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Abstract

Accumulating evidence from whole brain functional magnetic resonance imaging (fMRI) suggests 

that the human brain at rest is functionally organized in a spatially and temporally constrained 

manner. However, because of their complexity, the fundamental mechanisms underlying time-

varying functional networks are still not well understood. Here, we develop a novel nonlinear 

feature extraction framework called local space-contrastive learning (LSCL), which extracts 

distinctive nonlinear temporal structure hidden in time series, by training a deep temporal 

convolutional neural network in an unsupervised, data-driven manner. We demonstrate that LSCL 

identifies certain distinctive local temporal structures, referred to as temporal primitives, which 

repeatedly appear at different time points and spatial locations, reflecting dynamic resting-state 

networks. We also show that these temporal primitives are also present in task-evoked 

spatiotemporal responses. We further show that the temporal primitives capture unique aspects of 

behavioral traits such as fluid intelligence and working memory. These results highlight the 

importance of capturing transient spatiotemporal dynamics within fMRI data and suggest that such 

temporal primitives may capture fundamental information underlying both spontaneous and task-

induced fMRI dynamics.
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1. Introduction

Functional magnetic resonance imaging (fMRI) of the human brain during the resting-state 

(rfMRI) has shown that spontaneous brain activity works in a spatially and temporally 

constrained manner, instead of evolving randomly, even though there is no imposed task or 

stimulation in resting state.

One well-known phenomenon during resting-state is the existence of resting-state networks 

(RSNs), which represent sets of possibly remote regions which are co-activated with high 

temporal correlation (functional connectivity, FC; Biswal (2012); Fox et al. (2005); Power et 

al. (2011); Raichle (2015); Thomas Yeo et al. (2011)). Although some well-known RSNs 

consistently obtained from an analysis of the whole resting-state acquisition (with duration 

of 5–15 minutes), recent studies have shown that FCs are not constant, but rather 

dynamically modulated within a relatively short time span (Calhoun et al., 2014; Hutchison 

et al., 2013; Preti et al., 2017).

The aforementioned studies highlighted the importance of incorporating time into the 

modeling of the networks, to understand the time-varying functional networks of the brain 

measured by rfMRI. Hidden Markov models (HMM) have been commonly used for 

modeling brain dynamics by assuming that the brain activity can be described by a sequence 

of a finite number of spatial patterns (states) (Taghia et al., 2017; Vidaurre et al., 2017, 2018; 

Zhang et al., 2019). Other studies have shown that specific sequences of frames re-occur 

over the resting-state acquisitions (Guidotti et al., 2015; Majeed et al., 2011; Mitra et al., 

2015; Takeda et al., 2016). Such patterns are possibly related to recurrent instantaneous 

(short-time) spatial co-activation patterns (CAP) (Karahanoğlu and Van De Ville, 2015; Liu 

and Duyn, 2013; Liu et al., 2018). Despite these findings, less is known about the 

fundamental mechanisms which might explain those phenomena of rfMRI in a unified 

framework.

In this study, we propose a novel nonlinear feature extraction framework which extracts 

hidden nonlinear temporal structures repeatedly appearing in the data, and using this 

approach we show that rfMRI data are composed of a set of distinctive (nonlinear) temporal 

structures, which we call temporal primitives. The proposed method is a novel framework of 

nonlinear spatial independent component analysis (sICA), called local space-contrastive 

learning (LSCL), which is an extension of the recently proposed nonlinear sICA method 

referred to as SCL (Morioka et al., 2018), see Fig. 1. The method extracts distinctive local 

(short time-range) nonlinear temporal structures from data so as to decompose it into 

independent components (spatial patterns, or networks), by training a nonlinear feature 

extractor in an unsupervised, data-driven manner. As with SCL, LSCL assumes spatial 

nonstationarity (time courses in different voxels are have different statistical properties) and 

a nonlinear observation model of the data (Fig. 1a). In contrast to SCL, LSCL assumes a 

temporally local generative model, i.e. the components generating the time series can be 

different for each short temporal window. LSCL then trains a nonlinear feature extractor 

which outputs a set of feature values from a temporally-windowed input time series, so as to 

optimize the classification performance of a multinomial logistic regression (MLR) classifier 

which predicts the parcel label of the input (Fig. 1b). Based on such training, the feature 
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extractor is supposed to learn spatially specific local nonlinear temporal structures within a 

limited number of components, and output feature values representing the original spatial 

components. Applying the method to the human-connectome project (HCP) rfMRI dataset 

(Essen et al., 2013), LSCL identifies a new kind of primitive, local temporal structures 

which we call temporal primitives. These primitives appear recurrently and consistently 

across the whole dataset. Our analyses show that the temporal primitives are strongly 

temporally modulated at each occurrence, and the nonlinearity of the feature extractor (deep 

convolutional neural network; CNN) contributes to extract the fundamental temporal 

structures underlying such modulating patterns. This may be impossible to achieve via linear 

feature extractors. We also show that the temporal primitives recurrently (repeatedly) appear 

at different time points and spatial locations, leading to a spatial organization of the co-

activations of rfMRI signals, including well-known RSNs. The same temporal primitives are 

also found in fMRI during task conditions (tfMRI) underlying task-induced responses. The 

obtained results indicate that the temporal primitives are the fundamental elements 

organizing the dynamics of both rfMRI and tfMRI signals. We further show that each of the 

temporal primitives correlate with some specific individual behavioral traits, which suggests 

that each primitive might be based on different biological substrates.

2. Material and methods

2.1. Space-contrastive learning

Space-contrastive learning (SCL) is a novel nonlinear spatial ICA (sICA) method (Morioka 

et al., 2018), which is based on the recently-proposed nonlinear temporal ICA framework, 

time-contrastive learning (TCL) (Hyvärinen and Morioka, 2016).

TCL theory provided the first identifiability proof for nonlinear ICA by assuming 

nonstationary independent components. In general, nonlinear ICA assumes a generative 

model

x(t) = f(s(t)), (1)

where x(t) is the observed n-dimensional data point at time point t, f is an invertible and 

smooth mixing function, and s(t) is the n-dimensional vector of independent components 

si(t). The time series si are assumed to be mutually independent. While nonlinear ICA is an 

ill-defined problem in general (Hyvärinen and Pajunen, 1999), the starting point in TCL is to 

assume that each si(t) is nonstationary, which makes the problem well-defined. Merely for 

mathematical convenience, the nonstationarity is assumed to be much slower than the 

sampling rate; in other words, the time series can be divided into segments in each of which 

the distributions are approximately constant; but crucially, the distribution is different across 

segments because of the nonstationarity. Accordingly, TCL assumes conditional (segment-

wise) independence, instead of marginal independence assumed in ordinary ICA. It was 

proven that such temporal structure, called time-segment-wise stationarity, enables the 

estimation of the source signals up to component-wise nonlinearities (Hyvärinen and 

Morioka, 2016). The learning proceeds by dividing the data into time segments, and then 

training a feature extractor and a multinomial logistic regression (MLR) so as to predict 

which segment each observed data point came from. The feature extractor is followed by 
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linear ICA, which is applied to disentangle the linear indeterminacy left by the feature 

extractor part of TCL, finally giving the estimates the independent components up to point-

wise nonlinearities such as squaring.

SCL is basically a “transposed” version of TCL, and thus is a nonlinear equivalent of the 

sICA framework widely-used in resting-state fMRI analyses (Mckeown et al., 1998). That 

is, SCL estimates independent components as spatial patterns, which have spatial (parcel-

wise) mutual independence and nonstationarity, based on observed time series which are 

nonlinear mixtures of the components for each location. Notably, the index t (data point) in 

the generative model (Eq. (1)) is now a 2D or 3D index of spatial location, and x(t) is the 

observed time series of length n at the location. As with TCL, we assume that the spatial 

resolution of the nonstationarity is lower than the sampling resolution. We call such spatial 

structure spatial-parcel-wise stationarity; it can be found in many kinds of data sets 

including fMRI, where it is widely known that brain activities are functionally localized. 

Accordingly, SCL assumes conditional (spatial-parcel-wise) independence, instead of 

marginal independence generally assumed in sICA. The learning procedure in SCL is the 

same as in TCL except for the transpose of the data matrix; we divide spatial locations into 

parcels (parcellation), and then train a feature extractor and a MLR so as to predict the 

parcel labels corresponding to the observed time series. Notably, the feature extractor now 

takes a single time series at a location as an input, and then estimates activities of 

independent components generating the time series at that location.

Since SCL is a nonlinear version of sICA, it attempts to find some distinctive nonlinear 
temporal patterns to decompose data into components. What this means in practice is that, in 

SCL, the time series corresponding to one component (spatial pattern or network) do not 

need to be the same across different spatial locations. This is in stark contrast to linear sICA, 

in which a single network (component) has a single, global time course. Instead, in SCL, the 

locations in one component are assumed to have common nonlinear temporal structures 
behind their time series (e.g., nonlinear AR models). Such potential for a wider class of 

temporal patterns allows us to extract a wider class of networks compared to the ordinary 

linear sICA.

In this study, we extend SCL to a new sICA framework called LSCL. In contrast to ordinary 

sICA and SCL, LSCL assumes a temporally local generative model (Fig. 1), i.e., the 

components generating the time series can be different for each short temporal window. 

Based on this model, the feature extractor is supposed to learn spatially specific local 

nonlinear temporal structures within a limited number of components, and output feature 

values representing the original spatial components. As with SCL, LSCL assumes spatial-

parcel-wise independence instead of marginal independence. We will describe LSCL in 

detail in Section 2.5, after describing data and the drawback of SCL to analyze it.

2.2. Dataset

We used publicly available rfMRI data from the HCP 1200-subject data release (https://

db.humanconnectome.org), collected on a 3 T Siemens Skyra scanner with gradients 

customized for the HCP (Essen et al., 2013). All subjects gave informed consent consistent 

with policies approved by the Washington University Institutional Review Board. We 
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analyzed 1,003 subjects whose full four 15-min (1,200 data points; TR=0.72s) rfMRI runs 

were available. The data were preprocessed based on the HCP’s preprocessing pipeline; 

briefly, 1) spatial processing was applied using the procedure described in Glasser et al. 

(2016), 2) areal-feature-based surface registration was applied (MSMAll HCP pipeline) 

(Glasser et al., 2016), and 3) structured artifacts were removed by ICA-FIX (independent 

component analysis followed by FM-RIB’s ICA-based X-noiseifier) (Griffanti et al., 2014; 

Salimi-Khorshidi et al., 2014). The rfMRI data were then represented as a time series on the 

registered grayordinates space, a combination of cortical surface vertices and subcortical 

standard-space voxels. We discarded the subcortical voxels, and used only the cortical 

surface vertices (in total 59,412 vertices) for our analyses. We also discarded the initial 300 

data points (3.6 minutes) and the final 100 data points (1.2 minutes), and used the remaining 

middle 800 data points of all runs for the further analyses to avoid unsettled conditions of 

the brain (see Inline Supplementary Fig. 11 for the potential temporal nonstationarity of 

rfMRI data found by LSCL). We used two resting-runs of session-1 of all subjects for the 

main analysis, and the remaining two resting-runs of session-2 for evaluating the 

generalization accuracy of the trained model. Phase encoding was counterbalanced to have 

both of right-to-left (RL) and left-to-right (LR) directions for each session.

For the evaluation of the model trained from the rfMRI data, we also used task fMRI data 

(tfMRI) from the same HCP data release. tfMRI data were acquired with identical pulse 

sequence settings while subjects performed 7 tasks (Barch et al., 2013); Working Memory 

(WM; 405 frames), Gambling (253), Relational (232), Emotion (176), Social (274), Motor 

(284), and Language (316). Each task was comprised of a pair of runs with different phase 

encoding directions (RL and LR), both used for the analysis. We only used the subjects who 

had complete tfMRI runs.

2.3. Preprocessing

Since our method is based on spatial parcel-wise stationarity, it requires prior information 

about a functional parcellation which guarantees spatial stationarity of source components 

within each parcel. For such parcellation, we here simply divided the 59,412 cortical surface 

vertices into regular similar-sized small regions (1,833 parcels), using the following 

procedures: 1) We located centers of parcels by creating a new cortical sphere model 

containing a smaller number of vertices (1,002) separately for each hemisphere, whose 

vertices represent the centers of parcels, with unique parcel labels (“-surface-create-sphere” 

command in the HCP’s Connectome Workbench software, with the setting of the desired 

number of vertices of 1,000). 2) Each vertex on the original spherical surface was assigned 

to one of the new parcel labels by searching for the nearest parcel center. Each parcel thus 

contained 32.4±1.1 vertices, whose area was approximately 28.3 mm2 on the midthickness 

surface model. 3) We excluded parcels which were located on or close to the medial wall 

and thus containing none or very few vertices on the cortices (smaller than half of average 

number). Eventually, 1,833 parcels were kept (916 on the left, and 917 on the right 

hemisphere) for the further analyses. Although this method is simply based on the 

assumption that spatially proximal locations have similar functional brain activities and does 

not consider actual functional similarities across regions unlike conventional parcellation 

studies (Glasser et al., 2016), the parcellation will still satisfy the spatial nonstationarity if 
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we choose the parcel size to be reasonably small. However, since a too small parcel size can 

complicate the training of the classifier due to the large number of parcels and a small 

number of data points in each, the parcel size has to be chosen as a compromise.

For multi-subject analyses, the run data were temporally concatenated across all subjects as 

with ordinary sICA. (data size: number of time point × runs × subjects × vertices = 800 × 2 

× 1, 003 × 59, 412.)

2.4. Feature extractor

We used a temporal CNN as the feature extractor which takes a single time series as an input 

and nonlinearly extracts component activity. Several studies have already shown that such a 

convolutional network can automatically learn hierarchical structures in data such as images 

(He et al., 2015; Krizhevsky et al., 2012; Szegedy et al., 2015) and audio (van den Oord et 

al., 2016).

The network consists of concatenated convolutional hidden layers, each followed by batch-

normalizations (Ioffe and Szegedy, 2015) and nonlinear activation units (Table 1). For the 

nonlinear units, we used a type of gated activation:

z = max(0, W 1 * x + b1) ⊙ σ(W 2 * x + b2) (2)

where x is the input to the layer, * denotes a temporal convolutional operator, ⊙ denotes an 

element-wise multiplication operator, max(·, ·) is an element-wise max function, σ(·) is an 

element-wise sigmoid function; W1, W2, b1, and b2 are learnable convolutional parameters. 

The first term in this product is the widely used rectified linear unit (ReLU) (Nair and 

Hinton, 2010), and its activations are modulated by the gating function (sigmoid) in the 

second term which controls the information passing through the layer. The network also 

includes two down-sampling layers, which downsample the temporal dimension in half in an 

invertible way (Jacobsen et al., 2018); i.e., the input to the layer was separated into two time 

series by picking time points with the stride size of two, with one temporal shift between 

them, and then they are concatenated across channels (the dimension of channel was 

doubled). This temporal down-sampling roughly preserves the information coming from the 

lower layer, and likewise preserves the temporal ordering. In addition, the first layer of the 

network is a temporal normalization layer which standardizes the input to have mean of 0 

and std of 1 for each sample.

The outputs of the feature extractor (Conv7) are called feature values, and they represent the 

activities of the components. The MLR follows the feature extractor. Its goal is to predict 

parcel labels from the activities of components extracted by the feature extractor.

Notably, the network does not have temporal pooling structures for down-sampling as 

ordinary CNNs do (Krizhevsky et al., 2012; Szegedy et al., 2015). Instead, we restricted the 

input size to be the same as the width of the receptive field of the network (46), which was 

determined by the network structure (Table. 1), so as to constrain the temporal dimension of 

the feature values (Conv7) to be 1. That is, this network performs convolutions on a shorter 
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window (46) than the original time series. We explain this window-cropping scheme in 

detail in the next section.

To show the advantage of using a nonlinear model, we also perform the experiments with a 

simple linear model which is comprised of a single convolutional layer and has the same 

number of components and same width of the receptive field as those of the nonlinear 

model. The convolutional layer was followed by the ReLU nonlinearity, which is necessary 

to represent nonstationarity (of variance, for example, see Hyvärinen and Morioka 

(Hyvärinen and Morioka, 2016)) similarly to the nonlinear model.

2.5. Extension to LSCL and its training

The network (feature extractor and the MLR) is trained by stochastic gradient descent 

(SGD) based on back-propagation, which is commonly used in deep learning studies.

In basic SCL, one training sample is a time series on a spatial location t in the parcel, 

together with the parcel label. However, since the data matrix here has a much smaller 

number of spatial data points (59,412) compared with the temporal dimension (800 × 2 × 1, 

003 = 1, 604, 800 time points), the training based on this basic framework would be difficult.

In order to enhance the training, we propose a more efficient strategy called local SCL 

(LSCL); instead of using a whole time series, we use a combination of multiple short 

cropped fragments as one sample. Specifically, for each training sample, 1) we crop several 

short fragments (contiguous time series), whose length is equal to the width of the receptive 

field (46), from random subjects/runs/vertices/timings in a target parcel (fragments are 

picked not to span multiple subjects/runs), 2) feed them into the feature extractor and extract 

feature values separately for each fragment, and then we 3) take the average of the obtained 

feature values. The averaged feature value is then fed into the MLR, and the whole network 

is updated by back-propagation based on its prediction error. This cropping method virtually 

increases the number of data points from the original one, and the averaging increases the 

training accuracy by reducing the variability of (averaged) feature values across samples. We 

fixed the number of fragments in one sample to 128.

In addition to the stabilization of the training, this training strategy has some important 

implications which make the ensuing LSCL fundamentally different from ordinary sICA. 

Firstly, since different fragments are treated as different data points, every component can be 

computed from different fragments picked from the locations, giving rise to different spatial 

patterns in the output. Thus, the components do not have a single spatial pattern unlike in 

linear sICA. Secondly, since the feature extractor is given temporally cropped short time 

series as inputs instead of whole time series like in ordinary sICA, it has to learn local 
temporal structures specific to the components. In particular, each component can be 

interpreted as detecting one short temporal primitive, which we define as the local temporal 

structure corresponding to one component.

LSCL needs additional linear sICA after the training of the feature extractor to disentangle 

the linear indeterminacy, as with TCL (Hyvärinen and Morioka, 2016) and SCL. We applied 

fastICA (Hyvärinen, 1999) to the learned feature values. The input to the linear sICA is 
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based on the reproduction of the input to the MLR during the training phase, i.e., random-

crop-averaged feature values. More precisely, one sample is a five-dimensional vector 

obtained by taking an average of each of the five components at 128 randomly selected 

subjects/runs/vertices/timings from a specific parcel. We collected 10,000 samples for each 

of 1,833 parcels; i.e., input data size is 5 × 18, 330, 000. Importantly, we performed parcel-

wise-demean for each component of the input data before applying fastICA because 1) 

linear ICA assumes that the data is stationary (whether temporally or spatially), and the non-

stationarity created by different means in different parcels would violate the basic 

assumptions and lead to very poor demixing results, while 2) LSCL assumes parcel-wise-

independence which is not affected by the parcel-wise-bias (change of origin for each 

parcel) of the components, which are expected to emerge due to parcel-wise modulation of 

the components. The estimated 5 × 5 demixing matrix is applied to the component-axis of 

the feature values to disentangle the linear indeterminacy across components. See Inline 

Supplementary Fig. 5 for the visualization of the procedure. Considering potential linear 

demixing by the feature extractor to some extent, we selected the demixing matrix which 

was the most close to the identity matrix (after permutation), by repeating the estimation 

1,000 times with different random initial values.

In this study, we further applied a spatial averaging within each parcel in order to decrease 

computational complexity while increasing signal-to-noise ratio (data size: number of time 

points × runs × subjects × parcels = 800 × 2 × 1, 003 × 1, 833), followed by subject-run-wise 

temporal normalization to have zero mean and unit standard deviation. Note that this 

procedure decreases spatial resolution for later analyses. Although this data matrix itself 

does not satisfy the spatial-parcel-wise-stationarity because it has only one (concatenated) 

time series in each parcel, LSCL framework can still make its analysis feasible because the 

cropping strategy mentioned above treats observations at different timings as different data 

points, which virtually increases the number of data points in a parcel.

The other training parameters of LSCL are set as follows: Initial learning rate of 0.1, 

momentum of SGD of 0.9, mini-batch size of 128. The initial weights of each layer were 

randomly drawn from a uniform distribution. The training was performed only from the 

session-1 of rfMRI dataset; the session-2 of rfMRI and the task-runs of tfMRI were used to 

evaluate the generalizability of the trained network.

The LSCL toolbox (Python) is available from the authors upon request, which fundamental 

part is based on that of TCL (https://github.com/hirosm/TCL).

2.6. Extraction of whole feature values

For evaluating the resulting components, we extracted feature values from the dataset (time 

series × runs × subjects × parcels) by applying the trained feature extractor to short time 

series of length 46, sliding-windowed with stride 4 from the time series of each run, subject, 

and parcel (number of features: number of time points × runs × subjects × parcels × 

components = 189 × 2 × 1, 003 × 1, 833 × 5). The extracted feature values were followed by 

the linear sICA. Compared to the data matrix, the feature values have the additional 

dimension of components computed from the original data. Note that the temporal 

dimension of the feature values now represents the timing (temporal index) of the sliding 
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windows corresponding to the obtained feature values, and its temporal resolution is 4 times 

smaller than the input because of the stride size of the sliding windows. The following 

analyses are based on visualizing this matrix and its relations to the input data.

2.7. Chance level of the feature values

To see how frequently the temporal primitives appeared in the data, we computed the chance 

level of the feature values. The chance level was estimated by inputting surrogate time series 

which follow a Gaussian AR model fit to the original data (autoregressive randomization; 

ARR) (Liégeois et al., 2017). The order of AR was selected to be the same as the width of 

the receptive field (i.e., 46). Since the feature extractor takes one dimensional time series as 

an input, we used a univariate (one dimensional) AR model instead of a multivariate model. 

The AR coefficients were assumed to be the same across regions, but estimated separately 

for each subject and run. Exceeding this chance level means that the feature extractor was 

significantly activated by any property not included by this AR model, such as nonlinearity, 

non-Gaussianity, non-stationarity, or region-specificity of the input time series. The 

significance level α was here selected as 0.001.

We call those time series fragments whose feature values achieved statistical significance 

realizations of the temporal primitives. For further comparison, we also obtained feature 

values from temporally shuffled time series (random shuffle; RS), in which the temporal 

structure was completely broken.

2.8. Representative patterns of the temporal primitives

Next we computed temporal patterns that best represent the computations in each 

component. Such representative temporal patterns of the temporal primitives were obtained 

by taking an average of the input signals which led to the highest activity for the component. 

That means those patterns represent the most fundamental temporal structures representing 

each of the components learned by the feature extractor. Importantly, since CNN generally 

has the well-known property of shift-invariance in its input space, there should be some 

amount of temporal shifts between those time series, which can make a simple sample 

average less interpretable. In order to compensate for this, we temporarily shifted each of the 

time series so as to maximize their cross correlations to the one which has the highest-

activity, before taking their average. The relationship between those temporal shifts applied 

to the inputs and the corresponding feature values are later evaluated to see the shift-

invariance learned by the feature extractor (Fig. 4a). The averaged temporal patterns within a 

window, whose length is the same as the width of the receptive field of the feature extractor 

(about 32 s) and has the highest number of overlaps of the shifted time series inside, are 

hereafter called representative temporal patterns. In preliminary experiments, we checked 

the averaged temporal patterns with changing the threshold of the feature values, and found 

that they were not so sensitive to the threshold values (Inline Supplementary Fig. 1). 

Considering a trade-off between sharpness and stability of the averaged patterns, we decided 

to use top 0.0001% (695) sliding-windowed time series for obtaining the representative 

patterns.
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2.9. t-SNE analysis of the realizations of the temporal primitives

Next we attempted to visualize some nonlinear aspects of the temporal primitives of the 

independent components. We discard here the shift-invariance which the primitives have by 

construction. To visualize the nonlinear processing (modulation) of the temporal primitives, 

for each component, we embedded their realizations (as defined above) into a two-

dimensional space by t-SNE (van der Maaten and Hinton, 2008) based on the similarities 

(Pearson correlation) between them. To compensate for the modulation related to the 

temporal shift investigated above, we temporally shifting the realizations so as to maximize 

their cross correlation to the representative pattern obtained above, before measuring the 

similarity. To make the amount of the overlap between time series after the temporal shifts 

consistent, the time series outside of the temporal extent of the realizations were also 

considered for the shifting, and cropped later at the same window as that of the reference 

patterns. Those data were fed into the t-SNE algorithm implemented in the MATLAB 

Statistics and Machine Learning Toolbox with Pearson correlation distance metric and 

perplexity 100 (the other parameters are the default values), and then embedded into a two-

dimensional space. To decrease computational complexity, we reduced the number of 

realizations of C2 and C3 into a tenth by thinning out them.

2.10. Frequency analysis of the realizations of the temporal primitives

We performed frequency analysis on the temporal primitives to see their frequency 

characteristics. The temporally adjusted realizations were used for the analysis (see Section 

2.9) to make the temporal patterns in the analysis window consistent across the realizations. 

The power spectral density (PSD) was estimated for each of the realizations by discrete 

Fourier transform with hanning window, after standardizing it to have zero-mean and unit 

variance. The average of the PSDs corresponding to the highest feature values (top 

0.0001%) of a component is called representative frequency spectrum of the component.

2.11. Visualization of the spatial co-occurrence of the temporal primitives

Since the feature extractor learns local temporal structures without out putting their precise 

timings, the learned temporal primitives could have appeared at different time points and 

spatial locations across the realizations. That means the spatial co-occurrence (co-activation) 

patterns of the temporal primitives, which are represented by the spatial patterns of the 

feature values, can be different across time. To visualize the variety of the spatial co-

occurrence patterns, we showed their distribution by embedding them into a two-

dimensional space by tSNE. We fed the feature values into the tSNE algorithm by treating 

the spatial axis as variables representing the spatial patterns (1,833 dimensions), and the 

other axes (timings, subjects, and runs) as observations. To decrease computational 

complexity, we reduced the number of samples into half by temporal striding. The similarity 

was measured by Pearson correlation, and the perplexity was set to 100.

2.12. Timing of event-related temporal primitives

To facilitate interpretation of the temporal primitives, we investigated the timing and 

location of their realizations during task blocks in the task data. Firstly, we extracted feature 

values from the tfMRI data by applying the feature extractor and the linear sICA matrix 
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trained from the rfMRI data (Section 2.5) for each task run, through temporal sliding-

window with stride 1 (see Section 2.6). We then picked realizations which appeared during 

the task blocks of all subjects and runs (excluding Motor-CUE condition). Considering the 

temporal invariance of the feature extractor, for each realization, we estimated the timings of 

the realizations relative to the representative pattern by temporally matching them. Then, the 

reference point of the (shifted) representative pattern (0 s in Fig. 2a) was used as the actual 

timing of the realization. The realizations corresponding to a specific timing can be plotted 

by showing the input time series assigned to that timing. We also counted the number of the 

timing-specific realizations for each region, then plotted as a spatial pattern to show their 

spatial preferences.

2.13. Relationship between temporal primitives and behavioral traits

To see possible contribution of the temporal primitives to the behavioral traits of the 

subjects, we investigated which traits were correlated with the components activities. We 

only considered traits related to intelligence and the response accuracies during tfMRI 

acquisitions: episodic memory (age-adjusted), cognitive flexibility (age-adjusted), inhibitory 

control (age-adjusted), fluid intelligence accuracy, fluid intelligence speed, reading (age-

adjusted), vocabulary (age-adjusted), processing-speed (age-adjusted), spatial orientation, 

attention true positive (TP), attention true negative (TN), verbal episodic memory, working 

memory (age-adjusted), emotion recognition, WM tfMRI accuracy (WM_Task_Acc), 

Language tfMRI accuracy (Language_Task_Acc), Social tfMRI accuracy 

(Social_Task_TOM_Perc_TOM), Relational tfMRI accuracy (Relational_Task_Acc), and 

Emotion tfMRI accuracy (Emotion_Task_Acc). The subject-representative value of the 

component was obtained by taking an average of the whole feature values of the subject 

(across time, parcels, and runs) for each component. To avoid possible bias across 

acquisition days, the averaging was performed across session-1 and session-2; the feature 

values of session-2 were obtained by applying the feature extractor trained from session-1 to 

the data of session-2. Head motion, gender, and age were regressed out as confounds from 

both of the averaged feature values and the traits. We then calculated Spearman correlation 

between the feature values and the behavioral traits, and evaluated the significance (two-

sided, permutation test). We also evaluated the spatial distribution of the relationship by 

calculating the average feature value and evaluating the correlation separately for each 

parcel.

2.14. Linear sICA

For comparison, we also analyzed the data by a conventional linear sICA analysis. The 

dataset preprocessed above (parcel-averaged, 800 time points in each run) was at first 

processed by group-PCA (Smith et al., 2014) to reduce the dimensionality to 800. The 

output was then fed into group-ICA using FSL’s MELODIC tool (Hyvärinen, 1999; 

Beckmann and Smith, 2004) to estimate the spatially independent components. We here set 

the number of components to 15, considering the similarity of the estimated components to 

the spatial co-occurrence patterns of the temporal primitives.
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3. Results

3.1. Representative patterns of the temporal primitives

In the LSCL framework, the feature extractor learns component-specific, spatiotemporally 

localized elements which we call temporal primitives, so as to demix the rfMRI data into 

nonlinear components (see Section 2 for details). The learning is based on logistic regression 

in a “self-supervised” scheme where class labels of time series fragments are defined based 

on spatial locations.

The training (on session-1 of rfMRI) and testing (on session-2 of rfMRI) accuracies after the 

learning procedure were 4.3 % and 3.9 % respectively, both of them were much higher than 

the chance level (0.055 %). The similarity of the training and testing accuracies further 

implies that the extracted temporal primitives are not the artifacts caused by overfitting to 

the training dataset.

To understand what kind of temporal structure was learned from data, we first visualized 

their representative temporal patterns for each component (Fig. 2a). These patterns were 

represented by an average of the time fragments from the whole dataset (all subjects, runs, 

parcels, and timings), whose (unmixed) feature values were very large at each component 

dimension. That means those representative patterns show the most important characteristics 

representing the component learned by the feature extractor. We also showed representative 

frequency spectra of the temporal primitives (Fig. 2b) (see Inline Supplementary Fig. 6a for 

the global average spectra of all realizations, and Fig. 6b for the subject-wise-average 

spectra). The obtained representative patterns are clearly distinctive across components (Fig. 

2a): Component 1 (C1) has an oscillatory pattern (ripple) made of repetitive sine-like waves 

of about 0.13 Hz (Fig. 2b). Each sample followed the oscillation for a few cycles, and then 

was unlocked from it. C2 is a transient pattern similar to the hemodynamic response 

function (HRF), and the respiration response function (RRF) evoked by a deep breath (Birn 

et al., 2008), which consists of an early overshoot followed by a later undershoot peaking at 

approximately 16 s, similarly to HRF. The conventional HRF has been proposed to be 

decomposable to at least two different components, and C3 seems to be similar to one of 

them, the stimulus-related component (Cardoso et al., 2012; Herman et al., 2017; Lima et 

al., 2014), which is represented by a transient negative blood-oxygen-level dependent 

(BOLD) response (NBR). C4 has a long plateau with a weak negative trend followed by a 

sharper slope (and a positive rebound), which looks relevant to the task-block BOLD 

response with an adaptation (negative slope) followed by an undershoot. C5 responded to 

high frequency (noisy) temporal patterns, which can be also seen from its flat spectrum at 

high frequency range over 0.2 Hz (Fig. 2b), which implies that C5 represents high frequency 

artifacts in fMRI data. The average spectrum (Inline Supplementary Fig. 6a) has a small 

peak around 0.52 Hz, which may be related to the previously reported head position spectra 

(0.55 Hz) specific to this dataset (Power et al., 2019). Those distinctive patterns across 

components support our claim that LSCL makes the feature extractor learn component-

specific temporal structures to decompose the data into components.

To show that those representative patterns were not biased to a small number of subjects, we 

counted how many subjects were included in the 695 time fragments for each component; 
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(C1) 397, (C2) 217, (C3) 227, (C4) 484, (C5) 461). Although those numbers were 

significantly smaller than the case of completely random selections from the all subjects 

with the same probability (α = 0.05, permutation test, not corrected), they were reasonably 

distributed over many subjects, without overfitting to a small subset of them.

3.2. Occurrence ratios of the temporal primitives

Fig. 3a shows the histogram of the feature values. Comparing with surrogate data (see 

Section 2.7 for the surrogate data generation), the feature values had significantly higher 

values compared to chance level: Proportions of 0.28%, 1.4%, 1.3%, 0.10%, and 0.43%, 

respectively, exceeded the threshold of α = 0.001 (not corrected). This implies local time 

series contained temporal structure, related to the temporal primitives, which is rarely 

observed in the surrogate data. The significantly occurring time series are hereafter called 

realizations of the temporal primitives. C2 and C3 have especially high proportions of the 

realizations relative to the others, indicating they comprise a relatively larger part of the 

rfMRI time series. The difference of the sensitivities to the surrogate data also indicates 

some distinctive characteristics of the temporal primitives; e.g., C5 was more strongly 

activated by the random shuffle surrogate data than the actual data, which seems to indicate 

C5 captures high frequency noises in the data, but is different from C1 even though C1 also 

represents relatively high frequency temporal pattern (Fig. 2).

The location-wise visualization of the realization ratios shows clear spatial nonstationarity 

for each component (Fig. 3b), which is consistent with the assumption of LSCL. The 

distributions are also distinct, though there is a large amount of overlap. In particular, C1, 

C2, and C3 have similar distributions, especially around visual cortex, inferior parietal 

lobule (IPL), and a part of middle temporal gyrus (MTG). However, they have some 

differences: C2 has large values around somatomotor/sensory regions, C3 has large values 

around parieto-occipital sulcus (POS). C4 is more broadly distributed than the others; its 

pattern seems to be a combination of the task-positive network and the default-mode 

network (DMN). C5 has large activities in noise-susceptible regions such as inferior 

temporal lobe (Simmons et al., 2009). It should be noted that these spatial distributions do 

not represent spatial co-occurrence (networks) of the temporal primitives (see Fig. 6) 

because those plots were obtained by counting the number of realizations for each parcel 

without considering their timings (see Inline Supplementary Fig. 5 for the procedure), while 

the spatial co-occurrence patterns can be actually different across time in LSCL (see Section 

2.5 and Fig. 6).

The distribution of the subject-wise realization ratios shows that none of the temporal 

primitives is subject-specific (Fig. 3c), though some subjects seem to lack the realizations of 

some components.

3.3. Nonlinear modulations of the temporal primitives

The visualization of the representative patterns (Fig. 2a) is intuitive, but just the first step in 

understanding the nonlinear computations in LSCL. In fact such patterns do not in 

themselves describe the nonlinear nature of the components. We next further analyze the 

nonlinear modulation observed in the realizations of the temporal primitives.
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The most fundamental nonlinearity in our framework is invariance to temporal shifts. This is 

partly because the input samples are obtained from data randomly cropped from the data 

matrix without considering the actual timing of the brain activities; it is also worth noting 

that rfMRI data do not have any task design. Shift-invariance is also enforced by 

construction because we use CNNs which have the well-known property of learning shift-

invariant features due to their convolutional nature. As shown in Fig. 4a, such temporal 

shifts were indeed quite common, and the components learned some shift-invariance, as seen 

from the small slope of the linear regression analysis.

To evaluate the amount of nonlinear modulation other than the temporal shifts shown above, 

we plotted relationships between the feature values and the similarities of their inputs to the 

representative patterns after compensating for their temporal shifts (Fig. 4b). Basically, the 

histograms illustrate that the feature extractor is sensitive to temporal patterns resembling 

the representative patterns (except for C5); in other words, it is deactivated when the input 

includes fewer occurrences, resulting in sparseness of the feature values (except for C5). 

However, the relationship does not appear to be linear; the histograms have wider horizontal 

distributions compared to a linear model (results for linear model are shown in Inline 

Supplementary Fig. 2), which indicates that the nonlinear feature extractor has wide range of 

modulations to which the feature values are invariant, thanks to its nonlinearity. We hereafter 

omit C5 from the further analyses because our analyses above suggests that it represents 

fMRI noise.

To intuitively visualize the nonlinear modulations of the realizations, we plotted their 

distribution by embedding them into a two-dimensional space based on their similarities 

(Fig. 5a). Firstly, we see that the scatter plots do not show clear relationship between feature 

values (grayscale colors) and their embedded locations. This again implies that the feature 

extractor has strong invariance against the modulations of the component-specific patterns. 

In contrast, a linear feature extractor would show maximum activation for one input pattern, 

and weaker activations for anything deviating from it. Secondly, the distribution did not 

show a clear clustering structure, which suggests the variability was not structural, and not 

easy to further classify within a component. That implies that the components were properly 

divided into structurally specific components, without being contaminated by the other 

potentially distinctive ones.

The other in-set panels show the temporal patterns in selected locations on the embedded 

space. While the basic shape of the temporal primitives seems to be preserved across 

realizations, if we take a closer look, the shapes are clearly variable. For example, C1 

sometimes has smaller number of cycles and/or slightly different frequencies of the cycles 

(see C1b for example), and C4 sometimes shows a different length of the plateau before the 

strong negative slope (C4b). These results illustrate the nonlinear invariance of the CNN 

feature extraction operating on the input space.

3.4. Spatial co-occurrence of the temporal primitives

To show that the temporal primitives are fundamental elements underlying the intrinsic time-

varying co-activations of the rfMRI signals, we visualized the distributions of their spatial 

co-occurrence patterns during the resting-state, by embedding them into a two-dimensional 
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space for each component (see Section 2.11 for more details) (Fig. 6). To show their 

relationship to the well-known RSNs, the embedded patterns were colored based on their 

similarities to the RSNs obtained by the conventional linear sICA analysis on the same 

dataset; they represent default-mode network (DMN), posterior-DMN (PDMN), lateral-

DMN (LDMN), dorsal attention network (DAN), fronto-parietal network (FPN), cingulo-

opercular network (CON), motor (MOT), and visual (VIS) networks (Inline Supplementary 

Fig. 3). Firstly, C2 showed especially wide variety of co-occurrence patterns, and large 

proportion of them were similar to the RSNs. This reveals that C2 temporally modulates the 

co-occurrence patterns during the resting-states, and the well-known RSNs, which are 

usually represented by functional connectivities (or co-activations) on remote regions, are 

mostly driven by its occasional co-occurrences on the regions. Next, the co-occurrence 

patterns of C3 were less distributed than C2, and mainly located on FPN and VIS (and 

occasionally on DMN). This indicates that C3 represents the activities of the fronto-parietal 

control network and visual network, which observed as NBR on the regions. The spatial 

patterns of C4 were dominantly task-positive patterns (DAN, MOT, FPN), and also showed 

larger DMN than the other components. Together with its temporal pattern, C4 seems to 

represent task-relevant activations (or effortful deactivations) persisting for some duration, 

rather than the transient activities represented by C2 and C3. Notably, such persisting task-

relevant activities appeared during resting-states even without any imposed tasks. Lastly, C1 

showed wide variety of co-occurrence patterns relevant to RSNs as in C2 though they were 

less spatially focused compared to C2. Overall, the overlaps of some co-occurrence patterns 

across components imply that the temporal pattern corresponding to a single network is not 

always the same, but rather modulated by other underlying brain activities, which again 

attests to the nonlinearity of the processing.

3.5. Task-induced temporal primitives

To further investigate the temporal primitives, we evaluated the timings and spatial locations 

of their realizations induced by task conditions (Figs. 7 and 8), by applying the feature 

extractor trained from the rfMRI to the task-fMRI data (tfMRI). We found that their timings 

and locations were consistent in many task conditions, though some tasks have distinctive 

patterns (especially Motor and Language) possibly because of their distinctive block 

designs.

C4 consistently appeared at two relatively distinctive timings across tasks; 10.9 ± 2.1 s (15.1 

± 2.9 volumes) after the onset, and 6.4 ± 1.9 s (8.8 ± 2.6 volumes; excluding Language) after 

the end of task blocks (the latter peak in Language task was not clear because of the large 

variance of the block length). The realizations on the both peaks showed long plateau with 

slight negative trend, which was similar to the well-known BOLD-response induced by 

block design paradigm. Their spatial locations on the latter peak have clear similarity to the 

effect size maps of the corresponding tasks (see Inline Supplementary Fig. 4 for the effect 

size maps), while those on the earlier peak were scattered on the other (task-irrelevant) 

regions. Those results indicate that C4 represents BOLD responses induced by sustaining 

tasks on the task-relevant regions, and also extended/effortful deactivations from the baseline 

on the other task-irrelevant regions.
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C3 consistently appeared 1.7 ± 0.6 s (2.3 ± 0.8 volumes; excluding Motor, which was always 

preceded by the CUE condition) after the onsets of the task conditions. The spatial locations 

were less task-specific compared to C4, and mainly located on FPN and visual area, which 

were consistent with the co-occurrence patterns during the resting-states (Fig. 6) (except for 

the language-related areas in the Language task). Those results reveal that, during tfMRI, C3 

organizes negative BOLD activities of FPN, and the stimulus-evoked hemodynamic 

responses on the stimulus-relevant regions, on task onsets. The spatial overlap of C3 (3a; 

deactivation) and C4 (4b; activation) on visual areas might be explained by the modulation 

of the balance between stimulus- and task-related components of the HRF (Cardoso et al., 

2012) across blocks; i.e., C3 (stimulus-related) was dominant there in some blocks, while C4 

(task-related) was dominant in other blocks.

C2 also has consistent peaks across many tasks. Firstly, it appeared around the end of the 

task block (2b in Figs. 7 and 8); the temporal patterns and the spatial patterns being similar 

to the effect size map indicates that they represent the transient activities appeared at the end 

of the block responses on the task-relevant regions. C2 also has another peak just after the 

onset in many task conditions (2a in Figs. 7 and 8), which temporal patterns were similar to 

RRF (Birn et al., 2008). The spatial locations were consistent across tasks; DMN-related 

regions, motor, and visual area; many of those regions were reported to coincide with the 

respiration-variation-induced signals (Birn et al., 2006; Power et al., 2017). Those results 

indicates that C2 represents both of the neural-activity-related responses (2b) and the 

respiration artifacts (2a) phase-locked to the stimulus onsets (Huijbers et al., 2014).

Although C1 looked less timing-specific, the realizations clearly showed cyclic peaks 

around the onsets of the blocks in many tasks. The interval of the peaks was about 7.2 s (10 

volumes), which was consistent with the period of the cycles of the representative pattern of 

C1. That implies that C1 appeared at many time points during task blocks, being slightly 

phase-locked to the onsets of the blocks and gradually unlocked from it later. The spatial 

locations of the corresponding realizations were widely scattered on task-irrelevant regions, 

which suggests its less task-type-relevant biological substrate.

3.6. Relationship between temporal primitives and behavioral traits

To investigate the possible contribution of the temporal primitives to the individual 

differences of the behavioral traits, we measured correlation between subject-average 

component activities and some of the individual traits, especially intelligence measures and 

the performances during tfMRI (Fig. 9a). Although the correlations were not strong, some 

traits showed significant relationship with the components. C1 was preferentially correlated 

with working memory-related traits. C2 and C3 were correlated with fluid intelligence 

measure; C3 was also correlated with the language performance.

Figure 9b shows the parcel-wise relationship of each component to the behavioral traits 

which had the highest positive correlations in Fig. 9a. Their spatial nonstationarity indicates 

that the component activities representing the deferences of the behavioral traits are not 

whole-brain-wide, but rather concentrated on some specific regions. In addition, such 

distinctive regions look consistent across components and traits; middle temporal gyrus 
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(MTG), intraparietal sulcus (IPS), posterior cingulate cortex (PCC), Brodmann area 40, 

ventrolateral prefrontal cortex (VLPFC), and orbitofrontal cortex (OFC).

4. Discussion

We proposed a novel nonlinear sICA framework called LSCL, and showed that resting-state 

data are composed of some recurrent, local, and nonlinear temporal structures called 

temporal primitives. The temporal primitives were extracted by training a nonlinear feature 

extractor (CNN) from resting-state data in an unsupervised, data-driven manner, so as to 

demix it into components whose temporal statistics are spatially nonstationary. The feature 

extractor then automatically identified some particularly distinctive local temporal 

structures, which appeared frequently and consistently during the resting-state acquisitions. 

Our analyses revealed that these temporal primitives are fundamental elements of both 

spontaneous and task-induced fMRI signals. Here, we set the number of components to five, 

and the learned components had distinctive characteristics: C1 captures less task-specific 

transient phenomena (ripple), recurrently appears during resting and task conditions, and 

slightly phase-locked to task-onsets. C2 represents a transient neural-activity-related 

response (HRF) and a respiration-variation-related artifact (RRF), and organizes well-known 

RSNs by its co-occurrence in remote regions during resting-state. The distinction between 

HRF and RRF during resting-state is challenging because of the similarity of their temporal 

patterns, their some spatial overlap (see Fig. 6 and 2a in Figs. 7 and 8), and non-periodic 

nature of their appearances. However, the time-varying spatial co-occurrences (Fig. 6) 

implies that C2 represents not only RRF-relevant artifacts, but also some amount of 

neuronal-relevant activities. C3 represents a NBR on FPN and the stimulus-evoked 

component of HRF on the corresponding regions, which were also appearing during resting-

state without any explicit external triggers. C4 captures state-persistent brain activities 

induced on the state-relevant regions, conventionally captured by GLM-based analysis in 

tfMRI data, and here found to appear in both of resting and task conditions. C5 captures 

high frequency noise in fMRI data; considering its flat (non-peaky) spectrum over 0.2 Hz, 

C5 especially seems to have captured physiologically originated artifacts (e.g., respiration 

around 0.2–0.4 Hz, and aliased cardiac pulsation around 1 Hz), which have some variability 

across subjects/timings. Some subjects show a peak around 0.038 Hz in C5 (Inline 

Supplementary Fig.6b), which may be because of the occasional contamination of the other 

components in the same temporal window. Considering temporally and spatially structured 

artifacts were supposed to have been already removed by ICA-FIX (Section 2.2), C5 

captured temporally unstructured artifacts, which spatial co-occurrence patterns were not 

always the same.

Our results showed that the temporal primitives appeared with a large variety of nonlinear 

modulations for each realization (Fig. 5), highlighting the importance of the nonlinearity of 

the feature extractor. To further illustrate the importance of the nonlinearity, we conducted 

the same analyses using a linear feature extractor (Inline Supplementary Fig. 2). Compared 

to the nonlinear model, the linear model extracted only two reasonable components, which 

have slower trends than those of the nonlinear model (the other components seem to 

represent just noises). We assume this is because the linear model cannot recognize the wide 

variety of realizations generated from a single temporal primitive as a single component 
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because of its weak invariance, as seen from the narrower horizontal distributions (higher 

sensitivity) of the representative-pattern-specificity histogram (Inline Supplementary Fig. 

2b) compared to those of the nonlinear model (Fig. 4b). Those results illustrate how 

nonlinearity in the feature extractor is important to achieve robustness against the various 

modulations of the temporal primitives.

Our results showed that the temporal primitives organize the time varying networks during 

resting states by spatially co-occurring at remote regions. The functional networks during 

resting-state (RSNs) are conventionally characterized by functional connectivities (FCs) 

across regions (Biswal et al., 1995), or spatial co-activations (tICA, sCIA, CAP, HMM) (Liu 

and Duyn, 2013; Mckeown et al., 1998; Smith et al., 2012; Vidaurre et al., 2017). Recent 

studies have shown that the FCs are not constant, but rather temporally modulated (dynamic 

FC, dFC) (Allen et al., 2012; Leonardi et al., 2013; Preti et al., 2017). C2 showed a 

particularly wide variety of spatial co-occurrence patterns during the resting-state, and many 

of them were related to well-known RSNs. This indicates that C2 may be the main 

underlying factor generating the observed temporal correlation or co-activations between 

remote regions by the conventional analyses. Although it may be counterintuitive in the 

context of sICA to see similar co-occurrence patterns across different components (Fig. 6), it 

is actually allowed in LSCL, as far as the spatial patterns are distinctive across components 

on temporal average (Fig. 3b) and different primitives do not appear at the same timing and 

parcel consistently (basically, if it is the case, those components would have correlation on 

fragment-average feature values (input samples to MLR for training; see Section 2.5) within 

the parcels, which contradicts the assumption of the spatial-parcel-wise independence of 

LSCL.). This is one of the interesting consequences of LSCL.

The duration of the temporal primitives were about 30 s, which might explain why the 

sliding window FC approach requires 30–60 s of window length to successfully capture 

dFCs (Leonardi and Ville, 2015; Zalesky and Breakspear, 2015). Some studies have shown 

that HMM analysis reveals state-transition dynamics of RSNs (Vidaurre et al., 2017), which 

is consistent with the clusters of the co-occurrence patterns of C2 (Fig. 6). Although the 

other temporal primitives also exhibited spatial co-occurrences during the resting-states, 

their patterns were more region-specific compared to C2: C3 is mainly related to FPN and 

VIS, and C4 represents task-relevant brain activities (DAN, FPN, MOT) persisting for a 

short time, or extended/effortful deactivation on DMN.

Although the temporal primitives were extracted from resting-state data, they also appeared 

during task conditions, and were found to generate, at least to some extent, the task-induced 

BOLD responses. C4 seems to represent the persisting patterns of the BOLD responses, 

usually extracted by the conventional GLM analyses in task-based fMRI studies. C3 

captures the stimulus-evoked component of HRF on the corresponding regions, and NBR on 

FPN at the onsets of the task blocks, which could be related to the functional role of the FPN 

as a flexible hub in cognitive control and adaptive implementation of task demands (Cole et 

al., 2013). C2 captures transient activities occurred at the end of task blocks, and respiration-

related artifacts at the onset of task blocks. On the other hand, the fact that the task-relevant 

patterns also appeared during the resting-state is consistent with the previous findings of the 

task-relevant activities of being embedded in a subspace of resting-states activities (Kenet et 
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al., 2003; Luczak et al., 2009; Smith et al., 2009). We also trained the feature extractor only 

from the tfMRI data (Inline Supplementary Fig. 10). The extracted patterns did not have 

much variety compared to those from rfMRI, and most of them seemed to be relevant to the 

task design matrix convolved by HRF. Considering the similarity of those patterns to the 

temporal primitives from rfMRI (especially C3 and c4), the temporal primitives would be 

sufficient to capture the task-induced patterns and their variability to some extent.

The distinctive relationship of the temporal primitives to some of the cognitive traits suggest 

that they may have different biological substrates, and capture important individual 

variations. The correlation of C2 and C3 with fluid intelligence indicates their contributions 

to the flexible functional organization of the brain. C3 also has significant correlation with 

the language performance, which may be related to the appearance of C3 at the language-

related areas during the Language task (Fig. 8). C1 had distinctive correlation to the 

working-memory-related measures, which suggests its specific biological substrates, such as 

memory consolidation, though it will require further study to conclude. Although those 

correlations were significant, the effect sizes were rather small. However, this would not be 

surprising because the temporal primitives were extracted in unsupervised, data-driven 

manner, that is, without any explicit use of subjects traits, unlike the previous studies which 

explicitly used the traits to find a feature space which represents the relationship between the 

brain activities and the traits in supervised manner (Dubois et al., 2018; Finn et al., 2015; He 

et al., 2019; Kashyap et al., 2019; Noble et al., 2017; Perry et al., 2017; Smith et al., 2015).

Since C1 had especially intriguing and less-known temporal pattern, we conducted some 

additional analyses based on its frequency characteristics to see its possible subject-

specificity and physiological origin. At first, we found a subtle difference of the subject-

median peak frequencies of the PSDs of the realizations (0.12 ± 0.0068 Hz). To evaluate the 

potential physiological factors causing the variability, we computed the correlation between 

the peak frequencies and the behavioral traits of the subjects (see Section 2.13 for the basic 

analysis). For comprehensive findings, we here considered all of the traits obtained by HCP 

(https://db.humanconnectome.org), except for some unstable ones, in which 1) fewer than 

250 subjects had valid measures, 2) over 75% of subjects had the same value, or 3) very 

extreme outliers were contained (if max(y) > 100 × mean(y), where y = (x − median(x))2, 

and x is a vector containing trait values of subjects). Those rejection criteria were based on 

Smith et al. (2015), but the thresholds were selected to be severer; 450 traits remained in 

total. As a result, systolic blood pressure (r = 0.13) and some FreeSurfer measures (intra-

cranial volume, r = −0.12; right precentral average thickness, r = −0.12; and left entorhinal 

surface area, r = −0.11) had significant correlation with the peak frequency (p < 0.05; 

100,000 times permutation test, with FDR corrected), which implies a possible physiological 

origin of C1 instead of the systemic noise common across subjects. A recent study suggested 

that respirations induce 0.12 Hz artifacts on head position traces, though they did not show 

their clear appearance on fMRI signals (Power et al., 2019). Although C1 has a peak 

frequency close to this, the time-varying locations of C1 (Fig. 6) imply that C1 is not simply 

related to the global artifacts caused by body motion.

Previous studies have already shown that rfMRI data are made of repetitive events of some 

spatial co-activation patterns (CAP) (Chen et al., 2015; Liu and Duyn, 2013; Liu et al., 
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2013), spatio-temporal patterns (Majeed et al., 2011; Guidotti et al., 2015; Takeda et al., 

2016), or lag threads (Mitra et al., 2015). However, the extracting one dimensional 

(nonlinear) temporal patterns as we did here, without considering their spatial co-

occurrence, seems to be conceptually new. Although LSCL and the methods cited above are 

looking at different dimensions (time, space, or time-space), they are possibly capturing the 

same phenomena. For example, CAP studies (Liu and Duyn, 2013; Karahanoğlu and Van De 

Ville, 2015) found spatial co-activations of BOLD signals condensed in events of short 

periods (4–8 s), and showed that those time-varying events generated the fluctuations of 

dFCs. Considering the short durations of the peaks of C2 and C3, CAPs are possibly related 

to the spatial co-occurrence of those temporal primitives. Majeed et al. (2011) extracted a 

recurrent spatio-temporal pattern with the window length of about 20 s, referred to as the 

template, within which DMN and attention network were opposed in activity levels, and 

gradually reverted sign with a cycle of duration of about 20 s. C2 and C4 may be related to 

such a template because they tend to appear in both of DMN and task-positive regions, 

though their temporal patterns are not clearly consistent with the cyclic pattern of the 

template (Fig. 2a). That may be because we extracted several components, and the template 

was thus divided into several components.

To show the potential contribution of the temporal primitives to those repetitive events, we 

applied CAP analysis (Liu and Duyn, 2013) to the feature values of C2, which showed a 

particularly wide variety of spatial co-occurrence patterns (Fig. 6), as follows; 1) the parcels 

included in a part of PCC (31pd and 31pv in Glasser et al. (2016)) were used as a seed 

region, 2) the frames (co-occurrence patterns) where the seed-average feature values 

exceeded a threshold (85 percentile of all frames) were obtained, and 3) k-means clustering 

with k = 8 were applied to them. The result showed that the PCC-relevant co-occurrence 

patterns of C2 (C2-CAPs) were mainly classified into three groups (Inline Supplementary 

Fig. 7); task-negative networks (C2-CAPs 6 and 7, related to DMN-MFG and DMN-SFG in 

Liu and Duyn (2013) respectively), motor networks (C2-CAPs 2 and 8), and visual networks 

(C2-CAPs 1, 3, and 4). Basically, the decomposition was similar to the CAPs from rfMRI 

(fMRI-CAPs; Liu and Duyn (2013)), except that 1) motor and visual C2-CAPs were more 

dominant and had higher consistency compared to the task-negative networks, which was 

opposite in fMRI-CAPs, and 2) we did not see subcortex-relevant DMNs (caudate nucleus 

and hippocampus) shown in Liu and Duyn (2013) because we excluded subcortical regions 

from the analysis. Such time varying C2-CAPs and their consistency to the fMRI-CAPs 

supports our claim that the temporal primitives (especially C2) are driving the local 

repetitive events such as CAPs, which are observed as dynamic functional connectivity 

during resting-state.

To evaluate the reproducibility of the temporal primitives, we split the training data in half 

(502 and 501 subjects each), and trained a feature extractor individually from each of them 

(Inline Supplementary Fig. 8). Although some components seemed to be failed to be 

decomposed (see similarity of C5 to C3 in the subset 2), many of the components were 

similar across the subsets, and to Fig. 2, which implies the reproducibility of the temporal 

primitives across subjects.
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Importantly, in LSCL (and SCL), the assumption of spatial independence is not the same as 

that of ordinary sICA; LSCL assumes parcel-conditional spatial independence given parcel 

labels, instead of marginal spatial independence usually assumed by sICA. Since LSCL does 

not impose independence across parcels, the spatial patterns of the components, which are 

determined by parcel-wise modulation parameters, can look similar to each other (see the 

similarities of the spatial patterns of C1, C2, and C3 in Fig. 3b). Although the LSCL 

components can be marginally independent if the modulation parameters are also 

independent (Hyvärinen and Morioka, 2016), that does not seem to happen here.

Since LSCL is based on the assumption of spatial-parcel-wise stationarity and 

independence, it requires pre-defined spatial functional parcellation which satisfies the 

assumption at least approximatively. In this study, we used a simple parcellation which 

divides cortices into small similar-sized parcels, and showed that even such simple method 

was sufficient for LSCL. Although more sophisticated parcellations explicitly considering 

functional similarities could increase the classification performance, we would assume that 

the learned temporal primitives might not be very different as far as we use a parcellation 

with similar or higher spatial resolution. This is because the spatial patterns of the 

components have much wider distributions than the parcel-size (Fig. 3b), and thus 

contaminations of some neighbor regions would not have a lot of influence on the learning 

of the model.

As with many other ICA algorithms, the selection of the number of components is 

challenging in LSCL. In preliminary experiments, we tried some values and found that on 

the one hand, if we increase the number of components, some components get similar 

temporally and/or spatially each other (see Inline Supplementary Fig. 9 for the 

representative patterns in 6 components case; C1–C5 were consistent with Fig. 2a, but C6 

was similar to C2); and on the other hand, if we decrease the number of components, some 

components disappear or are mixed together with other components. The experiments 

implies that the setting n = 5 was reasonable, considering that the components were properly 

demixed without being contaminated by different temporal primitives. As we can see from 

Fig. 5, the temporal patterns of the realizations looked qualitatively consistent for each 

component even after the nonlinear modulations. However, the best setting can be different 

across datasets. For example, different TR of rfMRI would lead to a different number of 

distinctive components; slower TR would complicate the detection of high frequency 

patterns such as C1, on the other hand, faster TR may allow us to decompose C5 into some 

distinctive components, which were considered as high frequency artifacts in this study. The 

best setting would be also dependent on the duration of the temporal pattern of interest.

Training of the feature extractor (CNN) by LSCL took about 25 hours (Intel Xeon 3.5GHz 8 

core CPUs, 128 GB Memory, NVIDIA Tesla P100 GPU). After the training, the feature 

value extraction from fMRI data through sliding-window took about 2 s for each resting-run.

LSCL (and SCL) frameworks can be applied not only to rfMRI data, but to many kinds of 

multidimensional time series which satisfy the assumption of spatial-parcel-wise 

stationarity, such as calcium imaging, videos, and so on. Compared to SCL, LSCL has a 

wide applicability because it treats different timings as different data points in addition to the 
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spatial data points; it could be applied to data with much lower spatial dimension, e.g., 

electroencephalography (EEG), magnetoencephalography (MEG), electrocorticography 

(ECoG), where sICA is usually considered inadequate because of a small number of spatial 

locations. We think this is an important avenue for future work.

The key appealing points of LSCL are the nonlinearity, unsupervised learning, and the 

extraction of local dynamics. Since nonlinearity is thought to be intrinsic in many of real 

dynamics including the brain, its explicit consideration would give us a new insight into the 

hidden phenomena of the dynamics, which are not visible by the conventional linear 

frameworks such as linear sICA (Mckeown et al., 1998). Such nonlinear models generally 

need a lot of data for learning (He et al., 2015; Krizhevsky et al., 2012; Szegedy et al., 

2015), and thus unsupervised learning nature of LSCL is advantageous because unlabeled 

data are generally easier to obtain compared to the labeled data, which is especially the case 

in brain imaging data. Extraction of local and repetitive dynamics is a novel concept. 

Although many dynamical systems are inherently nonstationary, they may be temporally 

repeating a finite number of sequences (Ikegaya et al., 2004; Liu and Duyn, 2013; Majeed et 

al., 2011; Mitra et al., 2015; Van De Ville et al., 2010) rather than moving completely 

randomly. LSCL has a potential to extract such local events composing the nonstationary 

data. On the other hand, some extensions can be helpful depending on the type of the 

dynamics. One of the fundamental limitation (property) of LSCL is that it extracts temporal 

(one dimensional) structures rather than spatio-temporal (two dimensional) structures. Since 

some studies already found spatio-temporal patterns in brain imaging data (Ikegaya et al., 

2004; Majeed et al., 2011; Mitra et al., 2015), some additional post-analyses to extract 

nonlniear spatio-temporal structures would be an interesting future direction. However, since 

the interpretation of such nonlinear spatio-temporal patterns would be more complicated, 

more intuitive visualization methods would be also required.

5. Conclusion

In this study, we proposed a novel nonlinear feature extraction framework called local space-

contrastive learning (LSCL), which extracts distinctive nonlinear temporal structure hidden 

in brain imaging data, by training a deep temporal convolutional neural network in an 

unsupervised, data-driven manner. By applying to the HCP’s fMRI dataset obtained from 

over 1,000 subjects, we demonstrate that: 1) LSCL identified certain distinctive local 

temporal structures, referred to as temporal primitives, which repeatedly appeared at 

different time points and spatial locations, reflecting dynamic resting-state networks, 2) 

these temporal primitives were also present in task-evoked spatiotemporal responses, and 3) 

the temporal primitives captured unique aspects of behavioral traits. In addition to these 

findings underlying fMRI data, our newly-developed feature extraction framework can 

provide a novel general tool to find out fundamental information from various kinds of 

imaging modalities, and give us new insight into the complex dynamics of the brain.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
The concept of local space-contrastive learning (LSCL). (a) The generative model is 

basically a nonlinear version of sICA. The source components are spatial patterns which are 

spatially (conditionally) mutually independent. The observed time series are given by a 

nonlinear transformation of the components for each location. Different from ordinary sICA, 

the components have spatial-parcel-wise stationarity, i.e. different statistics in different 

parcels, and spatial-parcel-wise independence, which does not necessary mean marginal 

independence generally assumed in sICA. In addition, LSCL assumes that the components 

generating the time series can be different for each short temporal window (dotted rectangle 

on the observed signals), which is in contrast to ordinary sICA, which assumes that the 

whole time series are generated from the common components. (b) In LSCL, we attempt to 

find the original components by training a feature extractor to be sensitive to the spatial 

nonstationarity of the data by using a multinomial logistic regression. The feature extractor 

is given a short fragment of time series randomly picked from the whole time series at a 

location as an input, and the logistic regression attempts to predict the parcel label (1, …, K) 

corresponding to it from the output of the feature extractor (feature values). This framework 

makes the feature extractor learn component-specific local nonlinear temporal structures, 

referred to as temporal primitives. See Inline Supplementary Fig. 5 for the detailed 

procedures to obtain the feature values, which are described in Section 2.5.
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Figure 2: 
(a) Visualization of the representative temporal patterns (the most important temporal 

characteristics) of temporal primitives, which are component-specific spatio-temporally-

local nonlinear temporal structures learned by the nonlinear feature extractor (CNN). They 

were represented by taking an average of time fragments whose (unmixed) feature values 

were very large at each component dimension. Gray thin lines are the individual input time 

series which produced the top-0.0001% highest component activities in the whole dataset. 

The colored thin lines indicate the samples with the very highest activations (1st–5th: red, 

orange, yellow, green, and blue). Considering the well-known property of shift-invariance of 

CNNs (see Fig. 4a for further evaluation), all samples were temporally shifted so as to 

maximize their cross correlations to the reference signal, i.e. the one with the highest activity 

(red sample). The black thick line shows their sample average after the temporal shifting. 

Two dotted vertical lines indicate the edges of a temporal window whose width is the same 

as the width of the receptive field of the feature extractor (~ 32 s); the (absolute) peak point 

inside the window was selected as the reference point (0 s). We can see that the average 

temporal patterns inside the windows show clear differences across components, and are 

hereafter used as the representative temporal patterns of the temporal primitives. (b) The 

representative frequency spectra of the temporal primitives. The spectrum was estimated for 

each of shift-adjusted inputs corresponding to those in a (see Section 2.9 for the shift-

adjustment). As with a, the gray thin lines are the individual plots, the colored thin lines 

indicate the samples with the very highest activations, and the black thick line shows their 

average. The peak frequency of the average spectrum was displayed on the line.
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Figure 3: 
(a) Histogram (log-scale) of the feature values obtained from the whole dataset (orange), and 

its comparison to those from the surrogate data (blue: autoregressive randomization (ARR); 

grey: random shuffle (RS)). The scale of the feature values were normalized to have the 

maximum value of 1 for each component. Blue vertical lines show the chance levels of the 

feature values estimated from the ARR surrogate data (α = 0.001; not corrected). 0.28%, 

1.4%, 1.3%, 0.10%, and 0.43% of the feature values were over the chance level. For 

comparison, black verticals show the threshold estimated from the RS surrogate data (α = 

0.001; not corrected). The difference of the sensitivities to the surrogate data across 

components indicates some characteristics of the temporal primitives; e.g., the higher feature 

values of C5 in the RS surrogate data seems to indicate that it captures high frequency 

(possibly physiological) artifacts in the data, which tend to lack temporal structures as with 

RS surrogate data. (b) Location-wise visualizations of the significance ratios of the feature 

values show spatial nonstationarity and component-specificity of the the realizations. The 

chance level is the same with a. Importantly, those spatial distributions do not indicate co-

activation networks, as explained in the text. (c) Between subject variability of the 

significant ratios. A data point in the boxplot represents the ratio of the realizations in a 

subject. The box is drawn between the 25 and 75 percentiles, with a line indicating the 

median. Whiskers indicate 1.5 times the interquartile range.
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Figure 4: 
Invariance of the feature extractor against temporal modulations of the temporal primitives. 

(a) The robustness of the feature extractor to the temporal shifts of the realizations. Each 

panel shows the relationship between the feature values and the (absolute) temporal shifts 

that were applied to their inputs for alignment to reference signal in Fig. 2a. Each point 

corresponds to one of the top time series shown in Fig. 2a (n = 695). The feature values were 

normalized to have maximum value of 1 for each component. The red lines are the estimated 

least-square fits, and colored bands indicate 95% confidence bounds. Although the slopes 

are significant in some of the components, they are quite small, which illustrates the shift-

invariance of the feature extractor. (b) Two-dimensional histogram showing the relationship 

between feature values and the similarities of their inputs to the representation patterns (Fig. 

2a). To evaluate only the modulations different from the temporal shifts shown in a, the 

similarities (Pearson correlation) were measured after compensating their temporal shifts 

relative to the representative patterns (see Section 2.8 for the temporal-shift alignment). Blue 

horizontal lines are the chance levels same with those shown in Fig. 3a. Note that the 

colorbar is log-scale.
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Figure 5: 
Visualization of the modulations of the temporal primitives. (a) two-dimensional t-SNE 

embedding of the realizations (see Section 2.9 for t-SNE analysis details). Each point 

corresponds to one of the realizations. The grayscale color indicates the feature value. Their 

chance levels (the lower bounds of the realizations) are the same as Fig. 3. (b–e) Each panel 

illustrates the temporal patterns of some local realizations, which were shown by gradually 

changing the location on a line on the embedded space. The colored cross on the t-SNE 

space indicates the sampling location, and the temporal pattern plotted with the same color 

in the corresponding panel shows the temporal pattern given by a local average of the 100 

closest points around the location. The gray dotted line is the representative pattern obtained 

in Fig. 2a, which were used as a reference for compensating the temporal shifts of the 

realizations. Those differences of the temporal patterns in the embedded space illustrate the 

modulations of the realizations.
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Figure 6: 
The spontaneous spatial co-occurrence patterns of the temporal primitives. Scatter plots 

show two-dimensional t-SNE embeddings of the spatial co-occurrence patterns of the 

temporal primitives during the resting-states (see Section 2.11 for t-SNE analysis details). 

The color indicates the most similar RSN obtained by conventional linear sICA (see Inline 

Supplementary Fig. 3); DAN (dorsal attention network), FPN (fronto-parietal network), 

DMN (default mode network), PDMN (posterior DMN), LDMN (lateral DMN), CON 

(cingulo-opercular network), MOT (motor and somatosensory network), and VIS (visual 

network). The similarities were measured by Pearson correlation, and thresholded by 0.35; 

the gray points have similarities to the RSNs less than 0.35. The spatial patterns show some 

examples of the co-occurrence patterns on the embedded space, obtained by taking local 

average of 500 data points on some locations. Only left hemispheres are shown, except for 

the FPN of C2 because it showed right dominant pattern.
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Figure 7: 
The timings and spatial locations of the realizations during the task conditions (WM, 

Gambling, Relational, and Emotion; see the remaining task conditions in Fig. 8). We 

discarded C5 here because of the lack of temporal preferences. (Left) Histogram of the 

timings of the realizations of the components (see Section 2.12 for more details). One 

temporal bin corresponds to one volume. Although there are some sub-conditions for each 

task, we mixed all of their realizations as the same task (Motor-CUE condition was 

excluded). The vertical line at 0 s indicates the onset of the task block, and the other vertical 

lines show the end of the task blocks. The length of the vertical lines indicates the number 

(ratio) of blocks ended at the timing. Note that the width of the receptive field of the feature 

extractor (about 32 s) is longer than the length of task blocks. (Right-upper) Temporal 

patterns of the realizations corresponding to some peaks on the histograms. Grey thin lines 

show the realizations corresponding to the timing, and the colored thick line is their sample 

average. Black dotted line shows the representative pattern obtained in Fig. 2a and used as a 
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reference for estimating the timings. (Right-lower) Spatial histogram of the realizations on 

the specific timing given in the upper part.
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Figure 8: 
The timings and spatial locations of the realizations during the task conditions (Social, 

Motor, and Language). See Fig. 7 for the details.
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Figure 9: 
The relationship of the temporal primitives to the behavioral traits of the subjects. (a) 

Spearman correlation coefficient between subject-average component activities and 19 

behavioral traits related to intelligence and response-accuracies during tfMRI. Red bars 

indicate significant relationship (p < 0.05; 100,000 times permutation test, with FDR 

correction for multiple comparisons). (b) The spatial distribution of the relationship between 

subject-parcel-average component activities and some traits corresponding to the top-3 

highest correlation in a for each component (column).
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Table 1:

Network architecture of CNN and MLR

Layer name Output size time × channel Description

Input 46 × 1 Cropped time series (fragment)

Normalize 46 × 1 Temporal normalization

Conv1 32 × 16 Convolutional layer; [15,16] × 2

Conv2 30 × 16 Convolutional layer; [3,16] × 2

Conv3 28 × 16 Convolutional layer; [3,16] × 2

DownSample1 14 × 32 Down-sampling (split time-series into channels)

Conv4 12 × 32 Convolutional layer; [3, 32] × 2

Conv5 10 × 32 Convolutional layer; [3, 32] × 2

DownSample2 5 × 64 Down-sampling (split time-series into channels)

Conv6 3 × 64 Convolutional layer; [3, 64] × 2

Conv7 (feature) 1 × 5 Convolutional layer; [3, 5] × 2

MLR 1 × 1, 833 Fully connected layer; [5 × 1, 833]
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