
pharmaceuticals

Article

Pre-Clinical Investigation of Liquid Paclitaxel for
Local Drug Delivery: A Pilot Study

Claire V. Cawthon 1 , Kathryn Cooper 1 , Clifton Huett 1, Alyssa Lloret 2,
Estefanny Villar-Matamoros 2, Lauren Stokes 2, Uwe Christians 3, Michele Schuler 4 and
Saami K. Yazdani 2,*

1 Department of Mechanical Engineering, University of South Alabama, Mobile, AL 36688, USA;
clairecawthon@gmail.com (C.V.C.); kcg1101@jagmail.southalabama.edu (K.C.);
cbh1523@jagmail.southalabama.edu (C.H.)

2 Department of Engineering, Wake Forest University, Winston-Salem, NC 27101, USA;
lloraa16@wfu.edu (A.L.); villare@wfu.edu (E.V.-M.); stokesl@wfu.edu (L.S.)

3 iC42 Clinical Research and Development, University of Colorado, Aurora, CO 80045, USA;
uwe.christians@cuanschutz.edu

4 Department of Comparative Medicine, University of South Alabama, Mobile, AL 36688, USA;
mschuler@southalabama.edu

* Correspondence: yazdanis@wfu.edu

Received: 25 September 2020; Accepted: 24 November 2020; Published: 28 November 2020 ����������
�������

Abstract: The purpose of this pilot study was to investigate the feasibility of a perfusion catheter
to deliver liquid paclitaxel into arterial segments. A clinically relevant rabbit ilio-femoral injury
model was utilized to determine the impact of liquid paclitaxel delivered locally into the vessel
wall using a perfusion catheter at 1 h to 14 days. Treatment by two clinically available forms of
liquid paclitaxel, a solvent-based (sb) versus an albumin-bound (nab), along with a control (uncoated
balloons), were investigated. Pharmacokinetic results demonstrated an increase in the retention of
the sb-paclitaxel versus the nab-paclitaxel at 1 h; however, no other differences were observed at
days one, three, and seven. Histological findings at 14 days showed significantly less neointimal
area in the sb-paclitaxel treated arteries as compared with the nab-paclitaxel and the uncoated
balloon-treated arteries. Additionally, percent area stenosis was significantly less in the sb-paclitaxel
group. These results support the concept of local liquid delivery of paclitaxel into the arterial segments.

Keywords: peripheral arterial disease; liquid paclitaxel; local drug delivery; perfusion catheter;
pre-clinical modeling

1. Introduction

There are more than three million people affected by peripheral artery disease (PAD) every year in
the U.S. Disparate from coronary artery disease, PAD is characterized by a substantial plaque burden
and often presents with long and complex lesions [1,2]. Endovascular treatment of PAD focuses
first on re-establishing blood flow by angioplasty and, more frequently, de-bulking by atherectomy.
Angioplasty, described as a control injury, expands the lumen by outward stretching of the arterial
wall. The vascular smooth muscle cells (VSMCs), residing in the vessel wall, respond to this injury by
proliferating and migrating inward, re-narrowing the vessel lumen. This process is termed restenosis.
To minimize the injury response and to inhibit VSMC proliferation, anti-proliferative drugs have been
locally delivered using drug-eluting stents (DES) or drug-coated balloons (DCBs) [3,4].

Current endovascular treatments, including DES and DCBs, have limitations leading to inconsistent
outcomes, patient readmission, and repeat revascularization. Stents tend to fracture due to the severe
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biomechanical environment of peripheral arteries [5–8]. Peripheral arteries undergo unique movements
not observed in other parts of the body including compression, shortening, bending and twisting [9–11].
The use of a permanent device such as a metallic stent also limits re-interventional procedure in cases
of restenosis.

To overcome the limitations of stents, DCBs were developed to locally deliver therapeutics to
inhibit restenosis without the need of a permanent platform serving as a drug reservoir. DCBs rely on
the transfer of the anti-proliferative drug, which is coated on the surface of the balloon, to the lumen of
the arterial wall by simple contact of the balloon to the artery. DCBs are coated with a crystalline form
of paclitaxel designed to adhere to the abluminal surface of the artery. Clinical studies have shown
promising results with DCBs, but only in relatively short and simple lesions and mostly to treat disease
in arteries above the knee [4,12].

In the periphery, paclitaxel has been the anti-proliferative drug of choice of DCBs due to its
potency and binding affinity, making it an attractive drug for single use with long lasting effects [13,14].
Paclitaxel binds to tubulin, inhibiting depolymerization, which inhibits cell division and growth [15].
However, recent clinical publications have cast doubts on the safety profile of paclitaxel to treat
PAD [16,17]. The INPACT-DEEP clinical study showed higher rates of amputation in the paclitaxel
group than in controls, which was attributed to microembolization of particles related to means of
drug attachment to the balloon [18]. Most notably the meta-analysis by Katsanos et al. showed
paclitaxel-coated balloons and stents in femoral-popliteal arteries had an increased risk of all-cause
mortality at three and five years [16]. Reviews of this analysis and the controversy surrounding it
have encouraged further research into devices with alternative delivery systems [19]. Furthermore,
Katsanos and his group published an additional meta-analysis study showing safety concerns for
below-the-knee applications [17].

Current DCBs and DES use the dry (or powder) form of paclitaxel, which has a crystalline
structure. Crystallinity of the paclitaxel drug increases its residency and local arterial pharmacokinetics
and reduces solubility of the drug. This increase in residency is somewhat needed as the drug is
positioned on the luminal surface and not within the medial wall. However, by placing the drug
onto the luminal surface, there is a potential for the crystalline paclitaxel drug to become dislodged
(mobilized), travelling to distal organs and tissue. Previously reported pre-clinical studies have
demonstrated fibrinoid necrosis in downstream tissues of DCB-treated peripheral segments, along with
higher paclitaxel levels in nontargeted tissue, suggesting increased emboli debris from crystalline
paclitaxel [20,21].

In this pilot study, we investigated a new approach to deliver the therapeutic drug paclitaxel for
peripheral applications. Specifically, we tested the use of a perfusion catheter to locally deliver the
liquid form of paclitaxel directly into the vessel wall. Currently two available forms of liquid paclitaxel
exist, a solvent-based (sb-) paclitaxel and an albumin-bound (nab-) paclitaxel, primarily used to treat
cancer patients. The aim of this pilot study was to investigate the effectiveness of the solvent-based
paclitaxel versus the albumin-bound paclitaxel form delivered locally by a perfusion catheter in a
clinically relevant rabbit femoral-iliac injury model.

2. Results

2.1. Pharmacokinetic Analysis

In vivo studies were performed using a rabbit ilio-femoral injury model. The nab-paclitaxel and
sb-paclitaxel were successfully delivered to the external iliac arteries using the perfusion catheter.
An angiogram of the drug-filled perfusion catheter within the external iliac artery is shown in Figure 1.
A total of 16 rabbits (32 artery segments) were used for pharmacokinetic analysis. Figure 2 summarizes
the arterial concentration (ng/mg) results of the treated arteries. There was a significant increase
in the retention of the sb-paclitaxel (n = 4) versus the nab-paclitaxel (n = 4) at 1 h (sb-paclitaxel:
4.106 ± 2.685 ng/mg vs nab-paclitaxel: 0.461 ± 0.270 ng/mg, p = 0.0004); however, no other differences
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were observed at days one, three, and seven. There was a significant drop in sb-paclitaxel between 1 h
and one day (1 h: 4.106 ± 2.685 ng/mg vs one day: 0.108 ± 0.089 ng/mg, p < 0.001), but none between
the other treatment time points.
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Figure 1. Angiogram of the perfusion catheter during delivery. (a) Liquid paclitaxel is shown filling
the treatment chamber (blue arrow). The occlusion perfusion balloons are shown in the red arrows.
(b) Angiogram following treatment of vessel by liquid paclitaxel.
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Figure 2. Mean tissue paclitaxel concentrations of the perfusion catheter treated arteries segments with
the nab-paclitaxel and sb-paclitaxel liquid forms (bars represent standard deviation). A significant
difference (*** p < 0.001) was observed at 1 h.

2.2. Morphological and Histological Findings of Treated Arteries

Morphometric analysis demonstrated similar area measurements, including the external elastic
lamina (EEL), internal elastic lamina (IEL), and lumen, for all treatment groups (Table 1). Medial area was
significantly greater in the balloon-injured control group (no drug) as compared to the paclitaxel-treated
arteries (uncoated balloon: 2.08 ± 0.47 mm2 vs sb-paclitaxel: 1.11 ± 0.26 mm2 vs nab-paclitaxel:
1.15 ± 0.28 mm2, p = 0.006). At 14 days, there was significantly less neointimal area in the sb-paclitaxel
treated arteries as compared with nab-paclitaxel treated arteries and the balloon-injured control group
(sb-paclitaxel: 0.26± 0.24 mm2 vs nab-paclitaxel: 1.15± 0.62 mm2 vs uncoated balloon: 1.42 ± 0.18 mm2,
p = 0.007). Additionally, percent area stenosis was also significantly less in the sb-paclitaxel group
(sb-paclitaxel: 8.37 ± 6.40% vs nab-paclitaxel: 22.60 ± 19.47% vs uncoated balloon: 33.08 ± 2.17%,
p = 0.002).

Histological analysis demonstrated no injury and no endothelial cell loss at 14 days (Figure 3).
Inflammation was minimal for all groups and the presence of fibrin and platelets at the intimal layer
was rarely observed (Table 1). Medial SMC loss, in the transmural direction, was observed only in
the sb-paclitaxel treated group (sb-paclitaxel: 1.00 ± 0.82 vs nab-paclitaxel: 0.00 ± 0.00 vs uncoated
balloon: 0.00 ± 0.00, p = 0.02). Medial SMC loss, in the circumferential direction, showed similar results
(sb-paclitaxel: 0.75 ± 0.50 vs nab-paclitaxel: 0.00 ± 0.00 vs uncoated balloon: 0.00 ± 0.00, p = 0.007).
No aneurysmal dilatation or thrombosis was observed in any treated artery.
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Table 1. Summary of the morphometric and histological measurements in the rabbit iliac-femoral
injury model.

Measurements nab-Paclitaxel sb-Paclitaxel Uncoated-Balloons p Value

Morphometric
Measurements

EEL, mm2 6.23 ± 1.42 4.92 ± 2.45 6.39 ± 0.68 0.43
IEL, mm2 5.10 ± 1.17 3.81 ± 2.31 4.31 ± 0.70 0.69

Lumen, mm2 3.93 ± 1.06 3.55 ± 2.19 2.89 ± 0.53 0.60
Media, mm2 1.15 ± 0.28 * 1.11 ± 0.26 * 2.08 ± 0.47 0.006

Neointimal area, mm2 1.15 ± 0.62 0.26 ± 0.24 *,# 1.42 ± 0.18 0.007
Percent area stenosis, % 22.60 ± 19.47 8.37 ± 6.40 *,# 33.08 ± 2.17 0.002
Light Microscopy Analysis

Injury 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 1.00
EC loss 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 1.00

Inflammation (intimal) 0.50 ± 0.578 0.25 ± 0.50 0.00 ± 0.00 0.32
Inflammation (adv) 0.25 ± 0.50 0.50 ± 0.578 0.25 ± 0.50 0.75
Fibrin and Platelets 0.00 ± 0.00 0.25 ± 0.50 0.00 ± 0.00 0.41

SMC Loss (trans) 0.00 ± 0.00 1.00 ± 0.82 *,# 0.00 ± 0.00 0.02
SMC Loss (circum) 0.00 ± 0.00 0.75 ± 0.50 *,# 0.00 ± 0.00 0.007

Abbreviations: nab—albumin-bound, sb—solvent-based, EEL—external elastic lamina, IEL—internal elastic lamina,
EC—endothelial cell, SMC—smooth muscle cell, adv—adventitia, trans—transmural, circum—circumferential,
*—denotes significant difference as compared to uncoated balloon (control) group, #—denotes significant difference
as compared to nab-paclitaxel group.

Pharmaceuticals 2020, 13, x FOR PEER REVIEW 4 of 11 

 

Table 1. Summary of the morphometric and histological measurements in the rabbit iliac-femoral 
injury model. 

Measurements nab-Paclitaxel sb-Paclitaxel Uncoated-Balloons p Value 
Morphometric Measurements     

EEL, mm2 6.23 ± 1.42 4.92 ± 2.45 6.39 ± 0.68 0.43 
IEL, mm2 5.10 ± 1.17 3.81 ± 2.31 4.31 ± 0.70 0.69 

Lumen, mm2 3.93 ± 1.06 3.55 ± 2.19 2.89 ± 0.53 0.60 
Media, mm2 1.15 ± 0.28 * 1.11 ± 0.26 * 2.08 ± 0.47 0.006 

Neointimal area, mm2 1.15 ± 0.62 0.26 ± 0.24 *,# 1.42 ± 0.18 0.007 
Percent area stenosis, % 22.60 ± 19.47 8.37 ± 6.40 *,# 33.08 ± 2.17 0.002 
Light Microscopy Analysis     

Injury 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 1.00 
EC loss 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 1.00 

Inflammation (intimal) 0.50 ± 0.578 0.25 ± 0.50 0.00 ± 0.00 0.32 
Inflammation (adv) 0.25 ± 0.50 0.50 ± 0.578 0.25 ± 0.50 0.75 
Fibrin and Platelets 0.00 ± 0.00 0.25 ± 0.50 0.00 ± 0.00 0.41 

SMC Loss (trans) 0.00 ± 0.00 1.00 ± 0.82 *,# 0.00 ± 0.00 0.02 
SMC Loss (circum) 0.00 ± 0.00 0.75 ± 0.50 *,# 0.00 ± 0.00 0.007 

Abbreviations: nab—albumin-bound, sb—solvent-based, EEL—external elastic lamina, IEL—internal 
elastic lamina, EC—endothelial cell, SMC—smooth muscle cell, adv—adventitia, trans—transmural, 
circum—circumferential, *—denotes significant difference as compared to uncoated balloon (control) 
group, #—denotes significant difference as compared to nab-paclitaxel group. 

 

Figure 3. Histological assessment of liquid paclitaxel treated arteries. Representative hematoxylin and 
eosin (H&E) staining of (a) nab-paclitaxel, (b) sb-paclitaxel treated arteries, and (c) balloon-injured 
arteries. Blue arrows represent internal elastic laminae (IEL). Lumen is represented by L. (d) 
Significant differences (* p < 0.05, ** p < 0.01) in percent area stenosis were observed between the 
varying treatment groups (error bars represent standard deviation).  

3. Discussion 

Figure 3. Histological assessment of liquid paclitaxel treated arteries. Representative hematoxylin and
eosin (H&E) staining of (a) nab-paclitaxel, (b) sb-paclitaxel treated arteries, and (c) balloon-injured
arteries. Blue arrows represent internal elastic laminae (IEL). Lumen is represented by L. (d) Significant
differences (* p < 0.05, ** p < 0.01) in percent area stenosis were observed between the varying treatment
groups (error bars represent standard deviation).
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3. Discussion

This study was designed to evaluate the efficacy of local liquid paclitaxel delivery to arterial
segments in a clinically relevant rabbit ilio-femoral injury model. Two clinically available forms of
paclitaxel, a solvent-based liquid paclitaxel and an albumin-bound liquid paclitaxel, were utilized to
quantify the pharmacokinetics of paclitaxel retention within the arterial wall and histologically evaluate
the treated arteries. Pharmacokinetic results indicated greater retention of the solvent-based liquid
paclitaxel as compared with albumin-bound paclitaxel. Histologically, there was a significant decrease
in neointimal hyperplasia and stenosis in arteries treated with the solvent-based liquid paclitaxel
as compared to the albumin-bound liquid paclitaxel and the balloon-injured arteries. Additionally,
drug-induced medial smooth muscle cell loss was more frequently observed in the solvent-based
liquid paclitaxel treated arteries. These results indicate the effectiveness of a local liquid approach to
deliver and retain liquid paclitaxel in arterial segments.

In this pilot study, the use of liquid forms of paclitaxel was investigated a potential therapy to
inhibit restenosis. The selected intravenous (liquid) forms of paclitaxel have been utilized to treat
patients with breast, ovarian, prostate and other forms of solid tumor cancers for the past four decades.
In comparing the different forms of paclitaxel, the half-life of liquid (intravenous) paclitaxel is within
hours [15,22], whereas the crystalline paclitaxel is weeks to months [14,23,24]. Thus, the potential for
any lost (or mobilized) liquid paclitaxel to remain and accumulate within distal tissue or organs is
minimal. Furthermore, the approach of liquid delivery offers an alternative to the current standards of
DES and DCBs in which the anti-proliferative drug is deposited on the luminal surface. The described
approach directly delivers paclitaxel into the medial layer, the residing region of proliferating smooth
muscle cells.

Prior to testing, we performed bench-top studies to determine the optimal pressure range to
deliver the liquid paclitaxel. The bench-top studies indicated that a pressure range of 0.1 to 0.4 atm
was sufficient to drive the liquid paclitaxel sub-intimal, into the medial area (Figure 4). The built-in
pressure sensor of the perfusion catheter enabled a quantifiable manner in which to ensure consistent
and appropriate liquid paclitaxel delivery in our pilot study. The delivery pressure of the sb-paclitaxel
treated arteries was similar to the nab-paclitaxel treated arteries (sb-paclitaxel: 0.32 ± 0.149 atm vs
nab-paclitaxel: 0.37 ± 0.08 atm, p = 0.17).
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Figure 4. Liquid paclitaxel drug penetration. Confocal images of explanted pig arteries shows
differences in Flutax-1 (fluorescently tagged paclitaxel, yellow arrows) penetration at (a) 0.1 atm and
(b) 0.4 atm. (c) Control segment represents confocal image of a non-treated explanted pig artery.

Although all arteries were treated under similar conditions, the biological effect of paclitaxel was
only observed in the sb-paclitaxel group. The difference in biological outcome, as determined by
neointimal growth and vascular SMC loss, is most likely due to greater levels of paclitaxel retained
in the arterial wall by the sb-paclitaxel group as compared with nab-paclitaxel. Axel et al. have
previously demonstrated that paclitaxel, in a single dose-application of 20 min to 24 h, can inhibit
vascular SMC growth up to 14 days. [13] Paclitaxel-induced SMC loss has been shown in arteries
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treated with paclitaxel-eluting stents and paclitaxel-coated balloons. Our results provide the first
evidence that liquid paclitaxel delivered locally can induce biological effect.

Differences in the pharmacokinetic and biological outcomes of these two forms of liquid
paclitaxel—solvent-based and albumin-bound forms—may be attributed to differences in solvents.
Paclitaxel is extremely lipophilic and hydrophobic and therefore must be delivered in a mixture of
solvents that allow it to be administered in the liquid form. The primary solvent in sb-paclitaxel
is Cremophor EL (polyethoxylated castor oil), which surrounds the drug in a micelle and allows
it to be transported in blood. The nab-paclitaxel does not require a solvent to solubilize the drug
and is formulated with human serum albumin. Our results indicated greater acute retention of the
sb-paclitaxel versus the nab-paclitaxel at 1 h (sb-paclitaxel: 4.106 ± 2.685 ng/mg vs nab-paclitaxel:
0.461 ± 0.270 ng/mg, p = 0.0004). The nearly 10-fold increase in paclitaxel measurement suggest the
acute adhesion of the paclitaxel Cremophor EL to the extracellular matrix of the artery, consisting mostly
of collagen, is greater as compared to the nanoparticle albumin carrier. A recent study demonstrated
greater drug delivery of albumin-conjugated cancer drug when combined with a collagen-binding
domain [25]. On the other hand, Cremophor EL has shown to increase paclitaxel retention, enhancing the
ability of the paclitaxel to interact with tubulin and reducing cellular proliferation [26]. Further studies
are warranted to elucidate differences in binding capacity of the Cremophor EL and the nano-particle
albumin carrier to arterial wall collagen and elastin protein structures.

Although our studies were performed in clinically relevant models, we only restricted our
studies to a healthy animal model and not one that is representative of patients with peripheral
atherosclerotic disease. Additionally, the treated arteries lack major side branches, bifurcations, fibrosis,
calcification, hemorrhage, and the need for debulking—all complexities that are often present in clinical
settings. Lastly, appropriate controls and longer-time points are warranted to further demonstrate and
characterize the impact of liquid paclitaxel onto arterial remodeling.

4. Materials and Methods

4.1. Perfusion Catheter and Liquid Paclitaxel Preparation

In order to deliver liquid paclitaxel locally to the selected ilio-femoral arterial segments,
a multi-lumen balloon perfusion catheter was employed (Figure 5). The perfusion catheter (Occlusion
Perfusion Catheter, Advanced Catheter Therapies, Chattanooga, TN, USA) is a universal delivery
catheter that delivers therapeutic agents by creating a treatment chamber between two occlusion
balloons, through which the liquid therapeutic is delivered. The delivery of the therapeutic agent is
then mechanically driven, using pressure that is continuously monitored by a built-in sensor.

Two forms of liquid paclitaxel were delivered via the perfusion catheter—a nanoparticle
albumin-bound (nab)-paclitaxel (Abraxane, Celgene, Summit, NJ, USA) and a solvent-based
(sb)-paclitaxel (Paclitaxel Injection, Actavis Pharma, Parsippany, NJ, USA). The nab-paclitaxel is
available in a solid form designed to be reconstituted with saline to make an injectable suspension.
For this pilot study, the nab-paclitaxel particles were measured by weight and reconstituted with
saline to a concentration of 6 mg/mL. The reconstituted nab-paclitaxel was then combined with saline
and iohexol (Ominipaque, GE Healthcare, Wauwatosa, WI, USA) in a 1:2:2 ratio by volume (1-part
nab-paclitaxel, 2-part saline, 2-part iohexol) to achieve a final paclitaxel concentration of 1.2 mg/mL.
Similarly, the sb-paclitaxel purchased in liquid form (6 mg/mL) was combined with saline and iohexol
in a 1:2:2 ratio by volume to achieve a final paclitaxel concentration of 1.2 mg/mL.

In our study, the perfusion catheter was used to deliver both forms of the liquid paclitaxel.
The delivery of the liquid paclitaxel is accomplished by pressure differences created by an increase in
treatment chamber pressure by the device, thereby driving the drug across tissue and into the medial
layer. Because of this technique, it was not necessary for the therapeutic agent to be aspirated prior
to removal of the device. Most importantly, this approach avoids the accumulation of drug on the
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luminal surface, as seen with drug coated balloons and drug eluting stents. Lastly, potential drug loss
during tracking and positioning of the delivery device to the location of treatment is eliminated.Pharmaceuticals 2020, 13, x FOR PEER REVIEW 7 of 11 
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Figure 5. Schematic illustration of the perfusion catheter. (step 1) Two occluding balloons are deployed
to momentarily stop circulating flow to a portion of a vessel. (step 2) Trapped blood within the
perfusion chamber is then flushed with saline. (step 3) Liquid paclitaxel can be delivered through
the inflow port. The outflow port is closed and drug delivered to the lesion with external pressure.
The delivery pressure is measured by a fiber optic pressure sensor located at the inlet port. (step 4)
Following the delivery of the drug, the remaining drug in the chamber is cleared through the outflow
port to ensure no additional drug is introduced into the circulatory system. (step 5) The occlusion
balloons are deflated and catheter moved to another location or removed from the circulation.

4.2. Rabbit Injury Model and Paclitaxel Delivery

This study protocol was approved by the University of South Alabama’s Institutional Animal Care
and Use Committee (#568228) and conformed to the position of the American Heart Association on use
of animals in research. A total of 16 rabbits (32 artery segments) were used for pharmacokinetic analysis,
and a total of 6 rabbits (12 artery segments) were used for histological analysis. Two rabbits (4 artery
segments) were allocated for each time point for both treatments. The experimental preparation of the
animal model has been previously reported [27]. Briefly, following general anesthesia and endotracheal
intubation, arterial access was obtained by cut-down approach and a vascular sheath was positioned
into the carotid artery. Under fluoroscopic guidance, the animals underwent endothelial denudation
(i.e., balloon injury) of both external iliac arteries using an angioplasty balloon catheter (3.25 × 6 mm).
Subsequently, either sb- or nab-paclitaxel was delivered locally to the selected regions via the perfusion
catheter (3 × 15 mm). In the balloon-injury control segments, no additional treatments was performed.
Both external iliac arteries of each rabbit were treated with the same drug—either sb- or nab-paclitaxel.
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Liquid paclitaxel was delivered at a treatment chamber pressure range between 0.1 to 0.4 atm for
2 min. Antiplatelet therapy consisted of aspirin (40 mg/d), given orally 24 h before the procedure
with continued dosing throughout the in-life phase of the study, and single-dose intra-arterial heparin
(150 IU/kg) administered at the time of catheterization.

4.3. Pharmacokinetic Analysis

Following 1 h, 1 day, 3 days, and 7 days, animals were anesthetized and euthanized (intravenous
FATAL-PLUS®, 85–150 mg/kg, single injection), and the treated artery segments were removed based
on landmarks identified by angiography. The time points were selected to demonstrate the acute
retention of liquid paclitaxel delivery. The explanted segments were then stored at −80 ◦C and shipped
on dry ice to the bioanalytical laboratory (iC42 Clinical Research and Development, Aurora, CO, USA).
As previously described, quantification of arterial paclitaxel levels was performed using a validated
high-performance liquid chromatography (HPLC)-electrospray ionization- tandem mass spectrometry
system (LC-MS/MS) [27–29].

4.4. Histological Analysis

Following the 14-day timepoint, animals were anesthetized and euthanized, and the treated artery
segments were removed based on landmarks identified by angiography. The arteries were perfused by
saline and formalin-fixed under physiological pressure prior to removal. The segments were stored in
10% formalin at room temperature and then processed to paraffin blocks, sectioned, and stained with
hematoxylin and eosin (H&E) or Verhoeff’s elastin stain (VEG).

4.5. Histomorphometric Analysis

Histological sections were digitized, and measurements were performed using ImageJ software
(NIH). Cross-sectional area measurements included the external elastic lamina (EEL), internal elastic
lamina (IEL), and lumen area of each section. Using these measurements, the medial area (EEL-IEL),
neointimal area (IEL-lumen), and percent area stenosis (100 × (IEL-Lumen)/(IEL)) were calculated as
previously described [30–32].

Morphological analysis was performed by light microscopy using a grading criterion as previously
published [30–32]. Parameters assessed included intimal healing as judged by injury, endothelial
cell loss, intimal inflammation, and fibrin/platelet deposition. The medial wall was also assessed for
drug-induced biological effect, specifically looking at smooth muscle cell loss, both in the transmural
and circumferential directions. The presence of inflammation within the medial or adventitial regions
was also evaluated. These parameters were semi-quantified using a scoring a system of 0 (none), 1
(minimal), 2 (mild), 3 (moderate), and 4 (severe) as previously described [30,32].

4.6. Statistical Analysis

All values are expressed as mean ± standard deviation (SD). Quantitative data were compared
with analysis of variance (ANOVA), followed by Tukey’s test for multiple comparisons, using GrapPad
Prism 8 (GraphPad Software, La Jolla, CA, USA). Non-parametric data were evaluated by Wilcoxon
signed-rank test. A value of p < 0.05 was considered statistically significant.

5. Conclusions

Our overall results support the concept of local liquid delivery of paclitaxel into the arterial
segments. In comparison of two clinically available forms of liquid paclitaxel, the solvent-based
paclitaxel demonstrated greater arterial retention following treatment, accompanied with a decrease in
neointimal growth. The histopathologic findings showed biological effect, as indicated by vascular
smooth muscle cell loss, without evidence of thrombus, toxicity or inflammation. Together, these
results indicate the effectiveness of a local liquid approach to deliver and retain liquid paclitaxel in



Pharmaceuticals 2020, 13, 434 9 of 11

arterial segments. Additional studies are warranted to further evaluate the safety and efficacy of the
use of sb-paclitaxel in local liquid delivery devices—an approach that has the potential to impact
millions of patients suffering with PAD by improving outcomes and quality of life.
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