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Abstract

The sharing of genomic data holds great promise for advancing precision medicine, providing 

personalized treatments and other types of interventions. However, there are privacy concerns, as 

data misuse may lead to infringement of privacy for individuals and their blood relatives. As 

genomic data are rapidly growing and some of these data are being made available to researchers, 

it is imperative to understand the current genome privacy landscape and to identify the challenges 

in developing effective privacy-protecting solutions. In this work, we provide an overview of 

major privacy threats identified by the research community and examine the privacy challenges in 

the context of emerging direct-to-consumer applications. We present general privacy protection 

techniques for genomic data sharing and their potential applications in direct-to-consumer 

genomic testing and forensic analyses. We discuss limitations in current privacy protection 

methods, highlight possible mitigation strategies, and suggest future research opportunities for 

advancing genomic data sharing.

Introduction

In recent years, technological improvements have significantly reduced the cost of genome 

sequencing, creating an unprecedented amount of genomic data that is vital for many 

research applications1,2. Several research initiatives (e.g., NIH All of Us3) are integrating 

these data with the goal of serving as the source of analyses for a wide range of studies. At 

the same time, there has been a significant expansion of genomic data-driven applications in 

the private sector, where personal genomic data are collected to provide individuals with 

health-related services.
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There are several remarkable features that make genomic data different from other health 

data. For example, genomic data carry information that may be effectively used for 

prognosing health conditions (e.g., Alzheimer’s disease4,5) and for designing preventive 

interventions. Another important property of genomic data is the presence of significant 

commonality among individuals who are blood relatives. Therefore, genome analysis is 

commonly used for susceptibly risk, paternity and relativeness testing (e.g., ancestry 

services), and for forensic purposes (e.g., genomic genealogy searches).

Some of these features pose significant privacy concerns when sharing genomic data6,7. 

Individual’s germline genomic data provide information that can uniquely identify 

individuals and tend to remain relatively static over the course of life, providing excellent 

biometric information (i.e., genomic “fingerprint”). Lin et al.8 showed that 75 statistically 

independent SNPs would suffice to uniquely identify an individual across the global 

population. Sharing seemingly harmless “aggregate” data (e.g., allele statistics) can also 

pose privacy risks9,10.

Traditional privacy models designed for health data, provide limited protection for genomic 

data. An attacker may learn sensitive information about a target individual by exploiting the 

dependency between genomic data and other publicly available information such as: family 

name, demographic data, and observable features (e.g., eyes and hair color)11–13. As 

personal data are made largely available (e.g., social networks), privacy assurances from 

traditional methods are unlikely to be sustainable. Furthermore, the rise of direct-to-

consumer companies poses new privacy and ethical concerns. These companies collect data 

from a growing number of individuals, some of whom may share their data without fully 

understanding the potential implications for themselves, existing and future blood relatives. 

As a notable example, the recent use of direct-to-consumer genomic data in forensic 

analyses has brought these privacy concerns to the attention of the general public. Privacy 

breaches can have serious social implications, and adverse impact on genomic-driven 

research, such as limiting data collection and data sharing14,15. Therefore, it is imperative to 

ensure privacy both as a fundamental right for individuals and an enabling strategy to 

support responsible data sharing.

Currently, healthcare organizations in US must comply to the Privacy Rule created under the 

Health Insurance Portability and Accountability Act (HIPAA16), which defines protected 

health information (PHI) such as name and Social Security Number, and states how such 

information should be protected. However, the removal of PHI cannot protect from re-

identification17,18. For genomic data, the Genetic Information Nondiscrimination Act of 

2008 (GINA19) provides protections against discrimination by health insurers or employers 

on the basis of genetic information, but it does not clearly define what information needs 

protection nor how such protection is carried out. The NIH Policy on Protection of Genome 

Data sheds some light on regulations for research personnel and contractors in terms of 

training and certifications (https://osp.od.nih.gov/). Data privacy regulations vary around the 

world. For example, the General Data Protection Regulation (GDPR20) law for EU members 

provides a strong privacy protection by regulating use and storage of the collected data, and 

empowering individuals with better data control (e.g., right to delete data). Some countries 

have more relaxed regulations based on consent or are still missing specific regulations. 
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Clarification of the potential risks and mitigating solutions when sharing human genome 

data will help policy makers accept tradeoffs between data access and privacy of the 

individuals whose data are being shared.

In this article, we provide an overview of major privacy challenges and research 

opportunities for genomic data sharing. Compared to previous surveys on genome 

privacy21–24, we do not aim at presenting a detailed technical review of privacy methods or 

general use of genomic data in the healthcare domain. Instead, we present known major 

privacy risks, classify privacy-preserving strategies, and contextualize the discussion by 

relating threats and mitigating “solutions” in light of emerging applications such as direct-to-

consumer genomic testing and forensic analyses.

Privacy Risks in Sharing Human Genomic Data

In this section, we briefly illustrate known privacy attacks (Figure 1), where an adversary 

may leverage publicly available data (Table 1). We categorize these attacks into 

identification and phenotype inference.

Identification

In identification attacks, an adversary who has access to “anonymized” human genomic data 

successfully recovers the identity of the donors. The current practice of “anonymization” of 

genomic data is performed by removing protected health information (e.g., name) and quasi-

identifying information (e.g., Zipcode). While this “de-identification” process may meet 

current privacy regulations in the USA (e.g., HIPAA16), it often fails to protect against 

identification attacks25–29. Sweeney et al.25 demonstrated this vulnerability by identifying 

participants in the Personal Genome Project (PGP) using publicly available data. 

Identification attacks can also be carried out directly on the raw genomic data, as 

demonstrated in several studies8,12,30. Lippert et al.13 showed that an adversary who has 

access to the whole genome data of an individual may be able to correctly predict physical 

features, such as: eye, hair, skin color, and facial and vocal characteristics. Additionally, 

once data are shared, it becomes impossible to practically track their multiple potential 

destinations. Attacks by foreign nations or malicious enterprises might harm individuals in 

ways that have not been anticipated by current regulations. Multiple authors have advocated 

the expansion of GINA and related regulations beyond protection of health insurance and 

employer discrimination31–33. While GDPR proactively addresses some of these risks, US 

regulations vary from state to state. Despite the improvement in privacy regulations, there 

are significant technical challenges to satisfy these new privacy standards. For example, 

Rocher et al.17 showed that more than 99% of Americans would be correctly identified in 

any dataset using only 15 demographic attributes.

Phenotype Inference

In a phenotype inference attack, an adversary who has access to partial genomic information 

of a known target individual aims at inferring some sensitive phenotypes (e.g., disease). 

When sufficient genomic data about the target are available, the adversary may learn 

sensitive traits by observing the presence of characteristic genetic markers. Despite masking 
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these markers, an attacker may still restore the original genomic information via genotype 

imputation. For example, by exploiting the linkage disequilibrium between regions in the 

genome34,35 of the target and from blood relatives (i.e., genealogical imputation). With the 

unprecedented amount of genomic information being collected, this type of attack poses 

growing privacy concerns11,36,37. Privacy disclosure may occur even when only aggregate 

statistics are released9,10,38,39. For example, Homer et al.10 demonstrated that it is possible 

to determine the presence of a target individual in a group by comparing the target’s allele 

frequencies with those observed in the standard population and those published for the group 

(Figure 2). Due to the severity of this privacy threat, the National Institutes of Health (NIH) 

initially responded by controlling the access to the aggregated genomic data results. 

However, since November 2018, given the lack of known attacks, NIH decided to broaden 

the access to these data (https://grants.nih.gov/grants/guide/notice-files/NOT-

OD-19-023.html). Broad access to genomic data is vital for collaborative medical research 

efforts. However, designing data sharing methods that strike the right balance between data 

access and privacy is challenging.

In research studies, “informed consent” processes are used to facilitate the participation of 

individuals, by promoting transparency and making privacy risks more explicit. Broad 
consent aims at maximizing the utility of the collected genomic data, where individuals, in 

addition to consent to the use of their data for primary research tasks (e.g., breast cancer 

study), may agree to general research use (e.g., future research). Specific consent reduces the 

use of the data to narrowly defined research tasks. Dynamic consent enables individuals to 

update their privacy preferences over time. To design effective informed consent processes, 

it is important to educate individuals about privacy risks and potential benefits, which may 

require researchers to overcome cultural and social barriers.

Studies involving genetically distinct populations may require researchers to take into 

account the specific concerns of these populations, which may include group privacy 

breaches (e.g., a population is more susceptible to a disease), transparency, data and result 

ownership, and oversight of the research study. To benefit these populations, it is important 

to address any concerns directly, by considering privacy, social, and ethical aspects40–43.

Privacy in Emerging Genomic Data Applications

There is a privacy protection gap in direct-to-consumer (DTC) applications, as portions of 

current privacy regulations do not apply and there is no entity providing oversight over the 

data sharing process. As millions of individuals are contributing data, it is important to 

understand the specific privacy challenges for DTC applications. Here, we discuss how 

genomic data are used in the context of two emerging applications: recreational genetic 

testing and forensic investigations.

Data Sharing in Direct-to-Consumer Genetic Testing

DTC companies collect large volumes of personal genomic data (Table 2) that could be used 

for purposes beyond the services provided. In most companies’ Terms of Service, it is not 

clear how data may be used and shared. Most DTC companies often refer to “appropriate” 

use of genetic information, without providing adequate details about what does and does not 
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qualify as “appropriate”. In fact, a recent study found that 67% of the DTC companies in 

that study provided consumers with insufficient information about how their genomic data 

would be used44.

Most DTC companies state that additional research with the consumers’ sample may be 

conducted45,46, which may include health related and non-health related research. For non-

health related research, most companies aim at answering questions about human migration 

and population history, while some companies also conduct market research and other non-

specified research45. For health-related research, companies provide little to no details about 

what such research may include. A popular DTC service states that data may be used to 

understand the basic causes of disease, develop drugs, design preventive measures, or predict 

risk of disease (for example https://www.23andme.com/about/tos/). The research conducted 

with consumers’ sample becomes known only when a company files for patent or releases a 

product. Customer reactions have not been very positive: some customers were unhappy 

with the company profiting off their genetic material and felt that the consent process was 

not sufficiently clear47. It is understandable that companies want to protect their intellectual 

property, but greater transparency is needed to enable individuals decide whether consent to 

the use of their data in research activities46.

DTC companies may also share consumers’ data with third parties, but statements regarding 

the sharing of genetic data vary tremendously. Most companies provide, at the very least, a 

blanket statement about whether consumers’ data can be shared with third parties. Only a 

few enumerate a list of third parties that may have access to the data45, such as healthcare 

professionals and research institutions, if the consumer chooses to divulge the information. 

Since the first paper that reported novel associations between several single-nucleotide 

polymorphisms and phenotypes using data from 23andMe was published in 2010, many 

more research studies with DTC data were conducted48. In addition to sharing genomic data, 

companies may outsource biological samples overseas where the genomes are sequenced at 

a lower cost. Because the data sharing process may involve entities in different countries, 

there is a need for better harmonized privacy policies that are coherent across countries.

Identification of Individuals in Forensic Investigations

Large datasets of DNA materials from convicted or arrested individuals, such as the US 

DNA Index System (NDIS) and Combined DNA Index System (CODIS), have been used for 

decades by law enforcement agents to search for DNA profiles that match the genomic 

evidence collected from a crime scene. However, we have recently witnessed a new way of 

using genomic data in facilitating forensic analysis: genomic materials from a crime scene 

can be used to query publicly available DTC genomics genealogical databases, enabling the 

identification of victims and perpetrators. Traditional databases of genomic material 

available to law enforcement agents (e.g., NDIS, CODIS) only comprise individuals with a 

criminal history and suspects of serious crimes, while genomic data from DTC companies 

enable agents to access additional individuals and perform powerful genetic searches. 

Agents can identify profiles that partially match the genomic information collected from the 

crime scene, thus significantly increasing the likelihood of successfully identifying 

individuals who are blood relatives of a suspected criminal (Figure 3)30. As a notable 
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example, in April 2018, long-range familial searches led to the arrest of the Golden State 

Killer who was responsible for more than 13 murders and 50 rapes in California from 1974 

to 1986. Long-range familial searches are gaining increasing popularity in forensic analysis 

by specialized companies, leading to the resolution of more than thirty cold cases since April 

2018, including the reidentification of four victims of violent crimes. A detailed summary of 

the cold cases solved via genetic genealogy from 2018 until late 2019 is reported in the 

Supplementary Table 1.

Despite the unquestionable benefits, there are privacy and ethical concerns about the use of 

DTC genomic data in forensic analysis49,50. Current regulations provide limited protection 

against law enforcement searches. For example, GINA only protects against genetic 

discrimination in health insurance and employment. DTC companies are typically not 

engaged in providing healthcare services, thus are not legally required to comply with 

HIPAA. Moreover, current regulation for protecting individual privacy from government 

surveillance (e.g., the Fourth Amendment of the US Constitution) does not apply to DTC 

genomic data, as these data are voluntarily provided49,51. The use of the genomic data in 

criminal investigations has raised the public awareness about genomic privacy. Recently, 

DTC companies have changed their data privacy policy, requiring individuals who uploaded 

their genomic data to opt in to allow law enforcement agents to access their data (for 

example, GEDmatch’s Terms of Service and Privacy Policy - https://www.gedmatch.com/

tos.htm).

Privacy-Protecting Solutions for Genomic Data

Core Privacy-Protecting Solutions for Genomic Data

Here, we briefly describe the core privacy-protecting solutions for genomic data (Table 3). 

For a technical review, we refer the readers to previous surveys21–24.

Access control—Access control methods limit the data exposure by allowing only 

authorized users to access sensitive data52. Qualified users have to ensure that data will be 

appropriately stored, will not be used to identify data contributors, and may be required to 

file periodic reports.

Encryption—Encryption techniques rely on results from number theory to transform the 

original data (i.e., plaintext) into an encoded format (i.e., ciphertext). Homomorphic 

encryption (HE) is a special type of encryption that enables simple primitives (e.g., addition, 

multiplication) directly on the ciphertext. HE methods are used in many privacy-protecting 

solutions53–56 where data are shared in the cloud57–59 and in federated envirorments60–62. 

Privacy attacks may still be performed over homomorphically encrypted data63.

Secure Multiparty Computation (SMC)—Secure Multiparty Computation (SMC) 
protocols are cryptography-based methods that enable a group of parties to jointly perform a 

task without revealing private data. Computations can be performed without the need of a 

trusted party, making these solutions suitable for distributed settings. For example, to 

perform genomic sequence comparison64–66, secure statistical test evaluation67,68, and 

GWAS69,70.
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k-anonymity71—k-anonymity71 ensures that, for each record, there are at least k-1 records 

with the same quasi-identifiers (e.g., Zipcode) and therefore any record is hidden in a group. 

To achieve k-anonymity, the original data are transformed via suppression and generalization 

of attribute values (e.g., 3-digit representation for Zipcode). k-anonymity has been applied 

on quasi-identifier attributes29,72 and at SNP-level73,74.

Differential privacy75—Differential privacy75 provides formal and provable privacy 

protection by ensuring that an adversary who observes the results cannot determine whether 

an individual participated in a study. Privacy is achieved via randomized mechanisms (e.g., 

output perturbation). Differential privacy has been deployed in GWAS studies76–79, and 

specializations are recently considered in other genomic applications80,81.

A common practice is to utilize multiple privacy techniques for combined benefits. For 

example, Raisaro et al.82 proposed a solution that combines HE and differential privacy. 

Specifically, a central server stores the patient’s genetic data (encrypted using HE), while 

differential privacy is used to generate summary statistics for researchers.

Privacy Solutions Applicable to DTC

Bruekers et al.66 proposed a secure Short Tandem Repeats (STR) matching protocol, which 

can enable DNA-based search, paternity, and ancestry tests without revealing the identity of 

individuals. HE protocols are used to encrypt STR profiles and, by performing simple binary 

and logical operations (e.g., difference between profiles), determine whether individuals are 

related. Security-based methods can also be applied in forensic investigations to protect the 

identity of individuals whose records do not match the genomic profile of an individual of 

interest (e.g., suspected criminal). For example, Bohannon et al.56 proposed an approach that 

encrypts the forensic DNA databases and allows the identification of an individual only 

when his/her genomic record is matched with the genomic profile gathered from a crime 

scene. These solutions prevent identity disclosure but do not protect privacy entirely. For 

example, when it is known that the sequence of a particular individual is included in a 

database, it is possible to determine non-paternity by lack of the expected partial match.

Building on cryptographic methods, Huang et al.83 proposed GenoGuard, a tool for genomic 

data storage. An individual sends a password and a biological sample to a trusted certified 

institution in charge of sequencing the sample. Then, the sequence is encrypted with the 

given password and stored in a biobank, where authorized users (e.g., doctors) may retrieve 

and decrypt it. In the DTC setting, the biobank can store the encrypted genomic data 

collected by DTC companies, and an individual may access the stored genetic data to 

request the desired genetic test. GenoGuard relies on a novel cryptographic scheme named 

honey encryption84, in which attacker who tries to decrypt the cyphertext receives an 

incorrect but plausible plaintext. The honey encryption provides long-lasting protection (i.e., 

mitigates brute-force attacks), which is suitable in the genomic setting, as the sensitivity of 

genomic data does not change over time.

Humbert et al.85 proposed a data anonymization technique that enables an individual to 

safely publish their genomic data. Such a technique finds application in the DTC setting, 

where the publication of an individual genomic data may disclose sensitive information 
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about the donor and family members. The notion of health privacy is used to quantify how 

individual SNPs contribute in the predisposition to different diseases. Their idea is to 

achieve health privacy by masking SNPs and limiting the disclosure of sensitive phenotypes 

of the data donor or family members. The selection of the SNPs to hide is performed to 

satisfy the privacy preference of the individuals by considering the known correlation 

between genomic regions. As a result, the sanitized genomic data can be made public 

without compromising the privacy of the family for the genetic traits that are known today. 

However, given the fast pace in which genetic markers are being discovered, what is 

considered non-sensitive today may become sensitive in the near future. Once the genomes 

are disclosed, there is no backtracking. Additionally, the sanitization pattern of SNPs may 

reveal what type of information is being hidden.

On the policy side, recent developments in guidelines and regulations have started to bridge 

the privacy gap in DTC settings, but they are still in an early stage. Organizations of domain 

experts, such as the American College of Medical Genetics and Genomics (ACMG) and the 

European Society of Human Genetics (ESHG), are proposing guidelines to establish a level 

of transparency for all DTC companies. Since a violation of those guidelines is not 

sanctioned by law, companies have not been inclined to adhering to them45. In addition, the 

Food and Drug Administration (FDA) has increased its involvement and revamped its 

policies regarding consumer genomics. The most prominent change is the shift in the 

perception of consumer genetic testing from being a commercial product to a medical device 

product that requires regulations and restrictions under HIPAA. Although it is unclear what 

ethical or legal responsibilities DTC companies must carry at the moment, this is a step 

toward protecting consumer privacy with the same standard as patient privacy86. There have 

also been regulations set up by leading DTC companies to promote a more responsible and 

transparent use of the genomic data (Privacy Best Practices for Consumer Genetic Testing 

Services87). Furthermore, some companies have started to implement forms of participant 

consent (e.g., dynamic consent) to enable robust and transparent data sharing processes88.

Research Opportunities

Here, we discuss some future research opportunities for improving the design of privacy-

protecting approaches for genomic data.

Deployment of Privacy Solutions.

To promote the usability of privacy methods, it is crucial to build and distribute a wide range 

of usable privacy tools. While there are several research initiatives (e.g., International 

iDASH Privacy Protection Challenge, GenoPri) and publicly available privacy tools (e.g., the 

Harvard University Privacy Tools Project - https://privacytools.seas.harvard.edu/), most 

technical solutions are rarely deployed in practice. The lack of practical privacy methods is 

even more evident in the DTC setting, where solutions have to be compatible with a 

company business model. Yet, developing privacy tools is likely to provide opportunities for 

educating individuals, research institutions, and private companies about the beneficial 

impacts of privacy in genomic data sharing. Those tools could also help provide test grounds 

for developing new ethical and regulatory guidelines for data sharing.
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Measuring Privacy Risks.

The understanding of privacy risks vs. potential benefits is crucial for determining the most 

appropriate privacy method or policy in genomic data sharing. Modeling privacy risk is 

challenging, as it may depend on the available information and the power of the adversary. 

As research advances, it is reasonable to believe that publicly available genomic data that do 

not currently present privacy risks may present risks in the near future6. The posture adopted 

by some, that lack of known attacks equates lack of attacks, is naïve. The posture adopted by 

others, that only perfect privacy is acceptable, makes any kind of data sharing impractical. 

Therefore, the design of solutions that leverage technical approaches for risk assessment 

with appropriate regulations (e.g., data agreements, policies) may help identify concrete 

privacy risks and steer the development of new methods for improving data usability.

Technology for Controlling Data Flow.

In the current DTC data sharing framework, individuals can directly share their genomic 

data to receive health related services. However, users have often limited information and 

control over their data. Advances in current privacy and security domain have the potential 

of changing this paradigm by empowering individuals to own, track, and potentially even 

profit from their genomic data. Among them, blockchain technology constructs a chain of 

immutable blocks recording data transactions (i.e., immutable distributed ledger), which has 

several potential benefits in data sharing. The chain can provide a full history of what has 

happened to the data (i.e., data provenance), enabling individuals to track the data and 

achieving higher level of trust89. Recently, a few companies have proposed to use blockchain 

technology for genomic data sharing, with the goal of empowering individuals to better 

control their data, and potentially receiving more immediate health benefits90.

Privacy Initiatives for Data Sharing.

Whether genomic data are shared for biomedical research or for other services, there is an 

increasing need for data standardization and privacy protection methods. To this end, several 

initiatives (e.g., GA4GH91) have been established to address the privacy and data 

harmonization challenges in collaborative research efforts. However, in DTC settings, the 

standards for quality and privacy are not very clear. Initiatives that aim at providing 

individuals with reliable, relevant and transparent information are needed to informed 

privacy choices92.

Conclusion

Admirable progress has been made over recent years toward the development of privacy 

technologies, which are essential in broadening the sharing and collection of genomic data. 

In parallel with technological advances, it is crucial to further improve current regulations 

and guidelines. Addressing these technological, regulatory, and ethical challenges in 

combination may empower individuals to actively contribute to scientific research, 

improving genomic data sharing and benefiting medical research.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Taxonomy of known privacy attacks in genomic data sharing. We differentiate between two 

main categories of privacy attacks: identification and phenotype inference. For each type of 

attack, we highlight the main known techniques and report relevant published examples.
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Figure 2. 
Membership disclosure attack by Homer et al.,10 where an adversary aims at determining the 

presence of the target in the mixture (e.g., case group). (1) Data Acquisition: the attacker has 

partial genomic data of a known target individual (i.e., SNPs) and he has access to publicly 

available summary of statistics (e.g., GWAS). (2) SNP Frequency Estimation: the attacker 

estimates the allele frequency for each j-SNP in the target data (Yi,j), in the mixture (Mj), 

and in the reference population (Popj). (3) Profile Comparison: a SNP-wise distance 

measure (D(Yi,j)) is computed to determine how the profile of the target deviates from the 

reference population and mixture. Notice that D(Yi,j) is positive when Yi,j is closer to Mj and 

negative when Yi,j is closer to Popj. Furthermore, for a sufficiently large sample, the distance 

D(Yi,j) follows a normal distribution. (4) Hypothesis Testing: a one-sampled t-test is 

performed by the attacker to determine the likelihood of the target belonging to the mixture, 

where E[∙] and SD[∙] denote the expectation and standard deviation, respectively, and s 

denotes the number of SNPs. (5) Test Outcome: a positive test indicates that the target 

belongs to the mixture. As a result, the attacker may learn that the target individual has the 

phenotype that defines a “case”.
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Figure 3. 
Genetic Genealogy Search framework for forensics analysis. (1) Genomic data are collected 

from the crime scene, and a genomic-wide profile of the subject is constructed. (2) A search 

of matching profiles is conducted on publicly available datasets. The genomic information 

may lead to the identification of a match representing a relative (e.g., cousin). The 

genealogical information is used to narrow down the family tree, for individuals who may be 

suspects (e.g., living in the vicinity of the crime scene). (3) When a suitable suspect is 

identified, a direct DNA test is performed to confirm the match with the DNA collected from 

the crime scene.
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Table 1

Example of auxiliary information. We report some examples of auxiliary information and available data 

sources that can be exploited by an adversary to perform identification and phenotype inference attacks. PGP: 

Personal Genome Project, CEPH: Centre d’Etude du Polymorphism Humain, GTEx: Genotype-Tissue 

Expression, dbGaP: database of Genotypes and Phenotypes, GWAS: genome-wide association study, UK 

BioBank: biobank study in the United Kingdom.

Auxiliary information Identification Phenotype inference Examples of data sources

Demographics, Surnames X Census Data (https://www.census.gov/data.html)

Pedigree, Family Tree X X PGP (https://pgp.med.harvard.edu)
CEPH (http://www.cephb.fr)

Gene Expression X X GTEx Project (https://gtexportal.org/home/)

Genotype Data X X
OpenSNP (https://www.opensnp.org)
1000 Genomes Project (https://www.internationalgenome.org)
dbGaP (https://www.ncbi.nlm.nih.gov/gap/)

Social Relationships X X Population Registry, Social Networks

Observable Phenotypes X Social Networks

Clinical Data X X Clinical Data Research Networks

Summary of Statistics X UK BioBank (https://www.ukbiobank.ac.uk)
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Table 2

List of popular DTC companies (in alphabetical order) providing health-related services based on genomic 

data.

DTC Company Year Founded Number of Individuals Main Services

23andMe (https://www.23andme.com) 2006 >10 Millions Medical, Genealogical, Personal Ancestry

AncestryDNA (https://www.ancestry.com/dna/) 2002 >16 Millions Genealogical, Personal Ancestry 
(Autosomal only)

FamilyTreeDNA (https://
www.familytreedna.com) 1999 >1.1 Million Genealogical, Personal Ancestry 

(Autosomal only)

GEDmatch (https://www.gedmatch.com) 2010 >1.3 Million Genetic Genealogy Search

MyHeritage (https://www.myheritage.com) 2003 >3 Million Genealogical, Personal Ancestry 
(Autosomal only)
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Table 3

An overview of core techniques used for privacy-preserving genomic data.

Goal Techniques Privacy 
Protection Pros Cons Examples of Relevant 

Applications

Data Security

Blocking 
unauthorized 
users to access 
the original 
data

Access control, 
Trust-but-verify

Grant access 
only to 
authorized 
users

Easy to 
implement
Allow 
monitoring 
of data 
usage

Vulnerable to 
internal attacks 
(e.g., a dishonest 
user who has 
access to the data)

Data Repositories such as: 
dbGaP (https://
www.ncbi.nlm.nih.gov/gap/
), EGA (https://
www.ebi.ac.uk/ega/home), 
and the All of Us Research 
Program (https://
www.researchallofus.org)

Homomorphic 
Encryption 
(HE)

Data are 
encrypted, 
generating 
ciphertext, on 
which certain 
operations can 
be performed 
and produce the 
same results as 
when the 
original, non-
encrypted data 
are used

Strong and 
provable 
security 
guarantees

Computationally 
intense

Genomic sequence 
matching53,54,56, outsource 
computation57–62

Secure 
Multiparty 
Computation 
(SMC)

Data are 
encrypted and 
multiple parties 
can jointly 
compute a 
function 
without 
learning 
anything about 
each others’ 
private data

Strong and 
provable 
security 
guarantees

High 
communication 
cost

Genomic sequence 
comparison64–66, secure 
statistical test 
evaluation67,68, and 
GWAS69

Data 
Anonymization

Protect the 
identity/
presence of 
the individual 
in shared data

k-anonymity 
via 
generalization 
and 
suppression of 
SNPs

Data are 
transformed 
such that, for 
each record in 
the output, 
there are k-1 
other records 
with the same 
set of quasi-
identifiers

Intuitive 
notion of 
privacy

Vulnerable 
against an 
informed 
adversary
May lead to 
overly 
generalized data

“Anonymization” of DNA 
sequences73,74

Differential 
privacy 
(adversary 
wants to know 
if target is in 
the database) 
achieved via 
random 
perturbation

Data results are 
perturbed to 
guarantee that 
an adversary 
who observes 
the outputs 
cannot 
determine the 
presence of any 
individual 
record in the 
data

Strong and 
provable 
privacy 
guarantees

Released data 
may have limited 
usability due to 
the noise injected

GWAS test statistics (e.g., 
χ2) and SNPs highly 
associated with diseases of 
interest77–79,93,94
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