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ABSTRACT
Background: Biological invasions rank among the most significant threats to
biodiversity and ecosystems. Correlative ecological niche modeling is among the
most frequently used tools with which to estimate potential distributions of invasive
species. However, when areas accessible to the species across its native distribution
do not represent the full spectrum of environmental conditions that the species can
tolerate, correlative studies often underestimate fundamental niches.
Methods: Here, we explore the utility of supraspecific modeling units to improve the
predictive ability of models focused on biological invasions. Taking into account
phylogenetic relationships in correlative ecological niche models, we studied the
invasion patterns of three species (Aedes aegypti, Pterois volitans and Oreochromis
mossambicus).
Results: Use of supraspecific modeling units improved the predictive ability of
correlative niche models in anticipating potential distributions of three invasive
species. We demonstrated that integrating data on closely related species allowed a
more complete characterization of fundamental niches. This approach could be used
to model species with invasive potential but that have not yet invaded new regions.

Subjects Ecology, Entomology, Marine Biology, Zoology, Freshwater Biology
Keywords Biological invasions, Invasive species, Supraspecific modeling units,
Phylogenetic conservatism of ecological niches, Ecological niche models, Potential distribution

INTRODUCTION
Biological invasions are considered the second most serious cause of species extinctions
(Richardson, Pyšek & Carlton, 2011). In recent decades, invasions have become more
frequent because of globalization, since humans have re-located (accidentally or
intentionally) many species far outside their native geographic ranges (Tatem&Hay, 2007;
Wilson et al., 2009). In general, invasive species have direct negative impacts on native
species and ecosystems via predation, competition, propagation of diseases, and changes in
composition of trophic webs (Manchester & Bullock, 2000). Eradication of invasive species
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would be highly desirable before they become established, and the scientific community
agrees broadly that prevention of invasions is the most effective and least expensive way to
avoid negative impacts (Miller et al., 2005; Thuiller et al., 2005).

Mapping geographic regions presenting suitable environmental conditions for
particular invasive species represents an important but challenging step in preventing
establishment (Bomford, 2008). This goal implies, typically, estimating the set of
abiotic conditions that allow the species to achieve positive population growth
(i.e., its fundamental niche—NF) (Peterson & Soberón, 2012). Mechanistic niche modeling
represents means by which to approximate and map a species’ NF, since experiments
under controlled conditions are carried out to estimate its physiological tolerance
(Kearney & Porter, 2004, 2009). However, these models require a lot of information
obtained through long experimentation processes that can be quite costly (Gallien et al.,
2010). Also, mechanistic models are usually generated in terms of one or two
environmental variables, and may not capture all biologically relevant factors for the
species (Aragón, Baselga & Lobo, 2010); interactions among variables are generally
neglected; and application is limited to well-studied organisms (Larson et al., 2014).

Correlative ecological niche modeling (ENM) requires less information than
mechanistic modeling, because it derives inferences from statistical associations between
presence data and environmental dimensions. From these associations, ENMs can identify
environmental conditions suitable for the species. By projecting these conditions into
geographic space, one can generate hypotheses of species’ potential distributions (Peterson
et al., 2011). Correlative ENM has been used widely to study biological invasions (Peterson,
2003; Thuiller et al., 2005), but its predictive capacity has been hindered by two factors.
First, it is complicated to differentiate correlation from true causality (Dormann, 2007),
and second, the environmental diversity across the area that has been accessible
historically for the species (M; Soberón & Peterson, 2005) may not be sufficient to
characterize fundamental niches (i.e., the set of abiotic conditions that allow a given
species to survive and reproduce in the absence of biotic interactions) fully, which reduces
the NF to what is termed the existing niche: the niche that one is able to observe and
characterize. Hence, ifM does not cover the whole environmental variation that the species
tolerates, ENMs end up sub-characterizing NF.

This truncation of the fundamental niche imposes both conceptual and methodological
challenges to anticipate the species’ success of establishment when facing novel
environmental conditions, such as under climatic changes and biological invasions.
Therefore, when a species is environmentally restricted due to geographical constraints, for
example an insular species, it is difficult to determine the portion of its niche that is
represented in the island and how much is missing. Some methodological proposals to
improve the predictive capacity of correlative niche models include: (1) reducing numbers
of predictors to avoid environmental combinations associated with presence data being
unique and statistical regularities not observable (Peterson & Nakazawa, 2008),
(2) controlling spatial autocorrelation to decrease overfitting to calibration data (Boria
et al., 2014), (3) balancing complexity and generalization in niche models by varying
parameter settings in algorithms (Warren & Seifert, 2011; Merow et al., 2014;
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Radosavljevic & Anderson, 2014), (4) analyzing transfer procedures in relation to strict
extrapolation (Owens et al., 2013) and (5) using the most complete set of occurrences
(presence records from both native and invaded areas) to achieve better characterization
of the species’ NF (Jiménez-Valverde et al., 2011). This latter idea improves transfers
(Escobar et al., 2016), but its application is limited to species with populations already
established outside their native ranges. A possible alternative to modeling species with
M areas that are not sufficiently representative environmentally could be based on the
idea of phylogenetic conservatism of ecological niches (PNC, Peterson, Soberón & Sánchez-
Cordero, 1999). Although niche conservatism obviously breaks down over evolutionary
time, considerable evidence indicates the frequent absence of ecological niche
differentiation at time scales comparable to those of invasions and speciation events
(Peterson, 2011). That is, niche traits are often conserved among closely related species
(Pavoine & Bonsall, 2011). If so, one may assume that sister species have identical or very
similar NF’s, despite being distributed in geographic regions with different environmental
characteristics. These differences in accessible environments mean that together they
might be more representative of the NF of the species in a lineage. This strategy of
modeling niches by grouping presence records above the species level, known as “lumping”
(Smith et al., 2018), under certain circumstances, may be a more accurate way to
characterize the niche of a lineage.

The objective of this study was to evaluate whether using supraspecific modeling units
(including both the occurrences of a focal invasive species and those of sister species in
their respective native ranges) can improve model capacity to predict the geographic
potential of invasions. We chose three invasive species with multiple populations
established outside of their native geographic ranges, which offer the advantage of
abundant evaluation data. The similarity of the NF’s between closely related species may
vary with respect to their genetic similarity, so we evaluated model performance as we
created modeling units that included records of successively less closely-related species.
We observed that supraspecific units improved the prediction of geographic potential of
biological invasions in the three species, which suggests that niches are highly conserved
and complementary among the species that composed the unit with better predictive
ability.

MATERIALS AND METHODS
We used QGIS 3.0.2 (QGIS Development Team, 2018) and R 3.4.4 (R Core Team, 2018) to
carry out all the geographic information system and statistical procedures described in the
following sections.

Presence data
We chose three species with significant invasive potential that inhabit different
environments: the mosquito Aedes aegypti (a terrestrial species), the Mozambique
tilapia Oreochromis mossambicus (a freshwater fish), and the red lionfish Pterois volitans
(a marine fish). For each species, we obtained a recently published phylogeny that allowed
identification of supraspecific units corresponding to successively deeper nodes on the
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phylogenetic trees. The phylogenies that we used were those reported by Chu et al. (2018),
He et al. (2011) and Kochzius et al. (2003), for the three species, respectively. Chu et al.
(2018) used a portion of mitochondrial cytochrome oxidase to infer relationships of
34 taxa of mosquitoes, He et al. (2011) used mitogenomic data to explore relationships
among 21 tilapia species, and Kochzius et al. (2003) estimated relationships of seven species
of the Pterois genus based on mitochondrial DNA sequences of 16s rDNA and cytochrome
b. We built the first unit (called U0) only with data from the native distribution of
each focal species. The second supraspecific unit (U1) was composed of U0 plus the data
from native distribution of the sister species. We constructed and named subsequent
supraspecific units similarly, marching from the focal species down the phylogenetic tree
toward its root. We also built a unit (UT) including all occurrences of the focal species,
native and invasive, as a more full representation of its fundamental niche (Fig. 1).

We obtained species occurrence data from the Global Biodiversity Information Facility
(GBIF, 2019). We eliminated records without coordinates, duplicated records, and those
with evident errors (e.g., records located at sea for terrestrial species or vice versa).
In addition, we spatially filtered presence data by eliminating clusters of records in order to
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Figure 1 Illustration of the modeling units’ construction. The first unit (U0), depicted in the dark
orange area, contains occurrences from native distribution of each focal species. The second unit (U1),
depicted in the light orange area, is U0 plus the native occurrences of the sister species. The next units
were built by adding the native occurrences of the species that compose the following nodes, marching
from the focal species down the phylogenetic tree towards its root.

Full-size DOI: 10.7717/peerj.10454/fig-1
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reduce sampling bias and model overfitting (Boria et al., 2014) with the R package spThin
(Aiello-Lammens et al., 2015). Number of occurrence records used for each modeling unit
are shown in Table S1.

We delimited the native historical accessible areas (M area, sensu Soberón & Peterson,
2005) for each species by selecting the ecoregions that included at least one of its presence
records across their native geographic range. For continental species, M was delimited
using terrestrial ecoregions (Olson et al., 2001), and for marine species, it was based on the
bio-regionalization of coastal areas (Spalding et al., 2007).

Environmental data
We downloaded 23 global terrestrial environmental surfaces from the CliMond database
(Kriticos et al., 2012), at a spatial resolution of 10′ (~17 km). These surfaces summarize
annual trends, seasonality, and limiting environmental factors derived from monthly
values of temperature, precipitation, radiation, and moisture for 1950–2000 (Table S2).
To represent marine conditions, we downloaded 12 environmental surfaces from the
Bio-Oracle database 2.0 (Assis et al., 2018). These surfaces were used at the same resolution
as terrestrial ones, and represent annual patterns, seasonality and limiting factors of sea
surface temperature and salinity for 2000–2014 (Table S3). We carried out a principal
components analysis (PCA) to reduce multicollinearity and dimensionality using the
PCARaster function of the R package ENMGadgets (Barve & Barve, 2013). We retained the
first three components for both terrestrial and marine surfaces, which explained 88 and
93% of the global overall variance, respectively. The number of retained components was
determined based on scree plots (terrestrial = Fig. S1; marine = Fig. S2).

Correlative ecological niche models
We estimated ecological niches as minimum-volume ellipsoids (MVE, Van Aelst &
Rousseeuw, 2009). We chose this approach for two main reasons. First, in this method it is
assumed that theNF presents a convex shape, as suggested by theoretical and physiological
evidence (Maguire, 1973; Hooper et al., 2008; Angilletta, 2009; Soberón & Nakamura,
2009). Second, by using a simple-shaped envelope method we can measure directly the
contribution of including presence records of the related species than in mathematically
more complex algorithms. We also modeled with Maxent to assess whether the observed
patterns were method-dependent (Maxent modeling protocol and results are presented
in the Supplemental Information).

We fitted MVE’s in environmental space (E) taking into account 97.5% and 95% of the
presence records. These percentages were based on the degree of confidence in the data,
leaving out outlier points associated with atypical environmental conditions that could
have been unidentified errors in the data-cleaning phase, or probably associated with
sink population (Osorio-Olvera et al., 2020). We calculated both covariance matrix and
centroid of MVE’s using the cov.rob function of the MASS package through the R package
ntbox (Osorio-Olvera et al., 2016). From U1 up to the last unit, the final ellipsoids are the
result of weighting (averaging centroids and covariances) the ellipsoids built with each
group of occurrences units (e.g., we built U1 by weighting ellipsoid U0 and the ellipsoid
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built only with the presences of U1). To graph the MVEs, we used the R package
rgl (Adler et al., 2018). In addition, we projected the models in geographic space as
environmental suitability maps based on Mahalanobis distances from each environmental
combination to the centroid of the ellipsoid (Osorio-Olvera et al., 2016). We estimated
these distances using the R function mahalanobis with the ellipsoid covariance
matrix, the vector of environmental variables, and the vector of means (the centroid).
We converted environmental suitability models into binary maps (presence or absence
of suitable conditions) using two thresholds of allowed omission: 2.5% and 5%.
For visualization and manipulation of the resulting maps, we used the R package raster
(Hijmans et al., 2018).

Niche models evaluation
To assess performance of the ENMs, we used the AUC ratio of the partial ROC technique
(Peterson, Papeş & Soberón, 2008). This metric evaluates the relationship between
omission error for independent presence records (here, occurrences of the focal species
that fell outside its native range) and the proportion of area estimated as suitable for the
species, but only under conditions of low omission error (Peterson, Papeş & Soberón,
2008). The AUC ratio varies from 0 to 2: values greater than 1 indicate that model
predictions are better than null expectations. This analysis was carried out using the
R script published by Barve (2008). Partial ROC test were computed based on the
continuous suitability models and the presence records of the focal species from the
invasion area (evaluation data); we allowed an omission error of 2.5% and 5%, and defined
a bootstrapping 50% of the evaluation data 100 times to assess statistical significance of
AUC ratio values.

RESULTS
In all three species, the AUC ratio of the partial ROC test increased when occurrences of
closely related species were included (Fig. 2). The increase was particularly pronounced in

Aedes aegypti Pterois volitans Oreochromis mossambicus
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Figure 2 Average AUC ratios of the ecological niche models obtained with the minimum-volume ellipsoid approach for each modeling unit.
Bars indicate the standard deviation. Full-size DOI: 10.7717/peerj.10454/fig-2
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Ae. aegypti and P. volitans, whereas inO. mossambicus this pattern was not as conspicuous;
indeed, in that species, the AUC ratio values of some supraspecific units were lower than
those of U0. The highest values of AUC ratio were obtained for U1 in P. volitans and
O. mossambicus and for U2 in Ae. aegypti. In addition, when we incorporated occurrences
of successive related species, AUC ratios generally dropped, except for O. mossambicus,
in which they remained high and even increased again in U5. Models including 97.5%
and 95% of presence records were mostly very similar; however, the 95% models showed
higher AUC ratios (Fig. 2), so hereafter we only show ellipsoids and thresholded maps
derived from this modeling procedure.

Figure 3 Input data and ecological niche models. Presence records of the native range (black X’s), invasion range (red X’s), and those included in
the supraspecific unit with the highest AUC ratio (blue X’s) of Aedes aegypti (A), Pterois volitans (D) and Oreochromis mossambicus (G). Ecological
niche model constructed with the black X’s (black ellipsoid) (i.e., U0), ecological niche model constructed with de black X’s + blue X’s (blue ellipsoid)
(i.e., U2 for Ae. aegypti and U1 for P. volitans and O. mossambicus), and ecological niche model constructed with the black X’s + red X’s
(red ellipsoid) of Ae. aegypti (B), P. volitans (E) and O. mossambicus (H). Potential distribution obtained from the black ellipsoid (light blue), and
from the blue ellipsoid (dark blue) of Ae. aegypti (C), P. volitans (F) and O. mossambicus (I). Minimum-volume ellipsoids presented in this figure
included 95% of each input data. Full-size DOI: 10.7717/peerj.10454/fig-3
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The UT ellipsoid was larger than the U0 ellipsoid in Ae. aegypti, but smaller than that of
U2 (Fig. 3B). Thresholded models of U0 failed to predict a high number of presence
records outside of the species’ native range. In contrast, U2 models correctly predicted
many of these records (Fig. 3C), particularly in North America, some regions of
South America (Fig. 4A) and Asia (Fig. 4C), the east coast of the Mediterranean Sea
(Fig. 4B), and in the southeastern and southwestern coasts of Australia; although potential
distribution obtained from the ellipsoid model that included 95% of presence records
covered almost the entire surface of this country (Fig. 4C).

The UT ellipsoid of P. volitans was greater than that of U0, but smaller than U1
(Fig. 3E). Near the Bahamas and Florida, U0 and U1 predicted almost all presence
records (Fig. 4D). Furthermore, U0 failed to predict some invasion records located at the

Figure 4 Regional views of the potential distribution (obtained with the minimum-volume ellipsoids
that include 95% of occurrences) across the invasion area of Aedes aegypti (A, B and C), Pterois
volitans (D, E and F) and Oreochromis mossambicus (G, H and I). Light blue model = distribution
estimated from U0; Dark blue model = distribution estimated from the supraspecific unit with the highest
AUC ratio; Green X’s = presence records of the invaded areas.

Full-size DOI: 10.7717/peerj.10454/fig-4
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east coast of the Mediterranean Sea and along the entire coast of the Red Sea, while in these
regions U1 showed high predictability (Fig. 4E).

In O. mossambicus, UT ellipsoid contained U0 and U1 (Fig. 3H). Distribution maps
derived from the U1 modeling unit predicted invaded regions that were not predicted
by U0 (Fig. 3I). For instance, in eastern Florida, central and southern Mexico, Haiti,
Dominican Republic, and the Colombian Andes in the Americas (Fig. 4G); Namibia,
South Africa, and central Madagascar in Africa (Fig. 4H); central India, eastern Thailand,
Southwestern Indonesia and Taiwan in Asia; and northeast Australia (Fig. 4I).

DISCUSSION
As we hypothesized, creation of supraspecific modeling units improved the predictive
ability of the ENMs for the three analyzed species. Specifically, by adding the occurrences
of sister taxa of each focal species (that is, when we created the U1 or U2 modeling unit),
omission rates decreased considerably in the areas of invasion. This result suggests that
existing niches of the species were not fully representative of their fundamental niches
before invading other regions; when we incorporated presences of the most closely related
species, we added relevant and complementary information for the characterization of
the fundamental niches (Godoy, Camargos & Lodi, 2018). However, in two of the three
species evaluated, predictive power decreased when additional, less closely related
lineages were added, probably because these lineages have somewhat diverged in niche
characteristics from the focal species. Our results are consistent with Peterson (2011), who
observed that niche conservatism tends to break down on temporal scales greater than
those of speciation events.

In the case of O. mossambicus, predictive power decreased up to U4 but increased again
when we added U5, which include less closely related lineages. This fluctuating result
could indicate that some environments within theM’s of each lineage are less diverse than
those contained in UT, or little ecological differentiation has occurred in this group.
Previous studies have shown that ecological niches are frequently conserved in many
freshwater fish clades (McNyset, 2009). The pattern observed in this species makes clear
that, in some groups, identifying ideal modeling units may be challenging. For instance,
predictive capacity in the O. mossambicus models reached a maximum at U1 and again
went up at U5, the last unit that we evaluated, so the stability of niche characteristics has
been particularly marked in this group.

Another important issue that should be taken with caution is that most of the
supraspecific units overestimated the thermal tolerance limits reported in experimental
studies (Ae. aegypti = 16.0–36.0 �C, De Almeida et al., 2010; Marinho et al., 2016;
P. volitans = 22.0–31.0 �C, Barker, 2015; O. mossambicus = 6.0–43.3 �C, Fast, 1986; Del Rio
Zaragoza, Rodriguez & Buckle-Ramirez, 2008). This may suggest that predictions outside
environmental ranges associated with occurrences of the focal species could represent
complementary conditions of their NF’s as well as environments not suitable for the
survival of their populations. Differences between the thermal ranges could be also a
consequence of certain methodological limitations. For example, experimental studies
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do not evaluate behavior and strategies of organisms to deal with suboptimal environments
(Kearney & Porter, 2009; Soberón & Arroyo-Peña, 2017). Moreover, physiological
thermal limits are usually determined based on a set of individuals that do not represent
all the intraspecific variability (Marinho et al., 2016). On the other hand, our MVEs
(constructed with an allowed omission of 2.5% and 5%) could still be including records of
individuals observed in unsuitable environments but dispersed there through anthropic
mechanisms (Bruno, Stachowicz & Bertness, 2003; Campbell et al., 2015) or that represent
sink populations (Pulliam, 2000).

Despite the limitations and complications, taking into account phylogenetic
relationships to carry out a “lumping” strategy (Smith et al., 2018) allowed us to build
more informative niche models. Even if the presences of the sister species represent
conditions outside the NF of the focal species, the models could be acceptable if
commission errors are low (Qiao et al., 2017); in fact, these ‘breaks’ in complementarity of
niches can be detected when the predictive capacity of the models decreases. However,
the main reason for modeling above the species level in the case of biological invasions
is to model across more environmentally diverse M areas, which leads to niche
models that are more broadly representative and robust as regards the fundamental
niche. Complementary predictions based on sister species could offer a preliminary
hypothesis of areas with potential for invasion, but which should be considered after
those represented in the observable, native-range niche. In a real application of “lumping”,
the complementary niche areas should be explicitly indicated in G, together with an
analysis of novel environments (e.g., MOP, Owens et al., 2013).

Modeling above the species level opens up many possibilities for research, particularly
in species with BAM configurations where full characterization of fundamental niches
is likely to prove difficult; for example, “Classic” BAM or “Wallace’s Dream” (Soberón &
Peterson, 2005; Saupe et al., 2012). Beyond biological invasions, rigorous and systematized
creation of supraspecific units in modeling ecological niches has potential to improve
answers to interesting biological questions that depend on characterizing species’
fundamental niches. To mention some examples, transferring models to past or future
scenarios of climate change based on closely related species may yield results distinct from
those in which traditional modeling approaches are used. Research on niche structure
(Martínez-Meyer et al., 2013; Pironon et al., 2018) could benefit from “lumping” since
the centroids of the NF’s are informative about population abundance (Martínez-Meyer
et al., 2013), population density (Yañez-Arenas et al., 2012), or genetic diversity
(Lira-Noriega & Manthey, 2014).
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