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Abstract: Plant stresses have been monitored using the imaging or spectrometry of plant leaves in the
visible (red-green-blue or RGB), near-infrared (NIR), infrared (IR), and ultraviolet (UV) wavebands,
often augmented by fluorescence imaging or fluorescence spectrometry. Imaging at multiple specific
wavelengths (multi-spectral imaging) or across a wide range of wavelengths (hyperspectral imaging)
can provide exceptional information on plant stress and subsequent diseases. Digital cameras, thermal
cameras, and optical filters have become available at a low cost in recent years, while hyperspectral
cameras have become increasingly more compact and portable. Furthermore, smartphone cameras
have dramatically improved in quality, making them a viable option for rapid, on-site stress detection.
Due to these developments in imaging technology, plant stresses can be monitored more easily using
handheld and field-deployable methods. Recent advances in machine learning algorithms have
allowed for images and spectra to be analyzed and classified in a fully automated and reproducible
manner, without the need for complicated image or spectrum analysis methods. This review will
highlight recent advances in portable (including smartphone-based) detection methods for biotic and
abiotic stresses, discuss data processing and machine learning techniques that can produce results for
stress identification and classification, and suggest future directions towards the successful translation
of these methods into practical use.

Keywords: abiotic stress; plant disease; fluorescence; hyperspectral imaging; thermography;
RGB imaging; smartphone imaging; support vector machine (SVM); artificial neural network (ANN);
machine learning

1. Introduction

New and innovative management techniques are needed to ensure a sustainable future for the
agricultural industry as the world population continues to increase. There will be over 9 billion people
inhabiting the earth by 2050 [1]. Feeding such a large population is a complex problem that will
require the utilization of a variety of ideas and techniques across disciplines. Among these is ensuring
maximum crop yields with minimal losses from plant stresses such as drought, lack of nutrients,
and disease. If proper attention is not given to the mitigation of these yield losses, several components
of food security such as availability and economic access may be affected [2].

Pathogens and biotic stresses have received considerable attention in plant stress studies.
About 20–30% of crops are lost due to pests and pathogens globally, with many of these losses
occurring almost every growing season [3]. Furthermore, many species of plant pathogens can
travel over long distances, whether by wind, water, or human activities such as trade and travel [4].
The distribution of pathogens may also be shifted due to the effects of climate change [5]. The detection
of plant diseases is therefore essential not only to implement appropriate disease management strategies
and mitigate potential losses but also to monitor changes in pathogen distribution. Most diseases can be
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detected relatively easily when symptoms are fully developed due to noticeable changes in the plant’s
appearance; however, early detection is essential in preventing large yield losses. It is also needful
to detect abiotic stresses such as water and nutrient deficiencies at an early stage before damages
significantly affect crop yields; furthermore, these stresses will become more prevalent in the agriculture
industry due to climate change effects such as drought stress and increased salinity [6], which will
produce a need for increased environmental monitoring for more refined management practices.

Bioreceptor-based direct detection methods such as polymerase chain reaction (PCR) [7],
enzyme-linked immunosorbent assay (ELISA) [8], and flow cytometry (FC) [9] are widely available
for the detection of plant diseases; however, these methods require specialized training and can be
time-consuming and labor-intensive. An alternative detection method that can be used both for biotic
and abiotic stresses is a simple visual observation by an expert [10], but this technique can be prone to
bias, with varying results based on the experience of the evaluator.

Optical techniques hold considerable advantages over the previously mentioned techniques,
such as a greater potential for rapid disease detection (with some methods producing results in
near-real-time [11]), standardized results that are not subject to individual biases, and the ability to
detect both biotic and abiotic stresses. Techniques using proximal (near to the target) sensing methods
have been utilizing optical sensors that are becoming increasingly smaller and more portable. Although
optical sensors provide greater simplicity in the data collection process, the data itself can be complex
and large in size (especially in regard to hyperspectral imaging), requiring the use of sophisticated data
processing and statistical methods. Furthermore, images and spectroscopic data are not very specific
to particular stresses, as opposed to bioreceptor-based (e.g., chemical ligands, antibodies, nucleic acids,
etc.) direct detection methods. Despite these limitations, stress specificity and complex data analysis
can still be achieved using machine learning techniques, which can analyze the data provided to
find patterns that are specific to the plant stress in question. Many studies have successfully utilized
machine learning to interpret optical sensor data for the detection of specific stresses. This review aims
to provide an outline of current optical sensor types and machine learning methods used to proximally
detect plant stresses.

2. Spectral Properties of Plant Tissues

Many physiological and chemical properties of plants influence the way their tissues reflect and
absorb light. These properties can change when a plant is subjected to stress and alter the reflectance
spectrum of its leaves (Figure 1).

Chlorophyll is a pigment that is involved in the photosynthesis process. Due to its important role
in absorbing light, changes in chlorophyll content resulting from stress will alter the way the plant
interacts with light energy. A decrease in chlorophyll content may occur when the plant is subjected to
stress, which can be characterized in various ways including an increase of reflectance near 700 nm [12]
and decreased reflectance in the 530–630 nm range [13]. Other pigments besides chlorophyll, such as
carotenes [14] and xanthophylls [15], can also alter a plant’s reflectance properties.

In addition to pigmentation, leaf anatomical properties (Figure 2) such as the convexity of
epidermal cells [16], surface texture and thickness of the leaf cuticle [17], and high trichome density [18]
can be altered under stress and consequently affect a leaf’s spectral properties. For example, exposure
to UV radiation can result in changes to chlorophyll content and increased leaf thickness, which can
alter chlorophyll fluorescence levels [19]. Reflectance in the 950–970 nm range was found by Peñuelas
et al. (1993) to be influenced by cell wall elasticity, which decreases in response to drought stress [20].

Small openings on plant leaves (stomata) can also affect leaf properties under stress [21].
These pores are important to regulate moisture and control gas exchange in the leaves; however,
microorganisms such as bacteria and fungi can use them to enter and infect a plant. Plants can recognize
these pathogens using pathogen- or microbe-associated molecular patterns (PAMPs or MAMPs),
which can then trigger stomatal closure to prevent entry [22]. Stomatal closure can lead to an increase
in leaf temperature, which can be detected in the infrared region of the electromagnetic spectrum.
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Figure 1. Reflectance spectra of Quercus aquifolioides leaves at different altitudes. Vegetation 
reflectance curves in general typically display this kind of pattern, with low reflectance in the visible 
region (influenced by leaf pigments), “red edge” connecting the visible and near-infrared (NIR) 
region, and high reflectance in the NIR region (influenced by cell structure). After 1300 nm, reflectance 
characteristics are mostly influenced by leaf water content. Reprinted from [12]. ©2020 Zhu et al. 

 
Figure 2. Drawing of a cross-section of a typical leaf with labeled cell types and layers. Basic light 
interactions with leaf layers are annotated. Reprinted from [21]. ©2008 Liew et al. 

The biochemical properties of leaves, such as cellulose, hemicellulose, lignin, protein, sugar, and 
starch can also change under various stresses and affect the reflectance properties of leaves [23]. For 
example, salt stress can result in spectral changes by damaging leaf mesophyll cells and altering 

Figure 1. Reflectance spectra of Quercus aquifolioides leaves at different altitudes. Vegetation reflectance
curves in general typically display this kind of pattern, with low reflectance in the visible region
(influenced by leaf pigments), “red edge” connecting the visible and near-infrared (NIR) region, and high
reflectance in the NIR region (influenced by cell structure). After 1300 nm, reflectance characteristics
are mostly influenced by leaf water content. Reprinted from [12]. ©2020 Zhu et al.
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The biochemical properties of leaves, such as cellulose, hemicellulose, lignin, protein, sugar,
and starch can also change under various stresses and affect the reflectance properties of leaves [23].
For example, salt stress can result in spectral changes by damaging leaf mesophyll cells and altering
polysaccharide and lignin composition in the cell wall [24]. Leaf water content can also influence
reflectance spectra as light absorption in the infrared region (>1300 nm) is primarily due to water
absorption [25].

3. Sensors and Data Collection

A variety of optical sensors have been used to evaluate plant health, including hyperspectral,
multispectral, thermal, and fluorescence sensors (Table 1). The reflectance data collected by these
devices can be represented using images acquired by imaging techniques or spectral graphs produced
using spectroscopic methods. An important element that can affect a device’s success in stress detection
is the sensor’s sensitivity to areas in the plant’s reflectance spectrum that are altered by biotic and
abiotic stresses. Generally, the most sensitive region in the electromagnetic spectrum for evaluating
plant health is the visible region [26], but other regions can also be influenced by stress. A diagram
displaying various wavelength regions in the electromagnetic spectrum is presented in Figure 3 [27].
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3.1. Hyperspectral Imaging 

Hyperspectral imaging utilizes both imaging and spectroscopy methods to produce multi-
dimensional data. Spectral information for a wide range of individual wavelengths is assigned to 
every pixel in an image [28]. Rather than collecting spectra from an entire image or an entire plant 
leaf, where spectra from the stressed and unaffected areas are mixed together, hyperspectral imaging 
can provide more sophisticated data that can isolate spectra only from the affected area and identify 
specific imaging patterns and characteristics. This method has become increasingly popular for plant 
phenotyping and stress detection in agriculture [29–31] and has been used to identify plant responses 
to both abiotic and biotic stresses, such as drought stress in maize [32] and barley [33], yellow rust 
[34] and powdery mildew [35] in wheat, salt stress in okra [36], and Black Sigatoka disease in banana 
plants [37].  

Hyperspectral imaging for plant status evaluation typically uses a wavelength range of about 
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Figure 3. Ranges of the electromagnetic spectrum that are utilized by various sensor types.
Useful wavelengths for plant stress detection tend to be in the ultra-violet (UV), visible, and NIR ranges.
Reprinted from [27]. ©2019 Rosique et al.

3.1. Hyperspectral Imaging

Hyperspectral imaging utilizes both imaging and spectroscopy methods to produce
multi-dimensional data. Spectral information for a wide range of individual wavelengths is assigned
to every pixel in an image [28]. Rather than collecting spectra from an entire image or an entire plant
leaf, where spectra from the stressed and unaffected areas are mixed together, hyperspectral imaging
can provide more sophisticated data that can isolate spectra only from the affected area and identify
specific imaging patterns and characteristics. This method has become increasingly popular for plant
phenotyping and stress detection in agriculture [29–31] and has been used to identify plant responses
to both abiotic and biotic stresses, such as drought stress in maize [32] and barley [33], yellow rust [34]
and powdery mildew [35] in wheat, salt stress in okra [36], and Black Sigatoka disease in banana
plants [37].
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Hyperspectral imaging for plant status evaluation typically uses a wavelength range of about
250–2500 nm, i.e., UV (ultraviolet), visible, and NIR (near-infrared), with the most important areas
in the visible and NIR ranges [38]. Other areas of the spectrum are still being explored in terms of
their capability for plant stress detection. For example, Brugger et al. (2019) used hyperspectral
imaging in the UV range to detect salt stress in barley [39]. Due to the sensors’ ability to detect a wide
range of wavelengths in the electromagnetic spectrum, many possibilities remain for evaluating new
combinations of wavelengths for plant stress detection.

The data acquired using hyperspectral techniques are often used to compute and create vegetation
indices (VIs). VIs are computed using ratios and combinations of reflectance measurements at a few
specific wavelengths and have been used extensively for plant stress monitoring [40–42]. In addition
to VIs, hyperspectral data can be used to develop spectral disease indices (SDIs) with the purpose
of discriminating between specific plant diseases [43] (Table 2). Some examples include indices for
detecting powdery mildew in wheat [44] and sugar beet [45], cercospora leaf spot in sugar beet [45],
leaf rust in wheat [46], and myrtle rust [47]. Notable vegetation indices include the normalized
difference vegetation index (NDVI) [48], water index (WI) [49], and photochemical reflectance index
(PRI) [50]. The vast amount of spectral data that is collected using hyperspectral imaging provides
great potential in developing new VIs and SDIs for the detection of highly specific plant stresses.

The main advantages of hyperspectral imaging include its robustness and ability to provide a
large amount of data for analysis; however, this can result in instruments being relatively expensive.
In addition, traditional hyperspectral imaging sensors can be bulky and large, which limits their
portability and range of applications; however, the development of handheld spectroradiometers and
small hyperspectral cameras (Figure 4) has largely addressed this problem. While these instruments
typically have a more limited spectral range than a standard hyperspectral sensor, they have the
capacity to be used with real-time detection applications [51,52]. Spectroradiometers are unable to
capture hyperspectral images; however, they have been used in many studies to detect plant stresses,
such as peanut leaf spot disease [53] and powdery mildew in barley [52].
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Hyperspectral imaging sensors have become increasingly smaller and less expensive; however,
considerable progress still remains to create a device that costs less than a few hundred U.S. dollars.
Currently, the cost of these cameras is in the thousands of U.S. dollars, which can make them
cost-prohibitive to many. Future advances in imaging technology over the coming years should be
able to produce a hyperspectral camera or spectrophotometer that is cheaper and more accessible.

3.2. Multispectral Imaging and Spectroscopy

Multispectral techniques utilize data from ranges of wavelengths, rather than hundreds of
individual wavelengths or narrow wavebands as demonstrated in hyperspectral techniques. A few
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wavelengths or wavebands of interest can be chosen for incorporation into a device that uses
either imaging or spectroscopic techniques. Multispectral imaging involves data collection using a
camera or other sensing device to produce image data in specified wavelength or waveband regions,
while multispectral spectroscopy produces spectral data for specified wavebands. Both multispectral
imaging and multispectral spectroscopy have been successfully used to identify plant stresses;
for example, multispectral imaging was used to detect leaf spot disease in oilseed rape [54], gray mold
in tomato leaves [55], and nutrient deficiencies in tomato plants [56], while multispectral spectroscopy
was used to detect nitrogen deficiency stress in maize [57], drought stress in tomato plants [58],
and nitrogen deficiency in canola plants [59]. Multispectral techniques offer more affordable sensors
than their hyperspectral counterparts; however, they do not provide as much information about the
plant and its environment due to the broader wavebands. Nevertheless, other advantages multispectral
methods have are their portability and flexibility, which can aid in the creation of customized devices.
Band-pass filters could be used in conjunction with a camera or other imaging device to acquire data
in desired spectral ranges at a low cost. Recent modifications in smartphone cameras now permit
the capture of NIR wavelengths; Chung et al. (2018) utilized an 800 nm high-pass filter attached to a
smartphone to acquire both NIR and red images towards detection of plant stress [60].

3.3. RGB Imaging

RGB (visible or red-green-blue) imaging employs sensors that utilize the red, green, and blue
regions of the spectrum to produce image data (which is the standard working principle of digital
cameras). The wavelengths captured are approximately 400–499 nm for blue light (maximum at
475 nm), 500–549 nm for green light (maximum at 520 nm), and 550–750 nm for red light (maximum
at 650 nm) [38]. In this sense, RGB imaging may be considered as a special case of multispectral
imaging. However, as RGB imaging data are typically acquired using a digital camera or smartphone
while multispectral imaging requires more specific equipment or instrumentation, they are typically
treated separately.

The main advantages of RGB imaging are its affordability and small, portable sensor size.
RGB image sensors are already present on smartphones and have been used to successfully evaluate
plant stresses (Figure 5), such as iron deficiency chlorosis in soybean [11], various nutrient deficiencies in
black gram [61], early and late blight in potato plants [62], and biotic stresses in wheat [63]. Furthermore,
RGB imaging (especially with smartphones) does not require much technical expertise on the user’s
side since they typically make use of commonly used devices such as digital cameras and smartphones.
Smartphones also have enough computing power to process the captured data, which enables rapid
assessments of plant stresses. However, many factors can complicate RGB data, such as lighting,
environmental conditions, time of day, and spectral resolution [64,65]. Illumination is a particularly
important concern in terms of field applications since it can vary greatly depending on the season and
weather conditions. Diseases with various symptoms and complex image backgrounds can create
further complications in processing the data; however, many of these difficulties can be overcome
using image processing and machine learning techniques [11].

3.4. Thermal Imaging/Thermography

The main difference between thermography and other methods is its measurement of emitted
radiation from an object, rather than reflected radiation [66]. Thermal cameras detect radiation
in the infrared wavelength range, with the resulting measurements being displayed as false-color
images (Figure 6) where the pixels contain the temperature values. Thermographic methods for plant
stress detection primarily exploit changes in surface temperature being a notable stress symptom.
Small openings on plant leaves (stomata) that control water loss from transpiration may close under
stress, causing the temperature of the plant to increase [67]. Thermography has been used to detect a
variety of biotic and abiotic stresses, such as Aspergillus carbonarius infection in grapes [66], drought
stress in maize [68], apple scab disease [69], and drought stress in sesame plants [70].
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row consists of well-watered plants, while the bottom row is drought-stressed. Similarly, in (B,D),
well-watered plants are in the left row, while drought-stressed plants are in the right. Reprinted with
permission from [68]. ©2019 Casari et al.

Thermography is a relatively simple method that can be incorporated into systems designed for
the rapid detection of plant stress. Thermal cameras are often very portable, and attachments have
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been developed that can be used with smartphones. Among these is the FLIR One, which was used by
Petrie et al. (2019) to assess the water status of grapevines [71]. However, thermographic methods
are highly affected by varying environmental conditions [70], which may make them more applicable
in controlled environment applications rather than an open field. Furthermore, thermography lacks
specificity and therefore provides a more general solution to plant stress detection. It is recommended
to combine thermography with other methods when specific diseases need to be identified since this
method is not able to distinguish between different stresses and diseases on its own [69].

3.5. Fluorescence Spectroscopy

The above-mentioned imaging methods (hyperspectral, multispectral, and RGB imaging) quantify
the attenuations of incident light by the samples (plant leaves in this case) over the range of wavelengths,
i.e., spectrophotometric detection. Since many components in plant leaves exhibit colorations and
subsequently spectrophotometric responses, the resulting spectrophotometric images tend to be quite
complex. Fluorescence-based methods can fix this issue, as only a small number of components in plant
leaves exhibit fluorescence. Fluorescent molecules (e.g., chlorophyll, fluorescent dyes, etc.) absorb light
at a specific wavelength (excitation) and emit at a specific, longer wavelength (emission), thus incident
and emitted light can be separated. The two main types of fluorescence emitted by vegetation are
blue-green fluorescence (400–600 nm) [72] and chlorophyll fluorescence (650–800 nm) [73]. The latter
can be useful in evaluating photosynthetic activity, which can decrease under pathogenic stresses [74].

Although several techniques are available, two major methods for acquiring fluorescence data in
plants are pulse-amplitude modulation (PAM) of the measuring light and continuous illumination [75].
Pulse-amplitude modulation devices use a pulsed measuring light source, an actinic light source, and a
saturating light to obtain fluorescence signals [76]. In contrast, light is not pulsed when continuous
illumination is utilized.

Fluorescence can be measured as a spectrum from a single point in time [77], or the change in
fluorescence over time can be monitored (chlorophyll fluorescence kinetics). The basic principle behind
chlorophyll fluorescence techniques is a lowered rate of photosynthesis from stresses and subsequent
dissipation of chlorophyll fluorescence [78]. Fluorescence kinetics measurements require the use of
dark adaptation, which consists of placing a plant (or the part of the plant to be measured) in the dark
for a certain period of time before fluorescence measurements are taken. Dark adaptation allows for
the measurement of the minimum level of fluorescence [79], which is a fundamental value in kinetics
analysis since it provides a baseline for the other fluorescence measurements taken after the excitation
light has been introduced. Plants are usually dark-adapted for a period of 30 min [80–82]. Regardless
of whether dark adaptation is utilized or not, it is essential to give plants the necessary time to adapt to
light conditions before measurements (for kinetics applications or standard spectra) are taken.

Fluorescence ratios are often used to analyze fluorescence data (both images and spectra) for
evaluating plant stresses. Common ratios involving UV-induced (320–400 nm) fluorescence include
F440/F520, F440/F690, F440/F740, and F690/F740; F440/F690 and F440/F740 are particularly useful for
early stress detection applications (F represents fluorescence and the numbers represent emission
wavelengths) [83]. Bürling et al. (2011) used red/far-red and blue/green amplitude ratios acquired
from spectral signatures to differentiate between nitrogen deficiency, leaf rust, and powdery mildew
stresses [84]. Although the ratios mentioned above are relatively well-established in fluorescence
research, there is still room for exploration in determining other ratios that could be used to process data.

Fluorescence spectroscopy can identify the location and amount of a specific component from
the sample through applying a narrow-range excitation light and detecting a narrow-range emission
from such component. Figure 7 is an example of fluorescence spectroscopy, where the plant leaves are
excited at 488 nm (blue color) and a spectrum with wavelengths of >500 nm (green and red colors) is
collected. There is a clear difference between the healthy and virus-infected plant leaves. Fluorescence
spectroscopy has been used in many other studies to detect both biotic and abiotic stresses, including
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drought stress in passion fruit [80]; nutrient stresses in maize [81], tomato [81], and rapeseed [82] crops;
and citrus canker on grapefruit plants [85].

Fluorescence spectroscopy has advantages such as simplicity of use, low cost, and an ability
to be incorporated into hand-held devices for screening applications [79]. In addition, the use of
laser light as an excitation light source can be more reliable than other optical methods, as excitation
exactly at the sample’s peak excitation wavelength can generate stronger and more specific fluorescent
emission (as opposed to passive measurements) [86]. Fluorescence data can be collected across
multiple wavelengths, which can provide more information than fluorescence captured at a single
targeted wavelength. However, fluorescence spectroscopy alone still lacks specificity [85] because
changes in fluorescence can be indicative of a wide variety of stresses. Therefore, it is necessary to
combine this method with others if discrimination between specific stresses is to be achieved. Another
challenge related to chlorophyll fluorescence kinetics is the reduction of fluorescence intensity over
time (photoquenching or photobleaching); however, Saleem et al. (2020) were able to mitigate its effects
by measuring fluorescence spectra quickly (about 15 s) after the excitation light was introduced [85].
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3.6. Fluorescence Imaging

Fluorescence imaging utilizes a camera to obtain images of fluorescence (Figure 8). It is considered
an improvement over spectroscopy since it obtains fluorescence data with higher dimensions, which can
provide more information than single spectra. Rather than collecting a spectrum from an area of
interest (i.e., fluorescence spectroscopy), fluorescence imaging can isolate the area of interest from that
of non-interest. For example, Su et al. (2019) used fluorescence imaging to successfully discriminate
crops from weeds [87]. One category of continuous fluorescence imaging is multicolor fluorescence
imaging, which typically uses UV excitation light and collects fluorescence data from multiple bands,
such as red (F680), far-red (F740), green (F520), and blue (F440) [83]. Multicolor fluorescence imaging is
conceptually similar to multispectral imaging since only certain fluorescence wavebands are collected
and combined to produce the image. Fluorescence imaging can also be used with dark adaptation and
chlorophyll fluorescence kinetics applications.

Fluorescence imaging has been used in many studies to detect both biotic and abiotic stresses,
such as herbicide stress in soybeans [88], cold stress in tomato seedlings [89], and biotic and abiotic
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stresses in barley, grapevine, and sugar beet [90]. A relatively simple and portable option for fluorescence
image acquisition could consist of a smartphone and band-pass filters (as demonstrated in [91]); however,
it is currently difficult to find methods with this type of setup for plant stress applications.

One advantage of fluorescence-based techniques is their sensible cost of equipment [92]; however,
they do not always produce a clear distinction of healthy and diseased plant tissues at the early stage
of a disease, so additional methods may be necessary to complement fluorescence for early disease
detection [93]. Fluorescence-related methods could benefit from an increased sensitivity that could
allow them to be used for stress discrimination applications rather than simple stress identification.
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3.7. Combination of Sensors

Combining two or more of the methods mentioned above can provide more information on
plant health as opposed to using just one method. The merging of data from multiple sensors has
been successful in plant stress detection; for example, Moshou et al. (2011) used a combination of
multispectral and hyperspectral imaging to detect yellow rust in wheat [94]. Many advantages are
offered by using multiple sensors, including higher accuracy and decreased sensitivity to changes in
the environment [94]; however, a major challenge is the merging of different data types. One possible
solution is a discriminant analysis, which was used by Berdugo et al. (2014) to combine thermographic,
hyperspectral, and chlorophyll fluorescence data to differentiate between cucumber mosaic virus, green
mottle mosaic virus, and powdery mildew in cucumber plants [95]. Sensor combination shows great
potential in producing accurate, highly specific data; however, more research is needed in methods
to combine data from multiple sources with different properties and work with larger amounts of
data [95]. Machine learning could be a pivotal tool in analyzing such combinatory sensor data.

A variety of sensors have been used to identify stresses in agricultural crops [96–101]; however,
their detection capabilities could be greatly enhanced by incorporating machine learning techniques,
which are discussed in the following sections.
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Table 1. Optical Methods Used for Plant Stress Detection.

Method Wavelengths Plant Stress Type References

Hyperspectral
Imaging

500–850 nm Maize Drought stress [32]
430–890 nm Barley Drought stress [33]

350–2500 nm Wheat Yellow rust [34]
350–1350 nm Wheat Powdery mildew [35]
380–1030 nm Okra Salt stress [36]
400–1000 nm Banana Black Sigatoka [37]
250–430 nm Barley Salt stress [39]

400–1000 nm Barley Powdery mildew [52]
325–1075 nm Peanut Leaf spot [53]

Multispectral
Spectroscopy

400–1100 nm Maize Nutrient deficiency [57]
400–980 nm Tomato Drought Stress [58]
430–870 nm Canola Nutrient deficiency [59]

Multispectral
Imaging

365–960 nm Oilseed Rape Light leaf spot [54]
475, 560, 668, 717, 840 nm Tomato Gray Mold [55]

550, 660, 735, 790 nm Tomato Nutrient deficiency
(multiple) [56]

620, 870 nm Poinsettia Nitrogen content [96]

450–950 nm Wheat Stripe rust, brown rust,
septoria tritici blotch [97]

RGB Imaging

RGB Soybean Iron deficiency [11]
RGB Black Gram Nutrient deficiency (multiple) [61]
RGB Potato Early blight, late blight [62]
RGB Basil Nitrogen stress [98]

Thermography

7.5–13 µm Table Grapes Aspergillus carbonarius [66]
7.5–13 µm Maize Drought stress [68]
8–12 µm Apple Apple scab [69]
8–14 µm Sesame Drought stress [70]
8–14 µm Wheat Drought stress [99]

Fluorescence
Spectroscopy 1

650 nm Passion Fruit Drought stress [80]
635 nm Maize, Tomato Nutrient deficiency (multiple) [81]
650 nm Rapeseed Nutrient deficiency (multiple) [82]
405 nm Grapefruit Citrus canker [85]

337 nm Wheat Nutrient deficiency, leaf rust,
powdery mildew [84]

Fluorescence
Imaging 1

340, 447, 550 nm Barley, Grapevine,
Sugar Beet

Nutrient deficiency, black rot,
leaf spot [90]

460 nm Soybean Herbicide stress [88]
620 nm Citrus Huanglongbing [100]

684, 687, 757.5, 759.5 nm
(emission) Cassava Mosaic virus [101]

1 In fluorescence spectroscopy and fluorescence imaging, excitation wavelengths are shown except noted otherwise.

Table 2. Equations and Applications of Vegetation and Disease Indices.

Index Name Equation 1 Application References

Vegetation Indices

Enhanced Vegetation Index EVI = 2.5× R800−R670
R800+6.0R670−7.5R479+1 Rate of photosynthesis, water stress detection [41]

Normalized Difference Vegetation Index NDVI = RNIR−RRED
RNIR+RRED

Plant growth and development monitoring [48]

Water Index WI = R900
R970

Plant water content estimation [49]

Photochemical Reflectance Index PRI = R570−R531
R570+R531

Photosynthetic efficiency [50]

Disease Indices

Powdery Mildew Index (Wheat) PMI = R515−R698
R515+R698

− 0.5R738 Powdery mildew detection in wheat [44]

Powdery Mildew Index (Sugar Beet) PMI = R520−R584
R520+R584

+ R724 Powdery mildew detection in sugar beet [45]

Cercospora Leaf Spot Index CLS = R698−R570
R698+R570

−R734 Cercospora leaf spot detection in sugar beet [45]

Leaf Rust Disease Severity Index 1 LRDSI1 = 6.9 R605
R455
− 1.2 Severity estimation of wheat leaf rust [46]

Leaf Rust Disease Severity Index 2 LRDSI2 = 4.2 R695
R455
− 0.38 Severity estimation of wheat leaf rust [46]

Lemon Myrtle—Myrtle Rust Index LMMR =
(

R545
R555

) 5
3
×

R1505
R2195

Myrtle rust detection in lemon myrtle [47]

1 R represents the measured reflectance at the wavelength or waveband specified by the subscript.



Biosensors 2020, 10, 193 12 of 27

4. Machine Learning for Data Processing

Machine learning has opened possibilities for new data analysis methods in a myriad of fields,
including medicine, environmental science, and economics. Fundamentally, machine learning employs
techniques to learn from the given data without providing explicit programming commands [102],
which can result in the detection of new patterns that may otherwise be overlooked using traditional
analytical methods. Major processes in a machine learning procedure include data acquisition and
storage, preprocessing, classification, and trait extraction [103]. Figure 9 [104] outlines a simplified
pathway for machine learning data analysis methods.
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Machine learning is advantageous in agriculture-related fields because it can detect patterns using
simultaneous combinations of multiple factors instead of examining traits individually [102]. The use
of multiple factors is important due to the frequently high complexity of the environment surrounding
plants, where variables such as changing light intensity, direction, and leaf angle can alter results.
Machine learning can be used not only for classification purposes but also for pre-processing steps
such as feature extraction and dimensionality reduction.

The assessment of plant health includes stress identification, discrimination, and quantification.
Identification involves looking for symptoms (early or late) of a specific stress, discrimination consists
of both identifying a specific stress and separating the symptoms from those of other stresses,
and quantification is a measurement of the severity of the stress. Machine learning has been utilized
for all these applications, as outlined in Table 3.

The selection of a machine learning method or pathway depends on the specific problem being
addressed; as such, there is currently no specific approach that can be recommended for all applications.
The following sections will provide an overview of machine learning data processing techniques that
have been used for various agricultural applications.

4.1. Preprocessing

Data preprocessing is essential to ensure the accuracy and reproducibility of classification
results [105]. Preprocessing consists of one or more operations that aim to improve the performance of
the classification algorithms by providing data in a more accessible and normalized format. Image
preprocessing techniques may include image cropping, background removal, contrast enhancement,
image thresholding, noise removal with filters, clustering, and principal component analysis (PCA) [102].
Although this section deals mostly with imaging techniques, spectral data may also be processed
using some of the listed methods, such as PCA. Outlined below are some preprocessing steps that are
commonly applied to imaging data.

4.1.1. Color Space Conversion

Color space conversion is a data processing technique that can be used with RGB images as another
way to represent color. Color spaces can be used to acquire additional color features from images to
aid in feature extraction and image classification. Several studies have used features obtained from
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color space conversion to process RGB data for plant stress detection, including L*a*b* (L* = lightness
from black to white, a* = from green to red, and b* = from blue to yellow) to detect bacterial blight,
fruit spot, fruit rot, and leaf spot in pomegranate plants [106]; HSI (hue, saturation, intensity) to detect
early scorch, late scorch, cottony mold, ashen mold, and tiny whiteness in plants [107]; and YCbCr
(Y = luma component; Cb and Cr = blue- and red-differences of chroma components) to detect diseases
in soybean [108]. A few alternative color spaces are outlined in Figure 10 [109].Biosensors 2020, 10, x FOR PEER REVIEW 14 of 28 
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4.1.2. Dimensionality Reduction

Dimensionality reduction is a process that aims to provide a more compact representation of data
while preserving as much information as possible. A common method for dimensionality reduction
is principal component analysis (PCA), which geometrically projects data onto lower dimensions
(principal components) that act as feature summaries [110]. PCA can combine dependent (or highly
correlated) variables into a common variable while minimizing the loss of information. By doing so,
the dimensionality of data can be reduced. The first principal component (PC1) is evaluated from the
data set. Then PC2 is evaluated from the remainders, and the process is repeated, e.g., PC3, PC4, etc.
The principal components (PCs) represent data variances, and these can be plotted in 2D or 3D plots
(in the case of two or three PCs) known as PCR score plots.

All PCs can also be fed into the various machine learning models as a pre-processing step of
dimensionality reduction. PCA has been used in many studies as an important preprocessing step
to manage both imaging and spectral data. For example, PCA was used in an image preprocessing
pipeline by Lu et al. (2017) to aid in acquiring feature maps [111]. While better dimensionality reduction
methods have recently emerged, e.g., linear discriminant analysis (LDA) that can maximize the class
separation, PCA is often preferred over the recent methods as an unbiased dimensionality reduction
method. PCA can be a valuable tool to aid in data interpretation, but one disadvantage of this method
is its ability to be influenced by outliers in the data [112].
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4.1.3. Segmentation

Image segmentation is a process that can organize an image into key areas, such as the object and
its background. This technique is useful in agricultural applications due to its ability to reduce errors or
misclassifications resulting from noise in the background. Notable methods include clustering-based
approaches such as k-means, which can be useful in identifying stressed areas of a plant in an
image [107]. Disease detection applications may require other techniques such as pixel removal and
masking [113]. For example, Ma et al. (2018) used excess red index (ExR), H from the HSV (hue,
saturation, value) color space, and b* from the L*a*b* color space to discriminate between disease spots
and background in images [114]. An example of segmentation being used to separate plants from the
background of an image is demonstrated in Figure 11 [115].Biosensors 2020, 10, x FOR PEER REVIEW 15 of 28 
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Figure 11. A visualization of the image segmentation process. (a,d) are the original samples of
well-watered and drought-stressed maize plants. (b,e) are preliminary segmentation images acquired
using RGB pixel values and linear support vector machine (SVM), while (c,f) are the images denoised
using the mathematical morphology method. Reprinted with permission from [115]. ©2017 Elsevier.

4.1.4. Feature Extraction

Feature extraction can be used to express data in a format that is more accessible to machine-learning
algorithms [105]. It consists of reducing redundant data and collecting a set of extracted features;
for images, available techniques include Global Color Histogram [116], Local Binary Patterns [117],
and Color Coherence Vector [118]. Features can include color-related characteristics such as the variance
of color channels and texture features such as contrast and channel homogeneity [114]. These acquired
features are then analyzed using the classification algorithms.

4.2. Machine Learning Algorithms for Classification

Once the necessary preprocessing steps are complete, the data can be fed into a machine learning
algorithm for classification. These algorithms attempt to find patterns in data to use in assigning
classes (e.g., stressed vs. healthy) to unlabeled data [29]. Machine learning algorithms can be
divided into supervised, weakly-supervised, and unsupervised categories, all of which can be used for
classification [119,120]. The major difference among these algorithms is supervised learning involves
the use of labeled training data to predict the labels of testing data; weakly-supervised learning can
use smaller datasets, coarse labels, or misclassified labels for training, and unsupervised learning uses
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only unlabeled data [120]. One of the most prominent examples of unsupervised learning is clustering
algorithms, which create clusters consisting of samples with similar traits [121].

Many machine learning algorithms have been used in agriculture to classify data; however,
the most common methods include artificial neural networks (ANNs) [122] and support vector
machines (SVMs) [29]. This review will primarily focus on SVM, ANN, and deep learning methods;
however, other algorithms such as random forest [123] have been successfully used for plant stress
identification applications.

Machine learning techniques can be very robust classifiers, yet one drawback is their tendency
to overfit the data (especially when the data set is small), which results in incorrect classifications.
In addition, machine learning can be time-consuming, especially when large image files are involved.
Both issues, however, can be mitigated using some of the following processes. One method that has been
used to mitigate overfitting errors in image classification is data augmentation, which consists of slightly
distorting the images using techniques such as rotation [124], mirroring [125], and color variation [126].
If data augmentation and image manipulation are deemed necessary in the data processing pathway,
they must be performed before running the data through the classification algorithm.

4.2.1. Support Vector Machine (SVM)

SVM is a supervised learning method, i.e., requiring training data set to identify classes of
unknown data. Let us assume a simple case that most (e.g., >90%) of the training data set can be
reduced to two dimensions through dimensionality reduction methods such as PCA. These data can be
plotted on a 2D coordinate system (i.e., PCA score plot). With known classes (e.g., stressed vs. healthy)
of the data, it is possible to draw a line that can best separate all of the data into two classes; this line is
called a decision boundary (demonstrated in Figure 12 [127]). The procedure can also be used for three
or more dimensions of data, where the boundary becomes a plane for three dimensions or a hyperplane
for dimensions higher than three. It may be necessary to use about 10 principal components from PCA,
but this dimension number is still substantially small compared to the dimensions of the raw data,
which could range from hundreds (for spectra) to millions (for images). Testing data is fed into the
same data processing pathway as the training data, and the decision boundary formed during training
determines the class of testing data. While SVM is inherently a linear method, non-linear separation
is also possible using non-linear kernels. Classification into multiple classes is also possible using
multiple decision boundaries.
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hyperplane. Reprinted with permission from [127]. ©2020 Elsevier.

SVMs are one of the most common machine learning algorithms used in agriculture applications.
They have been successfully used in many studies relating to plant stress detection, such as identifying
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Huanglongbing (HLB; also known as citrus greening disease) and nutrient stresses in citrus leaves [100],
as well as rating the severity of iron deficiency chlorosis in soybeans [11]. A similar method, relevance
vector machine (RVM), was used to identify stripe rust and powdery mildew in wheat [63].

While SVM is simple in principle and works quite well with very high dimensions of data
(such as spectra and images), it does not explain how close or far away errors are from the true class
identification. This is particularly problematic when the data set is noisy, where a distinct decision
boundary cannot be determined clearly.

4.2.2. Artificial Neural Network (ANN)

An artificial neural network (ANN) is a machine learning model that mimics the function of a
biological neural network [128]. The basic architecture consists of artificial neurons that process several
inputs weighted according to their importance and produce a corresponding output [124].

ANNs have been used successfully in many studies for the identification and classification
of various plant stresses. These include detecting powdery mildew and soft rot in zucchini [129],
classifying biotic stresses in pomegranate [106], detecting orange spotting disease in oil palm [130],
and identifying crown rot in wheat [131]. A major advantage of ANNs is their ability to be used
without specialized knowledge on the data and its interpretation; however, disadvantages include
being prone to overfitting and requiring greater amounts of computational resources [132]. Several
types of ANNs exist, some of which are outlined in Figure 13 [133].
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basis function; and (d) Elman, where ui represents components in the hidden and undertake layers.
Reprinted with permission from [133]. ©2019 Elsevier.
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4.2.3. Deep Learning

Deep learning is a subcategory of machine learning that utilizes ANNs and consists of more
advanced models with multiple layers (“deep” indicates the depth of layers). A common model used
in agriculture is the convolutional neural network (CNN), which performs convolutions on data
for image classification [134]. CNNs and their variations have been frequently used in plant stress
studies that utilize machine learning, such as detecting the breaking virus in tulips [135], identifying
potato Y virus [136], gauging the severity of apple black spot [119], classifying biotic stresses on
cucumber leaves [114], and rating the severity of biotic stresses on coffee leaves [126]. Pretrained CNN
models such as GoogleLeNet [137], AlexNet [114], ResNet [138], and VGG [139] have also been used.
For instances where an extensive array of training data is required, many studies utilize databases
such as PlantVillage [140] and the Wheat Disease Database [141], both of which have been used in
conjunction with deep learning models.

One advantage of deep learning techniques is that they work well with raw data [142],
which therefore cuts down on time spent in data preprocessing (color space conversion, dimensionality
reduction, segmentation, and feature extraction). In addition, feature extraction is sometimes performed
in the deep learning model without the need for an outside processing step [143]. However, a major
disadvantage is a need for large datasets (often numbering in the thousands [139,144]) to produce
accurate results [111].
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Table 3. Machine Learning Algorithms Used for Plant Stress Detection.

Purpose Data Type Plant Stress Algorithm Accuracy References

Identification Fluorescence imaging Zucchini

Soft rot
ANN 100%

[129]

SVM 90%
Logistic regression analysis 60%

Powdery mildew
ANN 71.2%
SVM 48.1%

Logistic regression analysis 73.1%

Identification Hyperspectral Oil palm Orange spotting disease Multilayer perceptron neural
network - [130]

Identification Hyperspectral Wheat Crown rot

ANN 74.14%

[131]

Logistic regression 53.45%
K nearest-neighbors 58.62%

Decision trees 56.90%
Extreme random forest 58.62%

SVM 50%

Identification RGB images Tulip Tulip breaking virus Faster R-CNN 86% * [135]

Identification Hyperspectral Potato Potato virus Y Fully convolutional neural
network 92% * [136]

Classification
RGB images from

smartphone Wheat Powdery mildew, stripe rust RVM 88.89% [63]
SVM 77.78%

Classification RGB images from
database Pomegranate Fruit spot, bacterial blight,

fruit rot, leaf spot Multilayer perceptron 90% [106]

Classification RGB images Cucumber
Anthracnose, downy mildew,
powdery mildew, target leaf

spots

Deep CNN 92.2%

[114]SVM 81.9%
AlexNet 92.6%

Random Forest 84.8%

Classification Hyperspectral Sugar beet Cercospora leaf spot, sugar
beet rust, powdery mildew SVM 86.42% [29]

Classification RGB images from
database

Wheat
Powdery mildew, smut, black
chaff, stripe rust, leaf blotch,

leaf rust

VGG-CNN-S 73%

[141]VGG-FCN-S 95.12%
VGG-CNN-VD16 93.27%
VGG-FCN-VD16 97.95%

Quantification Hyperspectral Barley Drought stress Ordinal SVM 67.9% [33]
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Table 3. Cont.

Purpose Data Type Plant Stress Algorithm Accuracy References

Quantification
RGB images from

digital camera
Soybean Iron deficiency chlorosis

Hierarchical SVM-SVM 99.2%

[11]

Hierarchical LDA-SVM 98.3%
Decision tree 99.7%

Quadratic discriminant
analysis 98.5%

Naïve Bayes 98.4%
K-Nearest-Neighbors 99.5%

Random forest 99.1%
Gaussian mixture model 99.4%

Linear discriminant analysis
(LDA) 98.5%

SVM 97.3%

Quantification RGB images from
database

Apple Black rot
VGG16 90.4% [119]

ResNet50 80%

Quantification
RGB images from

smartphone Coffee
Leaf miner, rust, brown leaf

spot, cercospora leaf spot

AlexNet 84.13%

[126]
GoogleLeNet 82.94%

VGG16 86.51%
ResNet50 84.13%

MobileNetV2 84.52%

* Indicates a recall value, not an accuracy value.
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5. Concluding Remarks

A variety of optical sensing methods and machine learning techniques have been used to recognize
both biotic and abiotic stresses, especially plant diseases. One observation is that machine learning is
commonly used to process imaging data (especially RGB images), but spectroscopic methods more
frequently utilize traditional statistical methods. In the future, machine learning methods could be
further incorporated into spectroscopic data analysis pathways.

Currently, many of the studies mentioned are producing detection results that are specific to just
a few plants. Leaf reflectance properties can differ greatly between plant species, so it is difficult to
produce results that are generalizable to several plants in different circumstances. The development of
more generalized (rather than species-specific) results is likely a future direction in plant stress detection;
however, more research is needed to find features and parameters that can lead to such results. Methods
such as smartphone imaging, thermography, and fluorescence imaging have the potential to be scaled
up to larger-scaled systems to analyze plant canopies in open fields or controlled environments.

Imaging devices (especially multispectral/RGB sensors) have improved in quality and become
more compact over recent years. Optical resolutions of recent smartphones’ cameras are comparable
to most standalone digital cameras, effectively eliminating the bulk of digital camera markets and
only leaving the high-end markets. Sensitivity has also improved dramatically; the white LED flash
is rarely necessary with recent smartphones. Computing power and memory have also improved
significantly for recent smartphones, which has enabled on-board image processing to become a
reality. Cloud storage and computing for remote file management and execution also complements the
smartphone’s computing power and memory capacity, allowing for more advanced data processing
operations to be performed. Optical zooms (which magnify images mechanically using optical lenses)
are possible with recent smartphones, although limited at 2x − 4x at the time of writing. Furthermore,
smartphones have the data processing power needed to run machine learning algorithms and thus can
provide a rapid, on-site assessment of plant stresses.

The discrimination of specific stresses (especially stresses from specific nutrients) remains a
challenge. Discrimination may become more feasible with improvements in the sensitivity of optical
devices; however, this increased sensitivity may result in data being more prone to noise from the
surrounding environment. Environmental noise could be overcome by the use of image segmentation
and machine learning models to help distinguish between noise and the targeted characteristic.

Many improvements are being made with imaging technology and data processing techniques that
will enable the development of robust, portable devices for plant stress detection. Although research is
still needed in many areas such as the fusion of data from multiple sensors and discrimination between
specific biotic and abiotic stresses, current developments have great potential to be deployed as useful
tools for the agriculture industry.
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