the predicted 

DVF.

3.4.1. Overview of works.—Table 5 shows a list of selected references that performed 

unsupervised transformation prediction. Yoo et al proposed to use a CAE to encode image to 

a vector to calculate similarity, called feature-based similarity which is different from 

handcrafted feature similarity such as SIFT (Yoo et al 2017). They showed this feature-based 

similarity measure was better than intensity-based similarity measure for DIR. They have 

combined the deep similarity metrics and STN for unsupervised transformation estimation in 

2D electron microscopy (EM) neural tissue image registration. Balakrishnan et al proposed 

an unsupervised CNN-based DIR method for MR brain atlas-based registration 

(Balakrishnan et al 2018, 2019). They used a U-Net like architecture and named it 

‘VoxelMorph’. In the training, the network penalized the differences in image appearances 

with the help of STN. Smoothness constraint was used to penalize local spatial variations in 

the predicted transformation. They have achieved comparable performance to ANT (Avants 

et al 2011) registration method in terms of DSC score of multiple anatomical structures. 

Later, they extended their method to leverage auxiliary segmentations available in the 

training data. A DSC loss function was added to the original loss functions in the training 

stage. Segmentation labels were not required during testing. They investigated unsupervised 

brain registration, with and without segmentation label DSC loss. Their results showed that 

the segmentation loss could help yield improved DSC scores. The performance is 

comparable to ANT and NiftyReg, while being x150 faster than ANTs and x40 faster than 

NiftyReg.

Like (Balakrishnan et al 2019), Qin et al also used segmentation as complementary 

information for cardiac MR image registration (Qin et al 2018). They found out that the 

feature learnt by registration CNN could be used in segmentation as well. The predicted 

DVF was used to deform the masks of moving image to generate masks of the fixed image. 

They trained a joint segmentation and registration model for cardiac cine image registration 

and proved that the joint mode could generate better results than the separate models alone 
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in both segmentation and registration tasks. Similar idea has been explored in (Mahapatra et 

al 2018b) as well. They claimed registration and segmentation are complementary functions 

and combining them can improve each other’s performance.

Later, Zhang et al proposed a network with trans-convolutional layers for end-to-end DVF 

prediction in MR brain DIR (Zhang 2018). They focused on the diffeomorphic mapping of 

the transformation. To encourage smoothness and avoid folding of the predicted 

transformation, they proposed an inverse-consistent regularization term to penalize the 

difference between two transformations from the respective inverse mappings. The loss 

function consists of an image similarity loss, a transformation smoothness loss, an inverse 

consistent loss and an anti-folding loss. Their method has outperformed Demons and Syn, in 

terms of DSC score, sensitivity, positive predictive value, average surface distance and 

Hausdorff distance. A similar idea was proposed by Kim et al who used cycle consistent loss 

to enforce DVF regularization (Kim et al 2019). They also used identity loss where the 

output DVF should be zero if the moving and fixed image are the same image.

For 3D-CT image registration, Lei et al used an unsupervised CNN to perform abdominal 

image registration (Lei et al 2019c). They used a dilated inception module to extract multi-

scale motion features for robust DVF prediction. Apart from the image similarity loss and 

DVF smoothness loss, they integrated a discriminator to provide additional adversarial loss 

for DVF regularization. Vos et al proposed an unsupervised affine and DIR framework by 

stacking multiple CNN into a larger network (de Vos et al 2019). The network was tested on 

cardiac cine MRI and 3D CT lung image registration. They showed their method was 

comparable to conventional DIR method while being several orders of magnitude faster. 

Like (de Vos et al 2019), Zhao et al cascaded affine and deformable networks for CT liver 

DIR (Zhao et al 2019). Recently, Jiang et al proposed a multi-scale framework with 

unsupervised CNN for 3D CT lung DIR (Jiang et al 2019). They cascaded three CNN 

models with each model focusing on its own scale level. The network was trained using 

image patches to optimize an image similarity loss and a DVF smoothness loss. They 

showed that network trained on SPARE datasets could generalize to a different DIRLAB 

datasets. In addition, the same trained network also performed well on CT-CBCT and 

CBCT-CBCT registration without retraining or fine-tuning. They achieved an average TRE 

of 1.66 ± 1.44 mm on DIRLAB datasets. Fu et al proposed an unsupervised method for 3D-

CT lung DIR (Fu et al 2020). They first performed whole-image registration on down-

sampled image using a CoarseNet to warp the moving image globally. Then, image patches 

of the globally warped moving image were registered to the image patches of the fixed 

image using a patch-based FineNet. They also incorporated a discriminator to provide 

adversarial loss by penalizing unrealistic warped images. Vessel enhancement was 

performed prior to DIR to improve the registration accuracy. They have achieved an average 

TRE of 1.59 ± 1.58 mm, which outperformed some traditional DIR methods. Interestingly, 

both Jiang et al and Fu et al have achieved better TRE values using unsupervised methods 

than the supervised methods in (Eppenhof and Pluim 2019) and (Sentker et al 2018).

3.4.2. Assessment.—Compared to supervised transformation prediction, unsupervised 

methods effectively alleviate the problem of lack of training datasets. Various regularization 

terms have been proposed to encourage plausible transformation prediction. Several groups 
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have achieved comparable or even better results in terms of TRE on DIRLAB 3D-CT lung 

DIR. However, most of the methods in this category focused on unimodality registration. 

There has been a lack of investigation in multi-modality image registration using 

unsupervised methods. To provide additional supervision, several groups have combined 

supervised with unsupervised methods for transformation prediction (Fan et al 2019b). The 

combination seems beneficial; however, more investigation was needed to justify its 

effectiveness. Given the promising results of the unsupervised methods, we expect a 

continuous growth of interest in this category.

3.5. GAN in medical image registration

The use of GAN in medical image registration can be generally categorized in two groups: 

(1) to provide additional regularization of the predicted transformation; (2) to perform cross-

domain image mapping. Table 6 shows a list of selected references that utilized GAN to aid 

the registration.

3.5.1. Overview of works.

3.5.1.1. GAN-based regularization.: Since image registration is an ill-posed problem, it 

is crucial to have adequate regularization to encourage plausible transformations and to 

prevent unrealistic transformations such as tissue folding. Commonly used regularization 

terms include DVF smoothness constraint, anti-folding constraint and inverse consistency 

constraint. However, it remains ambiguous whether these constraints are adequate for proper 

regularization. Recently, GAN-based regularization terms have been introduced to the realm 

of image registration. The idea is to train an adversarial network to introduce a network-

based loss for transformation regularization. In the literature, discriminators were trained to 

distinguish three types of inputs, including (1) whether a transformation is predicted or 

ground truth, (2) whether an image is realistic or warped by predicted transformation, (3) 

whether an image pair alignment is positive or negative.

Yan et al trained an adversarial network to tell whether an image was deformed using ground 

truth transformation or predicted transformation (Yan et al 2018). Randomly generated 

transformations from manually aligned image pairs were used as ground truth to train a 

network to perform MR-US prostate image registration. The trained discriminator could 

provide not only an adversarial loss for regularization but also a discriminator score for 

alignment evaluation. Fan et al used a discriminator to distinguish whether an image pair 

were well aligned (Fan et al 2019a). In unimodal image registration, they have defined a 

positive image alignment case as weighted linear combination of the fixed and the moving 

images. In multi-modal image registration case, positive image alignments were pre-defined 

using paired MR and CT images. They performed on MR brain images for unimodal 

registration and on pelvic CT-MR for multi-modal registration. They have showed that the 

performance increased with the adversarial loss. Lei et al used a discriminator to judge 

whether the warped image is realistic enough to the original images (Lei et al 2019c). Fu et 

al used a similar idea and showed that the inclusion of adversarial loss could improve 

registration accuracy in 3D-CT lung DIR (Fu et al 2020).
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The above GAN-based methods have tried to introduce regularization from the image or 

transformation appearance perspective. Differently, Hu et al tried to introduce biomechanical 

constraints to 3D MR-US prostate image registration by discriminating whether a 

transformation is predicted or generated by finite element analysis (Hu et al 2018a). Instead 

of adding the adversarial loss to existing smoothness loss, they replaced the smoothness loss 

with the adversarial loss. They showed that their method could predict physically plausible 

deformation without any other smoothness penalty.

3.5.1.2. GAN-based cross-domain image mapping.: For multi-modal image registration, 

progresses have been made by using deep similarity metrics in traditional DIR frameworks. 

Using iterative methods, several works have outperformed the-state-of-art MI similarity 

measures. However, in terms of direct transformation prediction, multi-modal image 

registration has not benefited from DL as much as unimodal image registration has. This is 

mainly due to the vast appearance differences between different modalities. To overcome 

this challenge, GAN has been used to translate multi-modal to unimodal image registration 

by mapping images from one modality to another.

Salehi et al trained a CNN using T2-weighted images to perform fetal brain MR registration. 

They tested the network on T1-weighted images by first mapping the T1 to T2 image 

domain using a conditional GAN (Salehi et al 2018). They showed the trained network 

generalized well on the synthesized T2 images. Qin et al used an unsupervised image-to-

image translation framework to cast multi-modal to unimodal image registration (Qin et al 

2019). The image to image translation method assumes the images could be decomposed 

into content code and style code. They have showed comparable results to MIND and 

Elastix on BraTs datasets in terms of RMSE of DVF error. On COPDGene datasets, they 

outperformed MIND and Elastix in terms of DICE, mean contour distance (MCD) and 

Hausdorff distance. Mahapatra et al combined cGan (Mirza and Osindero 2014) and 

registration network together to directly predict both DVF and warped image (Mahapatra et 

al 2018c). They implicitly transformed image in one modality to another modality. They 

outperformed Elastix on 2D retinal image registration in terms of Hausdorff distance, MAD 

and MSE. Elmahdy et al claimed that inpainting gas pockets in the rectum could enhance 

rectum and seminal vesicle registration (Elmahdy et al 2019b). They used GAN to detect 

and inpaint rectum gas pocket prior to image registration.

3.5.2. Assessment.—GAN has been shown to be promising in medical image 

registration via either novel adversarial loss or image domain translation. For adversarial 

losses, GAN could provide learnt network-based regularizations that are complementary to 

traditional handcrafted regularization terms. For image domain translation, GAN effectively 

cast the more challenging multi-modal registration to unimodal image registration, which 

allows many existing unimodal registration algorithms to be applied to multi-modal image 

registration. However, the absolute intensity mapping accuracy of GAN is yet to be 

investigated. GAN has also been applied to deep similarity metric learning in registration 

and alignment validation. As evidenced by the trend in figure 2, we expect to see more 

papers using GAN in image registration tasks in the future.
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3.6. Registration validation using DL

The performance of image registration could be evaluated using image similarity metrics 

such as SSD, NCC and MI. However, the image similarity metrics only evaluate the overall 

alignment on the whole image. To have a deeper insight into local registration accuracy, we 

usually rely on manual landmark pair selection. Nevertheless, manual landmark pair 

selection is time-consuming, subjective and error-prone especially when many landmarks 

were to be selected. Fu et al used a Siamese network for large quantity landmark pair 

detection on 3D-CT lung images (Fu et al 2019). The network was trained using the manual 

landmark pairs from DIRLAB datasets. They performed experiments comparisons, showing 

that the network could outperform human in landmark pair detection. Neylon et al proposed 

to use a deep neural network to predict TRE for given image similarity metrics (Neylon et al 

2017). The network was trained using patient-specific biomechanical models of head-neck 

anatomy. They demonstrated that the network could rapidly and accurately quantify 

registration performance.

3.6.1. Overview of works.—Table 7 shows a list of selected references that used deep 

learning to aid registration validation. Eppenhof et al proposed a TRE alternative to assess 

DIR registration accuracy. They used synthetic transformations as ground truth to avoid the 

need for manual annotations (Eppenhof and Pluim 2018). The ground truth error map was 

the L2 difference between ground truth transformations and the predicted transformations. 

They trained a network to robustly estimate registration errors with sub-voxel accuracy. 

Galib et al predicted an overall registration error index, which is the ratio between good 

alignment sub-volumes and poor alignment sub-volumes (Galib et al 2019). They justified 

the choice of threshold TRE of 3.5 mm as a cutoff value of good and bad alignment. Their 

network was trained using manually labeled landmarks from DIRLAB. Sokooti et al 

proposed a random forest regression method for quantitative error prediction of DIR 

(Sokooti et al 2019a). They used both intensity-based features such as MIND and 

registration-based features such as transformation Jacobian determinant. Dubost et al used 

ventricle DSC score to evaluate brain registration (Dubost et al 2019). The ventricle was 

segmented using DL-based method.

3.6.2. Assessment.—The number of papers using DL for registration evaluation has 

increased significantly in 2019. Most works treated registration error prediction as a 

supervised regression problem. Network was trained using manually annotated datasets. It is 

important to make sure the ground truth datasets are of high quality. Most of existing 

methods focused on lung because benchmark datasets with manual landmark pairs exists for 

3D CT lung such as DIRLAB. It would be interesting to see the method be applied on many 

other treatment sites. Unsupervised registration error prediction is another interesting 

research topic to eliminate the need for manual annotated datasets.

3.7. Other learning-based methods in medical image registration

Table 8 shows a list of other methods that utilized deep learning to aid the registration such 

as LSTM, transfer learning, FasterRCNN and so on. Jiang et al proposed to use CNN to lean 

and infer expressive sparse multi-grid configurations prior to B-spline coefficient 

optimization (Jiang and Shackleford 2018). Liu et al used a ten-layer FCN for image 
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synthesis without GAN to transform multimodal to unimodal registration among T1-

weighted, T2-weighed, and proton density images (Liu et al 2019b). Then, they used Elastix 

software with SSD similarity metric for the registration of brain phantom and IXI datasets. 

They outperformed MI similarity index. Wright et al proposed to use LSTM network to 

predict a rigid transformation and an isotropic scaling factor for MR-US fetal brain 

registration (Wright et al 2018). Bashiri et al used Laplacian eigenmap as a manifold 

learning method to implement a multi-modal to unimodal image translation in 2D brain 

image registration (Bashiri et al 2019).

Mahapatra and Ge proposed to use transfer learning to reuse part of the network weights that 

were learned from chest x-ray registration on MRI brain image registration. In the transfer 

learning, the weights of the last few layers were updated iteratively based on the output of a 

discriminator while the rest of the network weights were kept constant (Mahapatra and Ge 

2019). Yu et al proposed to use FasterRCNN (Ren et al 2017) for vertebrae bounding box 

detection (Yu et al 2019a). The detected bounding box was then matched to doctor-annotated 

bounding box on the x-ray image. Zheng et al proposed a domain adaptation module to cope 

with the domain variance between synthetic data and real data (Zheng et al 2018). The 

adaptation module can be trained using a few paired real and synthetic data. The trained 

module could be plugged into the network to transfer the real features to approach the 

synthetic features. Since network was trained on synthetic data, the network should perform 

well on synthetic data. Hence, it is reasonable to transfer the real data features to synthetic 

features.

4. Benchmark

Benchmarking is important for readers to understand through comparison the advantages 

and disadvantages of each method. For image registration, both registration accuracy and 

computational time could be benchmarked. However, researchers have been reporting 

registration accuracies more than the computational speed. Computational speed is largely 

dependent on the hardware, which is often different from group to group. According to the 

statistics of the cited works, the top two ROIs of registration are brain and lung. Therefore, 

we summarized the registration datasets for brain, registration accuracies for lung.

4.1. Lung

DIRLAB is one of the most cited public datasets for 4D-CT chest image registration studies 

(Castillo et al 2009). DIRLAB provides 300 manually selected landmark pairs for end-

exhalation and end-inhalation phases. This dataset was frequently used for 4D-CT lung 

registration benchmarking. To provide the readers a better understanding of the latest DL-

based registration, we have listed the TREs of three top performing traditional methods and 

seven DL-based lung registration methods. Table 9 shows that DL-based lung registration 

methods have not outperformed the top traditional DIR methods yet in terms of TRE. 

However, DL-based DIR methods have been making substantial improvement over the 

years, with Fu et al and Jiang et al almost achieving comparable TRE to top traditional 

methods. TREs of traditional DIR on case 8 were consistently better than that of the DL-

based DIR. Case 8 is one of the most challenging cases in the DIRLAB datasets with 
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impaired image quality and significant lung motion. This phenomenon suggests that the 

robustness and competency of DL-based DIR need to be further improved. Table 10 lists the 

workstation configurations and computational time of registration for several DL-based 

methods.

4.2. Brain

Brain image registration has much wider options in databases than lung image registration. 

As a result, authors were not consistent on which database to use for training and testing and 

what metrics to use for validations. To facilitate benchmarking, we have listed a number of 

works on brain image registration in table 11, which presents the datasets, the registration 

transformation model and the evaluation metrics. DSC of multiple ROI is the most 

commonly used evaluation metric. MI and surface distance measures are the next frequently 

used evaluation metrics.

5. Statistics

After careful study of each category, it is important to step back and look at the whole 

picture. Out of the 150 + papers cited, more than half of the papers were aimed at direct 

transformation prediction using either supervised or unsupervised transformation prediction. 

The category of deep similarity-based methods accounts for 14% of all methods while the 

category of GAN account for 10% of all methods. Publications from the same group 

(Conference papers which were extended into journal papers) were counted only once if 

there were no substantial differences in content. One paper may belong to multiple 

categories. For example, unsupervised CNN method could use GAN generated loss for 

additional transformation regularization. Details percentages are shown in figure 3.

Besides the number of papers, we have also analyzed the percentage distributions of many 

other attributes including input image pair dimension, transformation model, image domain, 

patch-based training, DL frameworks and ROI of the cited works. The percentage 

distributions were shown in figure 4. 60% of the works were solving 3D-3D registration 

problems. The 2D-3D image registration works are mostly to register 3D-CT to 2D x-ray 

images for intraoperation image guidance. The percentages of the number of deformable, 

rigid and affine registration papers are 72%, 19% and 9%, respectively. Most of the rigid 

registration papers are for intra-patient brain and spine alignment. There are more 

publications on unimodal than multi-modal image registration. Due to the superior 

performance of DL-based similarity measures to traditional similarity measures, the number 

of DL-based multi-modality image registration papers is increasing and accounts for 41% of 

all the papers. Patch-based training was often adopted to save GPU memory. Figure 4 shows 

that 70% of all works used whole image-based training. The 70% includes not only 3D-3D 

but also 2D-3D and 2D-2D image registrations. Almost all 2D-2D registration used whole 

image-based training since 2D images are much less memory demanding than 3D images. 

Therefore, for 3D-3D image registration, there are roughly the same number of works that 

used whole image-based training and patch-based training. In terms of DL frameworks, 

Tensorflow is the leading framework which accounts for more than half of all papers. 

Pytorch is the second most popular DL framework which accounts for a quarter of all 
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papers. Early works used Caffe and Theano, which was used less and less over the years as 

compared to Tensorflow and Pytorch. Theano has officially ceased development after 

version 1.0. The DL toolbox of Matlab is the least used framework perhaps due to licensing. 

In terms of the ROI, MR brain and CT lung are the most studied sites. Brain is the top 

registration target in all works. The reason for the wide adoption of brain include its clinical 

importance, its availability of public datasets and its relative simplicity of registration.

6. Discussion

Though image registration has been extensively studied, DL-based medical image 

registration is a relatively new research area. We have collected over 150 papers, most of 

which were published in the last three to four years. We generally classify these methods 

into seven non-exclusive categories. Many methods could be classified into multiple 

categories. For example, GAN was mostly used in combination with supervised or 

unsupervised transformation prediction methods as an auxiliary regularization or image pre-

processing step. Supervised and unsupervised methods were combined for dual supervision 

in some works. DL-based registration validation methods were included in this review 

because methods in this category often involve learning a deep similarity metric, therefore, 

could be used for image registration. RL and deep similarity-based methods are iterative 

whereas supervised and unsupervised based methods are non-iterative. For iterative 

methods, multiple works have reported that deep similarity metrics have superior 

performance to handcrafted intensity-based image similarity metric. For non-iterative 

methods, DL-based methods have yet to outperform traditional DIR methods. Take lung 

registration for example, the best performing DL-based methods are only comparable to the-

state-of-art traditional DIR methods in terms of TRE. However, DL-based direct 

transformation methods are generally order of magnitude faster than traditional DIR 

methods. This is mainly due to the non-iterative nature and the powerful GPU utilized. A 

common feature that is used in both traditional DIR and DL-based methods is multi-scale 

strategy. Multi-scale registration could help the optimization avoid local maxima and allow 

large deformation registration. Regarding network generality, Fu et al and Jiang et al both 

showed that network trained using one set of datasets could be readily applied to an 

independent set of datasets given that the two image domains are close to each other.

6.1. Whole image-based vs. patch-based transformation prediction

Whole image-based training and patch-based training have their own advantages and 

disadvantages. Due to limited GPU memory, the original images were often down-sampled 

to avoid memory overflow in whole image-based training. The down-sampling process 

could cause information loss and limit the registration accuracy. On the other hand, whole 

image training allows large inception field which enables registration of large deformations 

and mitigate the problem of local maxima in registration. Unless data augmentation is used, 

whole image-based training usually suffers from shortage of training datasets. On the 

contrary, patch-based training were not affected by the shortage of training datasets as much 

since many image patches could be sampled from the original images. In addition, patch-

based training usually has better performance locally than whole-image based training. 

Recently, several groups combined whole-image training with patch-based training as a 
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multi-scale approach for image registration (Lei et al 2019c, Fu et al 2020). They have 

achieved promising results in terms of registration accuracy. One challenge with patch-based 

image registration is the patch fusion process, which stack many image patches to generate 

the final whole-image transformation. The patch fusion process could generate grid-like 

artifacts along the edges of the patches. One way to mitigate the problem is to use large 

patch overlap prior to patch fusion. However, it would make the inference process 

computationally inefficient. Another method is to use a non-parametric registration model 

for transformation prediction. One such example is LDDMM model used in QuickSilver 

(Yang et al 2017). Instead of directly predicting final spatial transformation, QuickSilver 

predict the momentum of the LDDMM model. The LDDMM model can generate 

diffeomorphic spatial transformation without the need of smooth momentum predictions.

6.2. Loss functions

Despite large variations in details, loss function definitions of the cited works share many 

common features. Almost all loss function definitions consist of one or more combinations 

of the following six types of losses, which are (1) intensity-based image appearance loss, (2) 

deep similarity-based image appearance loss, (3) transformation smoothness constraint, (4) 

transformation physical fidelity loss, (5) transformation error loss with respect to ground 

truth transformation and (6) adversarial loss. Intensity-based image appearance loss includes 

SSD, MSE, MAE, MI, MIND, SSIM, CC and its variants. Deep similarity-based image 

appearance loss usually calculates the correlation between the learnt feature-based image 

descriptors. Transformation smoothness constraints usually involve the calculation of the 

first and second orders of spatial derivatives of predicted transformation. Transformation 

physical fidelity loss includes inverse consistency loss, negative Jacobian determinant loss, 

identity loss, anti-folding loss and so on. Transformation error loss was the error between 

predicted and ground truth transformations, which was only valid for supervised 

transformation prediction. Adversarial loss was the trainable network-based loss. Some 

auxiliary loss terms include the DSC loss of the anatomical labels or TRE loss of pre-

selected landmark pairs.

6.3. Challenges and opportunities

One of the most common challenges for supervised DL-based methods is the lack of training 

datasets with known transformations. This problem could be alleviated by various data 

augmentation methods. However, the data augmentation methods could introduce additional 

errors such as the bias of unrealistic artificial transformations and image domain shifts 

between training and testing stages. Several groups have demonstrated good generality of 

the trained network by applying them to datasets different from the training datasets. This 

inspired us to think that transfer learning may be used to alleviate the problem of lack of 

training data. Surprisingly, transfer learning has not been used in medical image registration. 

For unsupervised methods, efforts were made to combine different kinds of regularization 

terms to constrain the predicted transformation. However, it is difficult to investigate the 

relative importance of each regularization term. Researchers are still trying to find an 

optimal set of transformation regularization terms that could help generate not only 

physically plausible but also physiologically realistic deformation field for a certain 

registration task. This is partially due to the lack of registration validation methods. Due to 
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the unavailability of ground truth transformation between an image pair, it is hard to 

compare the performances of different registration methods. Therefore, registration 

validation methods are equally important as registration methods. We have observed an 

increased number of papers focusing on registration validation in 2019. More research on 

registration validation methods is desired in order to reliably evaluate the performances of 

different registration methods under different parametric configurations.

6.4. Trends

Judging from the statistics of the cited works, there is a clear trend of direct transformation 

prediction for fast image registration. So far, supervised and unsupervised transformation 

prediction methods are almost equally studied with a close number of publications in either 

category. Either supervised or unsupervised methods have their own advantages and 

disadvantages. We speculate that more research will be focused on combining supervised 

and unsupervised methods in the future. GAN-based methods have been gradually gaining 

popularity since GAN could be used to not only introduce additional regularizations but also 

perform image domain translation to cast multi-modal to unimodal image registration. We 

should see a steady growth of GAN-based medical image registration. New transformation 

regularization techniques have always been a hot topic due to the ill-posedness of the 

registration problem.
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Figure 1. 
Overview of seven categories of DL-based methods in medical image registration.
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Figure 2. 
Overview of number of publications in DL-based medical image registration. The dotted line 

indicates increased interest in DL-based registration methods over the years. 

‘DeepSimilarity’ is the category of using DL-based similarity measures in traditional 

registration frameworks. ‘RegValidation’ represents the category of using DL for registration 

validation.
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Figure 3. 
Percentage pie chart of different categories.
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Figure 4. 
Percentage pie chart of various attributes of DL-based image registration methods.
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Table 1.

Registration categories of different aspects.

Aspects Registration Categories

Input image types Unimodal, Multimodal, Interpatient, Intra-patient (same/different day)

Deformation model types Rigid, Affine, Deformable

ROI Brain, Thorax, Lung, Abdomen, Pelvic, etc

Image pair dimensions 3D/3D, 3D/2D, 2D/2D, 2D/3D
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Table 2.

Overview of deep similarity-based methods.

References ROI Dimension Modality Transformation Supervision

(Simonovsky et al 2016) Brain 3D-3D T1-T2 Deformable Supervised

(Wu et al 2016) Brain 3D-3D MR Deformable Unsupervised

(So and Chung 2017) Brain 3D-3D MR Rigid, Deformable Supervised

(Cheng et al 2018) Brain 2D-2D MR-CT Rigid Supervised

(Haskins et al 2019a) Prostate 3D-3D MR-US Rigid Supervised

(Sedghi et al 2018) Brain 2D-2D MR Rigid Weakly Supervised

(Ferrante et al 2019) Brain, HN, Abdomen 3D-3D MR, CT Deformable Weakly Supervised
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Table 3.

Overview of RL in medical image registration.

References ROI Dimension Modality Transformation

(Ghesu et al 2016; Ghesu et al 2019) Cardiac, HN 2D, 3D MR, CT, US NA

(Krebs et al 2017) Prostate 3D-3D MR Deformable

(Liao et al 2016) Spine, Cardiac 3D-3D CT-CBCT Rigid

(Ma et al 2017) Chest, Abdomen 2D-2D CT-Depth Image Rigid

(Miao et al 2017) Spine 3D-2D 3DCT-Xray Rigid

(Zheng et al 2018) Spine 3D-2D 3DCT-Xray Rigid

(Sun et al 2019) Nasopharyngeal 2D-2D MR-CT Rigid with scaling
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Table 4.

Overview of supervised transformation prediction methods.

References ROI Dimension Patch-based Modality Transformation

(Miao et al 2016) Implant, TEE 2D-3D Yes Xray Rigid

(Pei et al 2017) Cranial 2D-3D No CBCT-Xray Deformable

(Rohé et al 2017) Cardiac 3D-3D No MR Deformable

(Uzunova et al 2017) Cardiac, Brain 2D-2D No MR Deformable

(Yang et al 2017) Brain 3D-3D Yes MR Deformable

(Cao et al 2018b) Brain 3D-3D Yes MR Deformable

(Cao et al 2018a) Pelvic 3D-3D Yes MR-CT Deformable

(Hering et al 2019) Cardiac 2D-2D No MR Deformable

(Hu et al 2018a; Hu et al 2018b) Prostate 3D-3D No MR-US Deformable

(Lv et al 2018) Abdomen 2D-2D Yes MR Deformable

(Salehi et al 2018) Brain 3D-3D/2D No MR Rigid

(Sentker et al 2018) Lung 3D-3D Yes CT Deformable

(Sloan et al 2018) Brain 2D-2D No T1-T2 Rigid

(Sun et al 2018) Liver 2D-2D Yes CT-US Affine

(Yan et al 2018) Prostate 3D-3D No MR-US Rigid + Affine

(Eppenhof et al 2018; Eppenhof and Pluim 2019) Lung 3D-3D No CT Deformable

(Fan et al 2019b) Brain 3D-3D Yes MR Deformable

(Foote et al 2019) Lung 3D-2D No CT Deformable

(Kori and Krishnamurthi 2019) Brain 3D-3D No T1, T2, Flair Affine

(Liu et al 2019a) Skull, Upper Body 2D-2D No DRR-Xray Deformable

(Sokooti et al 2017; Sokooti et al 2019b; Onieva 
Onieva et al 2018)

Lung 3D-3D Yes CT Deformable
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Table 5.

Overview of unsupervised transformation prediction methods.

References ROI Dimension Patch-based Modality Transformation

(Ghosal and Rayl 2017) Brain 3D-3D No MR Deformable

(Shan et al 2017) Brain, Liver 2D-2D No MR, CT Deformable

(Vos et al 2017) Cardiac 2D-2D No MR Deformable

(Yoo et al 2017) Neural tissue 2D-2D No EM Deformable

(Chee and Wu 2018) Brain 3D-3D No MR Affine

(Fan et al 2018; Fan et al 2019a) Brain 3D-3D Yes MR Deformable

(Ferrante et al 2018) Lung, Cardiac 2D-2D No MR, Xray Deformable

(Kearney et al 2018) HN 3D-3D Yes CT Deformable

(Krebs et al 2018) Cardiac 3D-3D No MR Deformable

(Li and Fan 2018) Brain 3D-3D No MR Deformable

(Qin et al 2018; Mahapatra et al 2018a) Cardiac 2D-2D No MR Deformable

(Sheikhjafari et al 2018) Cardiac 2D-2D No MR Deformable

(Shu et al 2018) Neuron tissue 2D-2D Yes EM Affine

(Stergios et al 2018) Lung 3D-3D No MR Deformable

(Sun and Zhang 2018) Brain 3D-3D No MR-US Deformable

(de Vos et al 2019) Cardiac, Lung 3D-3D Yes MR, CT Affine and Deformable

(Zhang 2018) Brain 3D-3D No MR Deformable

(Balakrishnan et al 2018; Dalca et al 2018; 
Balakrishnan et al 2019)

Brain 3D-3D No MR Deformable

(Elmahdy et al 2019a; Elmahdy et al 2019b) Prostate 3D-3D Yes CT Deformable

(Fan et al 2019a) Brain, Pelvic 3D-3D Yes MR, CT Deformable

(Jiang et al 2019) Lung 2D-2D Yes CT Deformable

(Kim et al 2019) Liver 3D-3D No CT Deformable

(Kuang 2019; Kuang and Schmah 2019) Brain 3D-3D No MR Deformable

(Zhao etal 2019) Liver 3D-3D No CT Deformable

(Lei et al 2019c) Abdomen 3D-3D Yes CT Deformable

(Mahapatra et al 2018c) Retina 2D-2D No FA Deformable

(Nguyen-Duc et al 2019) Neural tissue 2D-2D No EM Deformable

(Yu et al 2019b) Abdominopelvic 3D-3D Yes CT-PET Deformable

(Fechter and Baltas 2019) Lung, Cardiac 3D-3D Yes CT, MR Deformable

(Lei et al 2020) Abdomen 3D-3D Yes CT Deformable
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Table 6.

Overview of registration methods using GAN.

References ROI Dimension Patch-based Modality Transformation

(Fan et al 2018) Brain 3D-3D Yes MR Deformable

(Hu et al 2018a) Prostate 3D-3D No MR-US Deformable

(Yan et al 2018) Prostate 3D-3D No MR-US Deformable

(Salehi et al 2018) Brain 3D-3D No MR Rigid

(Elmahdy et al 2019b) Prostate 3D-3D Yes CT Deformable

(Fan et al 2019a) Brain, Pelvic 3D-3D Both MR, CT Deformable

(Lei et al 2019c) Abdomen 3D-3D Yes CT Deformable

(Fu et al 2020) Lung 3D-3D Yes CT Deformable

(Mahapatra et al 2018a; Mahapatra et al 2018b; 
Mahapatra et al 2018c)

Retina, Cardiac 2D-2D No FA, Xray Deformable

(Qin et al 2019) Lung, Brain 2D-2D No T1-T2, CT-MR Deformable
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Table 7.

Overview of registration validation methods using DL.

References ROI Dimension Modality End point

(Neylon et al 2017) HN 3D CT TRE prediction

(Eppenhof and Pluim 2018) Lung 3D CT Registration error

(Dubost et al 2019) Brain 3D MRI DSC score

(Fu et al 2019) Lung 3D CT Landmark Pairs

(Galib et al 2019) Lung 3D CT Registration error

(Sokooti et al 2019a) Lung 3D CT Registration error
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Table 8.

Overview of other DL-based image registration methods.

References ROI Dimension Modality Transformation Methods

(Jiang and Shackleford 2018) Lung 3D-3D CT Deformable Multi-grid Inference

(Wright et al 2018) Brain 3D-3D MR-US Rigid LSTM

(Bashiri et al 2019) Brain 2D-2D CT, T1, T2, PD Rigid Manifold Learning

(Xia et al 2019) Brain, Abdomen 2D-3D CT-PET, CT-MRI Deformable CAE, DSCNN

(Yu et al 2019a) Spine 3D-2D 3DCT-Xray Rigid FasterRCNN

(Liu et al 2019b) Brain 2D-2D T1-T2, T1-PD Deformable FCN

(Zheng et al 2018) Spine 3D-2D 3DCT-Xray Rigid Domain adaptation

(Mahapatra and Ge 2019) Chest, Brain 2D-2D Xray, MRI Deformable Transfer Learning
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Table 10.

Workstation configurations and computational time.

References Configurations Input image size 
(pixel)

Computation time

(Eppenhof and Pluim 
2019)

Intel Xeon CPU E5-2640 v4 with 512 GB memory, Nvidia 
Titan XP graphics card with 12 GB memory

128 × 128 × 128 ~3.3 min

(de Vos et al 2019) Intel Xeon E5-1620 3.60 GHz CPU with 4 cores (8 threads), 
and 32 GB of memory, NVIDIA Titan-X GPU

Not available <1 s

(Sentker et al 2018) Intel Xeon CPU E5-1620 and Nvidia Titan Xp GPU. Not available A few seconds

(Fu et al 2020) NVIDIA Tesla V100 GPU with 32 GB of memory ~250 × 200 × 100 <1 min

(Sokooti et al 2019b) Nvidia Titan XP GPU with 12 GB of memory ~273 × 273 × 273 <3 s

(Jiang et al 2019) CPU of Intel Xeon with 64 GB memory and NVIDIA Quadro 
P4000 GPU

256 × 256 × 96 <2 s

(Fechter and Baltas 2019) Intel Xeon CPU with 8 cores, 60 GB memory and Nvidia Titan 
XP GPU

Not available ~4 min
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Table 11.

Benchmark datasets and evaluation metrics used in brain registration.

References Datasets Transformation Evaluation metrics

(Liu et al 2019b) IXI Deformable TRE, MI

(Kuang and Schmah 2019) MindBoggle-101 Deformable DSC

(Kori and Krishnamurthi 2019) BRATS, ALBERT Affine DSC, MI, SSIM, MSE

(Ferrante et al 2019) IBSR Deformable DSC, MI, NCC, SAD, DWT

(Fan et al 2019b) LONI, LPBA40, IBSR, CUMC, MGH, IXI Deformable DSC, ASD

(Balakrishnan et al 2019) OASIS, ABIDE, ADHD, MCIC, PPMI, HABS, 
Harvard GSP

Deformable DSC

(Zhang 2018) ADNI Deformable DSC, SEN, PPV, ASD, HD

(Sloan et al 2018) OASIS, IXI, ISLES Rigid MSE

(Sedghi et al 2018) IXI Rigid MAE of degree and translation

(Li and Fan 2018) ADNI Deformable DSC

(Cao et al 2018b) LONI, ADNI, IXI Deformable DSC, ASD

(Yang et al 2017) OASIS, IBIS, LPBA, IBSR, MGH, CUMC Deformable Target overlap

(Shan et al 2017) LPBA Deformable TRE, JACC

(Ghosal and Rayl 2017) IXI Deformable SSD, PSNR, SSIM

(Wu et al 2016) LONI, ADNI Deformable DSC

(Simonovsky et al 2016) IXI, ALBERT Deformable DSC, JACC
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