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Abstract: Colorectal cancer is one of the most prevalent cancers in Korea and globally. In this study,
we aimed to characterize the differential serum metabolomic profiles between pre-operative and
post-operative patients with colorectal cancer. To investigate the significant metabolites and metabolic
pathways associated with colorectal cancer, we analyzed serum samples from 68 patients (aged 20–71,
mean 57.57 years). Untargeted and targeted metabolomics profiling in patients with colorectal cancer
were performed using liquid chromatography-mass spectrometry. Untargeted analysis identified
differences in sphingolipid metabolism, steroid biosynthesis, and arginine and proline metabolism
in pre- and post-operative patients with colorectal cancer. We then performed quantitative target
profiling of polyamines, synthesized from arginine and proline metabolism, to identify potential
polyamines that may serve as effective biomarkers for colorectal cancer. Results indicate a significantly
reduced serum concentration of putrescine in post-operative patients compared to pre-operative
patients. Our metabolomics approach provided insights into the physiological alterations in patients
with colorectal cancer after surgery.

Keywords: colorectal cancer; liquid chromatography-mass spectrometry; polyamine; tumorectomy;
metabolomics; biomarker

1. Introduction

Colorectal cancer (CRC) occurs in the colon, rectum, and appendix. This cancer has one of the
highest global incidences, and accounts for the third most common cancer in Korea [1]. Despite an
increasing understanding of the molecular etiology of CRC over the past 20 years, there remains
a lack of reliable and robust biomarkers for monitoring the treatment efficacy associated with this
disease. Currently, surgery, involving removal of the tumor, is the most common treatment for CRC.
CRC surgery involves the removal of sufficient adjacent large intestine, including tumors, to prevent
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the cancer from affecting the remaining areas and to remove nearby lymph nodes and blood vessels,
which provide avenues for metastases. As surgical techniques and tools have developed, the use of
laparoscopy [2] and robots [3] has been applied in several cases. Using these methods, the patient
experiences less stress, the incisions are small, and the patient recovers more quickly after surgery,
compared to standard open surgeries.

Additionally, metabolomics provide comprehensive analysis of cellular metabolites and metabolic
pathways. Specifically, it can be used to identify the levels of metabolites and their associations with
metabolic processes of various pathways. Hence, it is an important research field for the identification
of various disease-related biomarkers, including those of several cancers [4]. It is also crucial for the
subsequent development of diagnostic methods by analyzing metabolic pathways in vivo to elucidate
disease etiology. Specifically, untargeted profiling is used to identify the affected metabolic pathways
for diagnosis and prognosis, as well as to identify potential biomarkers. Indeed, several metabolomic
studies have compared the profiles of normal controls with those of patients with CRC, using urine [5]
and serum [6] samples. However, no studies yet performed metabolome analysis of CRC patients
before and after surgery.

Polyamines are well-known metabolite class that are correlated with cell proliferation and
differentiation [7]. Moreover, polyamines have been found to be positively correlated with the
abundance of cancer cells in cancer tissue and, therefore, may serve as a suitable marker for detecting
the progression of various cancers [8,9]. Specifically, the polyamine spermine serves as a significant
prognostic factor for CRC recurrence [10]. Meanwhile, serum and urine polyamine concentrations
are associated with CRC stage; the concentration of putrescine gradually increases as tumor size
increases [11]. Applying this concept, we previously performed polyamine analysis with pre-
and post-operative breast cancer serum samples [12]. Using fluorescence detection, polyamine
concentrations in serum and urine were found to be normalized in patients after surgery [11]. Therefore,
we analyzed serum polyamine concentrations for targeted profiling using mass spectrometry before
and after surgery. Meanwhile, in the current study, we performed untargeted metabolomics to identify
discursive differences in the serum metabolite profiles between pre- and post-operative patients with
CRC. We hypothesized that arginine and proline (the precursors of polyamines) metabolism differs
after surgery and that these compounds can serve as biomarkers of cancer. Furthermore, using targeted
profiling, we investigated the biological roles of polyamines in CRC.

2. Results

2.1. Metabolic Patterns Detected in Serum Samples of CRC Patients Using Untargeted Metabolomics

For discriminative pattern analysis before and after surgery, we performed partial least squares
discriminant analysis (PLS-DA) and orthogonal partial least squares discriminant analysis (OPLS-DA).
Analysis of the OPLS-DA score plots clearly distinguished pre- and post-operative patients. The PLS-DA
score plot of the positive ionization mode data showed an accuracy of 99.3% and cross validation
(R2) of 96.7%. The OPLS-DA score plot displayed clear segmentation between the two groups with a
cumulative R2X of 0.274, R2Y of 0.762, and Q2 of 0.758 (Figure 1a,b). Based on the variable importance in
projection (VIP) and p-values of the metabolites identified via the PLS-DA model (VIP > 1 and p < 0.05),
biomarkers capable of distinguishing between pre- and post-operative CRC patients group were
selected (Table 1). To confirm the regulation of each metabolite, we indicated the Pearson correlation
coefficient (p(corr)) and fold change (FC) values. The FC value represented the difference between the
two groups and was calculated as the average of each individual peak area: (Mean value of peak area
obtained from post-surgery patients)/(mean value of peak area obtained from pre-surgery patients).
If the FC value was greater than 1, the metabolites were upregulated within the post-surgery group.
In addition, we performed Pearson correlation coefficient analysis to assess whether the relationship
between the two groups was linear or nonlinear. Notably, 0 < ρ ≤ +1 represents a positive correlation,
while −1 ≤ ρ < 0 represents a negative correlation.
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Using the negative ionization mode, the PLS-DA score plot data showed an accuracy of 97.3%
and cross validation (R2) of 93.5%. The OPLS-DA score plot displayed clear segmentation into the two
groups with a cumulative R2X of 0.154, R2Y of 0.85, and Q2 of 0.842 (Figure 1c,d).

Based on the PLS-DA model, metabolite screening was performed. Higher VIP values had a
greater impact on the discrimination of the model. A total of 22 variables met these criteria (positive
ionization mode: 20 of 381 variable metabolites; negative ionization mode: 2 of 67 variable metabolites),
with VIP > 1 and p-value < 0.05. We corrected all missing metabolite entries, total 773 values, with a
low constant value, such as zero.

Differences between the samples from pre- and post-operative CRC patients were also confirmed
by comparing heatmaps performed using MetaboAnalyst 3.0. software with 22 metabolites (Figure 2).
On the basis of the heatmap, the distribution of metabolites could be visually divided into those that
were upregulated or downregulated.Metabolites 2020, 10, x FOR PEER REVIEW 3 of 13 

 

 
Figure 1. Score plots obtained using partial least squares discriminant analysis (PLS-DA) and 
orthogonal partial least squares discriminant analysis (OPLS-DA) for pre-operative (red circles) and 
post-operative (blue circles) patients with colorectal cancer. (a) PLS-DA in positive mode, (b) OPLS-
DA in positive mode, (c) PLS-DA in negative mode, and (d) OPLS-DA in negative mode. PLS-DA, 
partial least squares discriminant analysis; OPLS-DA, orthogonal partial least squares discriminant 
analysis. 
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Figure 1. Score plots obtained using partial least squares discriminant analysis (PLS-DA) and orthogonal
partial least squares discriminant analysis (OPLS-DA) for pre-operative (red circles) and post-operative
(blue circles) patients with colorectal cancer. (a) PLS-DA in positive mode, (b) OPLS-DA in positive mode,
(c) PLS-DA in negative mode, and (d) OPLS-DA in negative mode. PLS-DA, partial least squares
discriminant analysis; OPLS-DA, orthogonal partial least squares discriminant analysis.
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Table 1. Differentially regulated metabolites between samples from patients with pre- and post-operative colorectal cancer.

Metabolites Related Pathways VIP p-Value Fold Change Correlation
Coefficient Regulation

Gamma-aminobutyric acid Arginine and proline metabolism 1.0023 <0.001 0.145828341 4.117358559 Up
l-Proline Arginine and proline metabolism 1.71621 <0.001 0.248728569 3.038287404 Up
l-Threonine Glycine, serine, and threonine metabolism 4.84114 <0.001 −0.053349474 6.563445768 Up

N4-Acetylaminobutanal Lysine degradation 1.62713 <0.001 0.261500031 2.625861377 Up
Unknown (m/z = 131.0643) NA 1.06877 <0.001 −0.080578542 6.860433801 Up

Thymine pyrimidine metabolism 1.50327 <0.001 −0.37427256 1.606954027 Up
Mevalonic acid Terpenoid backbone biosynthesis 1.01718 <0.001 −0.093645679 6.286436005 Up

Xanthine Purine metabolism 1.00114 <0.001 0.516947844 2.518903854 Up
Unknown (m/z = 307.0758) NA 1.42141 <0.001 0.423472971 7.681495389 Up

Testosterone Steroid hormone biosynthesis 1.0227 <0.001 −0.181019259 0.467837133 Down
Phytosphingosine Sphingolipid metabolism 1.02506 <0.001 0.283161742 4.211946967 Up
Dihydroceramide Sphingolipid metabolism 2.90611 <0.001 0.089880246 0.05540464 Down
Prostaglandin E2 Arachidonic acid metabolism 1.44895 0.001 −0.052474587 46.02889156 Up

11β,21-Dihydroxy-5β-pregnane-3,20-dione Steroid hormone biosynthesis 1.02444 0.002 −0.002157481 0.726773548 Down
Chenodeoxycholic acid Primary bile acid biosynthesis 1.01772 <0.001 −0.197870962 31.81241423 Up

Phosphoribosyl pyrophosphate pyrimidine metabolism 1.05047 <0.001 0.039117952 0.084114079 Down
Episterol Steroid biosynthesis 1.58977 <0.001 −0.01518394 65.07462767 Up

Beta-Sitosterol Steroid biosynthesis 1.34755 <0.001 0.548996098 2.874787603 Up
4α-Carboxy-4β-methyl-5α-cholesta-8,24-dien-3β-ol Steroid biosynthesis 1.08986 <0.001 0.317512451 0.329377471 Down

Leukotriene D4 Arachidonic acid metabolism 2.41915 <0.001 −0.017846652 85.53840187 Up
Ceramide 1-phosphate Sphingolipid metabolism 1.03921 <0.001 −0.167097911 0.016887882 Down

Androsterone glucuronide Steroid hormone biosynthesis 1.023 <0.001 −0.164779789 0.022209325 Down
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Figure 2. Heatmap of the 22 differentially accumulated metabolites. The heatmap provides a 
visualization of the changes in the abundance of metabolites specified in each row (normalized by log 
10 scale). The color ranges from deep orange, indicating high abundance, to deep blue, indicating low 
abundance. On the top of the heatmap, green bars and red bars indicate pre-operative and post-
operative patients with colorectal cancer, respectively. 

2.2. Metabolic Pathway Analysis 

Among all detected metabolites, 22 variables met criteria (VIP values > 1 and p-values < 0.05) 
were performed searching pathway analysis using the MetaboAnalyst 3.0. Functional pathway 
analysis was performed, to identify altered metabolic pathways between pre- and post-operative 
patients (Figure 3). 

Figure 2. Heatmap of the 22 differentially accumulated metabolites. The heatmap provides a
visualization of the changes in the abundance of metabolites specified in each row (normalized by log
10 scale). The color ranges from deep orange, indicating high abundance, to deep blue, indicating
low abundance. On the top of the heatmap, green bars and red bars indicate pre-operative and
post-operative patients with colorectal cancer, respectively.

2.2. Metabolic Pathway Analysis

Among all detected metabolites, 22 variables met criteria (VIP values > 1 and p-values < 0.05) were
performed searching pathway analysis using the MetaboAnalyst 3.0. Functional pathway analysis was
performed, to identify altered metabolic pathways between pre- and post-operative patients (Figure 3).
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Figure 3. A systemic view of the disordered metabolic pathways associated with surgery. The colors
(varying from yellow to red) indicate that the metabolic pathways exhibit different levels of significance,
red indicating a more significant pathway than those indicated by yellow circles. All metabolic
pathways have been described according to p-values from the pathway enrichment analysis (y-axis)
and impact values based on the pathway topology analysis (x-axis).
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2.3. Quantification of Polyamines in Serum Samples of Patients with Colorectal Cancer

Using 200 µL aliquots of the serum samples, we detected nine polyamines whose concentrations
varied from 2.29 to 3764.49 ng/mL (Table 2). We then quantified the metabolic profiles of serum
polyamines from all pre-operative (n = 68) and post-operative (n = 68) patients with CRC.

Table 2. Concentrations of nine polyamines in serum samples from pre- and post-operative patients
with colorectal cancer (ng/mL).

Compound
Pre-Operative Patients (n = 68) Post-Operative Patients (n = 68)

p-Value
Mean ± SD Median, Range Mean ± SD Median, Range

N-PUT 157.49 ± 82.84 137.38, 34.62–368.14 154.86 ± 76.96 131.01, 43.88–346.82 0.858
N-CAD 28.41 ± 12.97 26.38, 8.88–82.7 28.47 ± 15.27 23.62, 9.02–63.32 0.981

DAP 14.62 ± 10 12.24, 2.53–47.05 15 ± 12.16 11.21, 2.55–46.28 0.858
PUT 28.45 ± 16.4 30.22, 2.29–63.93 18.18 ± 11.67 15.63, 4.76–80.91 4.97−05

CAD 245.37 ± 304.23 28.21, 11.4–803.81 210.92 ± 193.49 200.65, 5.94–665.98 0.482
N-SPD 58.08 ± 20.65 53.61, 27.38–137.7 64.93 ± 18.44 67.43, 19.22–97.34 0.166

SPD 111.11 ± 78.11 98.5, 4.61–457.76 95.72 ± 78.62 64.23, 13.44–326.68 0.274
N-SPM 139.7 ± 98.81 120.77, 13.87–426.94 109.82 ± 83.62 72.08, 18.75–353.23 0.107

SPM 1040.28 ± 1040.5 669.95, 10.89–3764.49 849.93 ± 843.35 709.89, 9.8–3683.69 0.262

N-PUT, N-acetyl putrescine; N-CAD, N-acetyl cadaverine; DAP, 1,3-diaminopropane; PUT, putrescine;
CAD, cadaverine; SD, standard deviation; N-SPD, N-acetyl spermidine; SPD, spermidine; N-SPM, N-acetyl
spermine; SPM, spermine.

The Student’s t-test showed that the concentration of putrescine (PUT) was significantly decreased
after surgery (pre-operative patients: Mean 28.45 ng/mL, range 2.29–63.93 ng/mL; post-operative
patients: Mean 18.18 ng/mL, range 4.76–80.91 ng/mL; p-value, 4.97× 10−5). The differences in putrescine
concentrations between pre- and post-operative patients with colorectal cancer are presented in Figure 4.
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3. Discussion

Untargeted metabolomics was performed using ultra-performance liquid chromatography-mass
spectrometry (UPLC-MS). Results indicated that multiple metabolic pathways were altered between
pre- and post-operative patients with CRC. The most altered pathways were those associated with
sphingolipid metabolism, steroid biosynthesis, and arginine and proline metabolism.

The most significantly altered profile was that of sphingolipid metabolism. Sphingolipids are
effective at inhibiting tumor formation [13]. The intracellular function of sphingolipids is diverse
and related to cell growth, cell cycling, and apoptosis [14]. Ceramide, a sphingolipid metabolite,
may activate cell signaling by forming a cell membrane-specific domain. Ceramide is also an
important factor in apoptosis with its mechanism having been studied in depth [15]. In addition,
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because of an in vitro experiment assessing glioma treatment confirmed that apoptosis occurred when
sphingosine kinase was inhibited in IDH cells and when sphingosine-1-phosphate production was
inhibited [16]. However, no studies have yet been performed examining the association between
phytosphingosines and CRC; meanwhile, they have been shown to induce inhibition of epithelial
mesenchymal transition-related protein expression in malignant breast cancer [17]. As the number of
normal cells increases after surgery, several metabolites, such as phytosphingosine, may also increase
their abundance to suppress metastatic tumors. Furthermore, CRC tissues reportedly have increased
expression of ceramidase synthase mRNA [18]. However, removal of tumor may alter ceramide levels.
We found that the levels of compounds associated with phytosphingosine increased following surgery;
however, levels of dihydroceramide and ceramide 1-phosphate decreased. As quantitative analysis of
several metabolites belonging to the sphingolipid pathway does not exist, more detailed analysis of
this pathway is warranted.

We also observed that steroid biosynthesis was altered following surgery. Patients with CRC
excrete higher amounts of major bile acids (lithocholic acid and deoxycholic acid) compared to
healthy individuals [19]. Moreover, the presence of estrogen and progesterone receptors influence
the growth of colorectal tumors [20]. Among the several compounds identified, testosterone;
11β, 21-dihydroxy-5β-pregnane-3,20-dione; 4α-carboxy-4β-methyl-5α-cholesta-8,24-dien-3β-ol;
and androsterone glucuronide were particularly downregulated following surgery; however, episterol
and beta-sitosterol were upregulated following surgery. Reportedly, the male sex hormone, testosterone,
can stimulate the growth of colon cancer [21], which is consistent with our results of downregulated
testosterone levels post-surgery. Additionally, episterol is converted to beta-sitosterol via methylation
by S-adenosyl methionine. Beta-sitosterol is involved in cell membrane stabilization and elicits
anticancer activity [22]. However, studies on other compounds associated with steroid biosynthesis
identified in our analysis have not been previously conducted in the context of CRC. In the future,
it may be possible to confirm the detailed metabolic pathways using quantitative analysis of the
metabolites in the steroid synthesis pathway, before and after CRC surgery.

Arginine and proline metabolism were also observed to differ before and after surgery.
Gamma-aminobutyric acid and L-proline were the most significantly altered metabolites among
the groups, both of which were increased after surgery. Proline oxidase is involved in p53-induced
apoptosis in CRC cells [23]. In addition, when various other amino acids, such as lysine, proline,
and arginine are administered to mice with colorectal cancer cells, tumor growth is strongly inhibited
without any side effects [24]. Moreover, proline plays an important role in cancer metabolism.
The apoptosis mechanism activated by proline oxidase is mediated by production of reactive oxygen
species. In human tumors, the effect of proline oxidase is downregulated [25]. Therefore, it is important
to quantify various amino acids, particularly proline, to investigate the effects of tumor resection.

After analysis of the untargeted metabolomics, we performed quantitative analysis of polyamines,
which is widely known as a biomarker in cancer patients and colorectal cancer recurrence [10].
Polyamine biosynthesis was the third most altered pathway, along with arginine and proline metabolism.
Therefore, we sought to determine whether the abundance of various polyamines was altered
following surgery. Nine polyamines were quantitated using liquid chromatography-mass spectrometry,
out of which, PUT was significantly decreased after surgery. PUT is one of the main polyamines
present in humans and is produced by the conversion of ornithine; it is correlated with cell proliferation.
In fact, difluoromethylornithine has been used as a chemopreventive agent for treating prostate cancer,
and decreases PUT levels [26]. Additionally, macrophage-derived PUT can possibly improve the
sensitivity of chemotherapy in patients with CRC [27]. In addition, PUT levels are proportional to
the size of malignant tumors related to the central nervous system, such as brain tumor [28]. It has
been suggested that the bioavailability of PUT has a potential effect on colon tumorigenesis and
tissue regeneration in rats [29]. Moreover, increased levels of intracellular PUT have proven effective
in promoting CT-26 colon tumor cell growth [30]. In vitro studies have further demonstrated that
increased concentrations of PUT in culture media enhance the proliferation of colon cancer cells [30].
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This can be interpreted indirectly as follows: Surgical removal of the CRC tumor would result in a
decrease in the PUT concentration, which is consistent with our current findings. Although many
studies have reported elevated levels of polyamines in cancer patients, few have examined the effect
on polyamine concentration following surgery, therefore a detailed study on the quantitative analysis
of polyamine levels, particularly PUT levels, before and after surgery is needed. Hence, polyamine
analysis may enable biochemical monitoring of patients before and after surgery and may be effective
for studying other types of tumors.

4. Materials and Methods

4.1. Chemicals and Materials

All chemicals used for this experiment were obtained from Sigma-Aldrich (St. Louis, MO, USA).
All solvents used were purchased from Burdick & Jackson (Muskegon, MI, USA). Water was filtered
using a Millipore Milli-Q purification system (Bedford, MA, USA).

4.2. Serum Sample Collection

Sixty-eight patients with CRC (49 male and 19 female) over 20 years of age, were recruited
for this study from Yonsei University College of Medicine, as summarized in Table 3. Exclusion
criteria applied for this study include patients who were previously treated with chemotherapy or
radiation. All blood samples were collected in the morning after a 12-h fast. Samples were collected
immediately just before surgery and the day after surgery from each eligible patient. On the day of
surgery, anesthesia was administered intravenously using fentanyl and ramosetron to ensure a constant
dose for 24–30 h. The study was approved by the Institutional Review Board of Severance Hospital
(IRB No. 4-2010-0147). Informed consent was obtained from each participant before collecting samples.
Whole blood was centrifuged at 3000 rpm for 15 min to obtain the serum, which was then stored at
−80 ◦C until analysis. The tumor classification, histological grade, and lymph node metastasis status
of individual tumor samples were evaluated by pathologists blinded to the samples, according to the
tumor-node-metastasis classification of the International Union against Cancer (Edition 7).

Table 3. Clinical characteristics of study groups.

Characteristic Value

Patients (n) 68
Sex

Male 49
Female 19

Age
Mean ± SD 57.52 ± 9.71

Range 20–71
Nationality, n (%) Korean (100)
Body mass index 23.2

Stage
0 5
I 21
II 21
III 1

IIIA 5
IIIB 9
IIIC 2
n/a 4

Method of operation
Laparoscopy 55

Da Vinci 6
Low anterior 4

Left hemicolectomy 1
Right hemicolectomy 2

Other chronic diseases, n (%)
None 54

Hypertension 10
Diabetes 3

Crohn’s disease 1
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4.3. Sample Preparation for Untargeted Metabolic Profiling

Serum samples for the untargeted metabolic profiling were prepared in 100 µL aliquots, and 400 µL
of acetonitrile was added for protein precipitation, followed by centrifugation with Ultrafree®-MC-VV
centrifugal filters (MilliporeSigma, Burlington, MA, USA) at 1200× g for 5 min.

4.4. UPLC-MS

The spectrometry conditions applied were the same as those described previously [31]. Metabolic
profiling was performed using an ACQUITY™ ultra-performance liquid chromatography system
(Waters, Milford, MA, USA) coupled to a Q-Tof Premier™ quadrupole/time-of-flight hybrid mass
spectrometer system from Waters (Milford, MA, USA). Chromatographic separation was conducted
using an ACQUITY UPLC BEH C18 (2.1 × 100 mm, 1.7 µm) column (Waters, Milford, MA, USA)
at 0.35 mL/min. The gradient elution system consisted of solvent A (water with 0.1% formic acid)
and solvent B (acetonitrile with 0.1% formic acid) and was controlled as follows: 0–3 min, 5% B;
3–10 min, 5–50% B; 10–11.5 min, 50–95% B; 11.5–12 min, 95–5% B. The gradient was then returned to
the initial concentration (5% B) and held for 2 min before running the next sample. The column and
autosampler temperatures were maintained at 40 and 4 ◦C, respectively. The sample injection volume
was 5 µL. Subsequently, mass spectrometer was operated in both positive and negative ionization
modes for precise mass measurements. The sample was analyzed under the full scan mode, and the
m/z range was set to 50–1200 with a mass window of 0.05 Da. The data were processed using the
MassLynx 4.1 software (Milford, MA, USA).

4.5. Sample Preparation for Targeted Profiling

For targeted profiling, we added 800 µL of acetonitrile for protein precipitation to 200 µL of each
plasma sample, followed by the addition of an internal standard, 1,6-diaminohexane (1 ppm × 20 µL).
After protein precipitation, samples were centrifuged at 1200× g for 5 min with Smart R17 plus
(Hanil, Kimpo, Korea). The supernatants were transferred to a 10-mL tube to which 100 µL of dansyl
chloride (4 mg/mL in acetonitrile) and 100 µL of sodium carbonate buffer (0.1 M, pH 9.0) were added.
The mixture was incubated at 60 ◦C for 15 min. After evaporation, the residue was reconstituted with
100 µL of methanol.

4.6. LC-MS Profiling of Polyamines

Chromatography was performed using a Shiseido nanospace SI-2 HPLC system (Osaka Soda,
Osaka, Japan) coupled to an LTQ XL ion trap MS (Thermo Fisher Scientific, Waltham, MA, USA). Solvent
A comprised water with 0.1% formic acid in 5% acetonitrile, and solvent B comprised acetonitrile
with 0.1% formic acid in 5% water. These were used to run samples on a Hypersil GOLD C18 column
(150 × 2.1 mm inner diameter; 3 µm; Thermo Fisher, Waltham, MA, USA) under the following gradient
conditions: 0 min, 12% B; 0–17 min, 12 to 88% B (hold for 8 min); 25–28 min, 88 to 12% B, using a flow
rate of 0.2 mL/min at 35 ◦C. The sample injection volume was 5 µL. Mass spectrometer was operated
in positive mode with electrospray ionization. Subsequently, raw data were collected and processed
using the X-Calibur software (Thermo Fisher Scientific, Waltham, MA, USA).

4.7. Statistical Analysis

Using MassLynx 4.1 software, we evaluated the value of retention time and mass/charge (m/z).
MassLynx software was used to process raw data with baseline correction, scaling, peak alignment,
and matrix manipulation. The MarkerLynx application manager for MassLynx software accurately
detects ions of interest from an MS sample set by extracting the relevant data. Chromatographic peaks,
ion intensity identification, and data matrix constriction were searched in the MarkerLynx software.
Then, the m/z values of candidate markers were searched in the MassTRIX using the database
KEGG/HMDB/LipidMaps with isotopes of Homo sapiens reference at a maximum error of 0.05 Da.
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The data of sorted compounds and IDs were converted to Excel spreadsheets. Accurate mass
queries were conducted in compound databases (Metlin, Human Metabolome Database, PubChem,
ChemSpider), and fragmentation patterns were searched in spectral databases (MassBank, NIST2014)
for structural identification of the molecular formulas. PLS-DA and OPLS-DA were performed
using the SIMCA-P software (Umeå, Västerbottens län, Sweden). The VIP values summarize the
overall contribution and importance of each X-variable. Variables with a VIP value over 1 were
considered as significant metabolites. The PLS-DA data were further analyzed via Student’s t-test
analysis using the MedCalc software (MedCalc, Ostend, Belgium). p-value adjustments for multiple
metabolite comparisons were conducted using Benjamini and Hochberg false discovery rate adjustment.
Cross validation was performed using the MetaboAnalyst 3.0 (McGill University, Montréal, QC,
Canada). For cross validation, the total data should be divided into a training set, a validation set,
and a test set. Accordingly, the samples were divided into six groups, and two classes of individuals
were ensured in validation sets or test sets [32]. The m/z values of the metabolites were inputted to the
web-based tool MassTRIX as a reference at a maximum error of 0.05 Da.

The levels of polyamines are expressed as means ± standard deviations. Differences between
two groups were confirmed by t-test using the MedCalc software (MedCalc, Ostend, Belgium).
The threshold of significance was set at p < 0.05.

5. Conclusions

In conclusion, our study provides insights into the comprehensive metabolic alterations in pre-
and post-operative patients with CRC. This is first study to use a metabolomics approach to examine
samples form patient with CRC pre- and post-surgery. Our study confirmed differences in the overall
metabolic profiles before and after surgery. In addition, we identified certain candidate markers of CRC.
Specifically, the metabolic profiles of sphingolipid, steroid, and arginine metabolism were altered before
and after surgery. Although metabolic profiles have been described individually in the context of CRC
and other cancers, no studies had previously quantified and confirmed specific metabolites. After the
untargeted metabolomics approach, we performed targeted profiling of polyamines, known cancer
biomarkers. In our results, the level of PUT was significantly decreased after surgery. We suggest that
these results have relevance in surgical operations because we employed an untargeted approach and
targeted polyamine profiling. This method may help predict prognosis following surgery and can
be readily applied to pre-surgical metabolic testing. In the future, quantitative analysis of various
metabolites that are part of other metabolic pathways in cancer patients after surgery can be performed.
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