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Abstract: Genome-scale engineering and custom synthetic genomes are reshaping the next generation
of industrial yeast strains. The Cre-recombinase-mediated chromosomal rearrangement mechanism
of designer synthetic Saccharomyces cerevisiae chromosomes, known as SCRaMbLE, is a powerful tool
which allows rapid genome evolution upon command. This system is able to generate millions of
novel genomes with potential valuable phenotypes, but the excessive loss of essential genes often
results in poor growth or even the death of cells with useful phenotypes. In this study we expanded
the versatility of SCRaMbLE to industrial strains, and evaluated different control measures to optimize
genomic rearrangement, whilst limiting cell death. To achieve this, we have developed RED (rapid
evolution detection), a simple colorimetric plate-assay procedure to rapidly quantify the degree of
genomic rearrangements within a post-SCRaMbLE yeast population. RED-enabled semi-synthetic
strains were mated with the haploid progeny of industrial yeast strains to produce stress-tolerant
heterozygous diploid strains. Analysis of these heterozygous strains with the RED-assay, genome
sequencing and custom bioinformatics scripts demonstrated a correlation between RED-assay
frequencies and physical genomic rearrangements. Here we show that RED is a fast and effective
method to evaluate the optimal SCRaMbLE induction times of different Cre-recombinase expression
systems for the development of industrial strains.
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1. Introduction

Specialized strains of the yeast Saccharomyces cerevisiae are harnessed by industry for the production
of food and beverages, pharmaceuticals, chemical building blocks and fuel. While past strategies
such as ALE (adaptive laboratory evolution), random mutagenesis and rational design approaches
have produced a myriad of improved strains, the field of genetic engineering now benefits from
whole-genome reengineering approaches and the synthesis of custom designer genomes [1]. SCRaMbLE
(synthetic chromosome rearrangement and modification by LoxPSym-mediated evolution) is a genome
rearrangement system developed for use in the Saccharomyces cerevisiae 2.0 (Sc2.0) synthetic genome,
facilitating large-scale genomic rearrangements [2]. The system allows gene deletions, insertions,
inversion and translocations genome-wide to generate large libraries of unique strains that can be
screened for desired phenotypes.
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Valuable industrial characteristics, such as inhibitor tolerance and high protein secretion, often have
complex and/or unknown genetic determinants [3–5]. Utilizing the genome-scale randomization of
SCRaMbLE, improvements of complex phenotypes have already been accomplished [6–9]. An example
of the capability for genome rearrangement was the rapid generation of semi-synthetic heterozygous
diploid strains containing a single copy of the synthetic chromosomes synV and synX, with significantly
improved thermotolerance at 42 ◦C after a single round of SCRaMbLE [9], whereas a similar increase in
thermotolerance using ALE took over 300 generations [10]. SCRaMbLE was also used to optimize the
biosynthetic pathway for improved violacein yields, demonstrating that this strategy could potentially
be applied to optimize the production of any metabolite [7]. These SCRaMbLEd strains contained
only one synthetic chromosome in a haploid genome context; therefore, it is conceivable that strains
harboring more synthetic DNA, with more loxP recombinase recognition sites, could produce greater
genomic diversity with associated novel phenotypes of interest. Thus far, SCRaMbLE has also been
explored for a variety of fundamental and applied applications, including genome minimization [2],
biosynthetic pathway assembly [8,11] and for the optimization of hydrolytic enzyme ratios for biofuel
applications [12].

SCRaMbLE has been successfully employed to develop yeast strains with novel phenotypes;
however, this is accompanied by the rapid loss of essential genes, especially in haploid cell populations.
This often leads to retarded cell growth and high lethality rates, characteristics frequently used to
estimate the degree of SCRaMbLE that has occurred in haploid cells [2,13]. In addition to the loss
of cell viability, other non-lethal deleterious effects could mask the effects of desirable phenotypes
generated through genomic rearrangement, while growth-impaired mutant cells are vulnerable to
being outcompeted by healthier, less-SCRaMbLEd cells. It is thus imperative to maintain a balance
between the degree of genomic rearrangement and cell viability so as to maximize the discovery of
useful phenotypes.

Considering that industrial strains are generally diploid and that the 2n gene copy-number could
serve as a viability buffer in the event of essential gene loss, SCRaMbLE holds tremendous potential to
augment commercial strain development and improvement [9]. It has previously been shown that the
survival of SCRaMbLEd diploids is significantly higher than that of haploids, with a viability over
70% compared to less than 30% in haploid strains under the same treatment conditions [9]. Although
SCRaMbLEing in diploid cells overcomes some of the limitations associated with rapid haploid cell
death, it abolishes the use of viability as a simple output to gauge the degree of genome scrambling
in the population. Simultaneously, it increases the complexity of the bioinformatic analysis of these
genomes due to the high sequence similarity between equivalent synthetic and non-synthetic genomic
regions. As such, there is a need for new methods which overcome these limitations.

In this study, we have developed RED (rapid evolution detection), a simple colorimetric plate-assay
procedure to determine the degree of genomic rearrangements within SCRaMbLEd diploid yeast
populations. RED-capable semi-synthetic laboratory strains were combined with haploids from four
different industrial strains. The frequency of red-pigmented colonies was quantified and compared to
the relative degree of gene loss within randomly selected colonies in the population. We subsequently
used the RED system to monitor the leakiness and SCRaMbLE induction profile of several previously
reported Cre-recombinase expression vectors. As proof of concept, we have showed that RED could be
generally applied to semi-synthetic industrial strains to rapidly evaluate the frequency of genomic
rearrangements in a SCRaMbLEd population, which allows the fine-tuning and selection of optimal
SCRaMbLE conditions for strain library generation.

2. Materials and Methods

2.1. Culturing Media

Chemicals used in this study were obtained from Sigma-Aldrich, Australia and used as
recommended by the supplier, unless stated otherwise. Saccharomyces cerevisiae strains were routinely
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cultivated in YPD (10 g L−1 w/v yeast extract, 20 g L−1 w/v peptone, 20 g L−1 w/v glucose) at 30 ◦C
and were shaken at 200 rpm for liquid cultures. Escherichia coli DH5α cultures were used for plasmid
propagation and were cultivated at 37 ◦C in Luria Bertani broth or agar (10 g L−1 tryptone, 5 g L−1

yeast extract, 10 g L−1 sodium chloride, 20 g L−1 bacteriological agar) supplemented with 100 µg mL−1

ampicillin for plasmid selection.
YP-gal agar (10 g L−1 yeast extract, 20 g L−1 peptone, 20 g L−1 galactose), supplemented with

400 µg mL−1 hygromycin B (InvivoGen, USA), was used to select HO-deleted heterozygous diploid
industrial strains and the subsequent haploid progeny. Sporulation agar plates contained 1 g L−1 yeast
extract, 10 g L−1 potassium acetate and 20 g L−1 bacteriological agar.

S. cerevisiae strains containing Cre-plasmids were selected and maintained using SC-ura medium
(20 g L−1 glucose, 1.92 g L−1 yeast synthetic drop-out medium supplements without uracil, 0.68 g L−1

yeast nitrogen base without amino acids). SC-ade agar (20 g L−1 glucose, 0.68 g L−1 yeast nitrogen
base without amino acids, 20 mg L−1 uracil, 20 mg L−1 L-methionine, 60 mg L−1 L-leucine, 20 mg L−1

L-histidine, 20 g L−1 bacteriological agar) was used to select for ADE2-positive transformants.

2.2. Construction of Cre Plasmids

All DNA manipulations were performed using reagents supplied by New England Biolabs,
Australia according to the manufacturer’s recommendation, unless otherwise stated. All PCR primer
sequences are provided in Table A1.

Four plasmids, each containing different native yeast promoters to allow the differential expression
of the Cre-recombinase gene, were used in this study (Table 1). The pLM160 plasmid, containing the
CLB2 promoter, has previously been constructed [9,14,15]. To construct pEW_SCW11p, the SCW11p

Cre-EBD cassette was liberated from the pLM006 plasmid by SacI and EcoRI restriction enzyme
digestion, and ligated directionally into the corresponding sites of the SacI and EcoRI digested
pLM160 plasmid. The GAL1 promoter from pHK300-HO was isolated by digestion with EcoRI
and PacI. The Cre-EBD cassette and the backbone plasmid from pLM160 were PCR-amplified using
primers Cre-F+PacI and Cre-CassetteR (Table A1), which added a PacI restriction enzyme recognition
site. The PCR amplicon was digested with PacI and EcoRI, and the digested GAL1 promoter was
subsequently ligated into the Cre-EBD containing plasmid backbone, to yield pEW_GAL1p (Table 1).

Table 1. Cre-recombinase expression plasmids.

Plasmid Name Relevant Genotype References

pHK300-HO ho::GAL1p –kanMX4 [14]
pLM006 HIS3, CEN6, SCW11p Cre_EBD [9,15]

pEW_CLB URA3, CEN6, CLB2p Cre_EBD aka pLM160 [9,15]
pEW_GAL URA3, CEN6, GAL1p Cre_EBD This study
pEW_SCW URA3, CEN6, SCW11p Cre_EBD This study

2.3. Industrial Haploid Strain Generation

To generate stable haploid progeny of the industrial strains, ho-deletion cassette PCR fragments
were generated from the pHK300-HO plasmid (Table 1), using the HO_ampl-F/R primer set (Table A1)
and transformed into Y-11878, Y-582, YB-428 and MH-1000 (Table 2) using the LiOAc/SS carrier
DNA/PEG transformation method [16], and recovered for 4 h in YP-gal broth before plating onto
YP-gal agar, supplemented with 400 µg mL−1 G418–sulfate. The galactose-dependent expression of the
geneticin resistance gene ensured the minimal influence of its protein product during strain evaluation
on glucose-containing media. Putative transformants were selected and the disruption of at least
one HO allele was confirmed with PCR using the HO_conf-F/R primer set (Table A1). Y-11878, Y-582,
YB-428 and MH-1000 strains heterozygous for a functional HO gene were grown to the stationary
phase in YPD medium. A thick cell suspension of each culture was spread on sporulation agar plates
and incubated at ambient temperature until sufficient asci formation was observed (after 3–6 days).
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Random spore isolation was performed as previously described [5] and spore suspensions were plated
on YP-gal agar, supplemented with 400 µg mL−1 hygromycin B to select for HO-disrupted haploid
progeny. The HO gene encodes an endonuclease which allows yeast to convert between mating types,
thus facilitating spontaneous diploid formation. The colonies were selected form the MH-1000, Y-11878,
YB-428 and Y-582 backgrounds and were designated HK01, HK02, HK03 and HK04, respectively.
The mating type selection was performed by multiplex PCR using the MatLocus, MatA and MatAlpha
primers (Table A1), as previously described [17].

2.4. RED-Capable Strain Preparation

Strain preparation is summarized in Figure 1. To introduce RED capability into the strains
intended for SCRaMbLE library generation, the native ADE2 on chromosome XV of the haploid strains
HK01–HK04 and yZY175 was replaced with a kanMX4 marker, conferring resistance to geneticin.
The ade2::kanMX4 locus, along with ~200 bp flanking sequences, was PCR amplified from genomic
DNA (extracted using the SDS/LiOAc genomic DNA extraction procedure [18]) obtained from the
BY4741 ade2∆ strain [19] (Table 2). The kanMX4-containing fragment was transformed into all five
haploid strains to replace and disrupt the native ADE2 gene using the LiOAc/SS carrier DNA/PEG
method [16]. Transformants (red colonies) were selected on YPD agar supplemented with 200 µg mL−1

G418-sulfate (Roche) and to reflect a lack of ADE2 were designated HK01-a, HK02-a, HK03-a and
HK04-a, based on the corresponding isogenic strain used.
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HK01-au Uracil / adenine auxotrophic HK01 MATa ura3Δ ade2Δ::kanMX4 This study 
HK02-au Uracil / adenine auxotrophic HK02 MATa ura3Δ ade2Δ::kanMX4 This study 
HK03-au Uracil / adenine auxotrophic HK03 MATa ura3Δ ade2Δ::kanMX4 This study 
HK04-au Uracil / adenine auxotrophic HK04 MATa ura3Δ ade2Δ::kanMX4 This study 
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This study 

EW01 RED-enabled HK01-au X EW00 MATa/MATα ura3Δ/ura3Δ 
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Figure 1. Strategy to generate RED-enabled heterozygous diploid S. cerevisiae strains. Native ade2
and ura3 were removed from industrially derived HK01–HK04 haploid strains. Native ade2 was also
deleted from Chr XV in the semi-synthetic yZY175 strain, and functional ADE2 was re-introduced
into Syn Chr VI replacing the non-essential YFL019C gene. In this locus, ADE2 is flanked by the
existing loxPsym sequences. Mating of the two modified parental haploids generated RED-enabled
EW01–EW04 containing native (non-synthetic) chromosomes from HK01–HK04 (MATa) and synthetic
chromosomes from yZY175 (MATα). Colors of yeast strains shown in this figure are representative of
the color of strains following each genetic manipulation.
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A functional copy of ADE2 was reintroduced into a synthetic chromosome of strain yZY175 ade2∆
to complement the ade2 deletion from native Chr XV, producing white-colored colonies. The ADE2
CDS (with ~500 bp upstream and downstream flanking sequences) was amplified from S. cerevisiae
BY4741 using forward and reverse primers ‘ADE2 + YFL019C’ using the same PCR conditions as above
(Table A1). The primers added 40 bp of flanking sequences homologous to the YFL019C locus on Chr
VI. The ADE2-containing PCR fragment was then transformed into synthetic Chr VI of the yZY175
ade2∆, disrupting the nonessential gene YFL019C, thus generating a loxPsym-flanked ADE2. White
colonies were selected on adenine-deficient (SC-ade) agar and the selected isolate was named EW00.

To allow the use of the Cre-recombinase expression plasmids containing URA3 as a selectable
marker, the native URA3 was deleted from the HK01-a, HK02-a, HK03-a and HK04-a strains. The ura3∆0
locus of the S. cerevisiae BY4742 strain was amplified using forward and reverse ‘Ura3′ primers that
annealed approximately 250 bp upstream and downstream of the native CDS (Table A1). The fragment
was transformed into the four strains and transformants were selected on YPD agar supplemented
with 1 g L−1 Thermo Scientific™ 5-FOA (Fluoroorotic acid). The absence of a functional URA3 was
subsequently confirmed by the absence of growth on media lacking uracil (SC-ura agar); these strains
were identified using the following convention: HK0x-au.

Heterozygous diploid strains EW01, EW02, EW03 and EW04 were generated by mating each
of the HK01-au, HK02-au, HK03-au and HK04-au with the semi-synthetic EW00. Individual strains
were grown overnight in YPD broth, inoculated into fresh YPD broth to OD600 0.125 and incubated
for 3 h. Cultures were then diluted to OD600 0.5 and co-cultured overnight in equal proportions in
YPD broth at an ambient temperature to allow mating. Cell suspensions were plated on SC-ade to limit
the growth of the industrial haploid colonies. Diploid colonies were identified by mating-type PCR,
as described earlier.

To study the dynamics of previously reported SCRaMbLE induction systems, facilitated by
different native yeast promoters driving Cre-recombinase expression, EW01 was transformed with
either pLM160, pEW_GAL1p or pEW_SCW11p and putative transformants selected on SC-ura agar
plates, to produce strains EW01-CLB, EW01-GAL and EW01-SCW, respectively.

2.5. Spot Assays for Fitness Evaluation

Industrial diploid strains, their haploid progeny (HK01–HK04) and RED-enabled diploid strains
(EW01–EW04) were cultivated overnight in YPD after which they were inoculated into fresh YPD
medium to a final optical density at 600 nm (OD600) of 0.125 and grown for 3–4 h. Cultures were
washed twice with phosphate buffered saline. Cells were diluted to an OD600 of 0.5 and a 10× dilution
series spotted on YPD agar plates containing either 10% v/v ethanol, 12% v/v ethanol, 1.5 M sorbitol or
25 mM dithiothreitol (DTT).

2.6. Ethanol Production Determination

Cultures of heterozygous strains EW01–04 and industrial diploids MH-1000, Y-11878, YB-428 and
Y-582 were grown overnight in YPD. The cultures were then inoculated into 40 mL of fresh YPD with
high glucose concentration (200 g L−1 glucose) in 50 mL falcon tubes to an OD600 of 0.2. A rubber
stopper with S-bend airlocks filled with ~2 mL of sterile water was attached to the top of the Falcon
tubes to allow for CO2 escape. The cultures were incubated at ambient temperature for 120 h to allow
the fermentation to finish. The final ethanol concentration in culture supernatant was measured using
the Megazyme ethanol assay kit (K-ETOH, Megazyme, Ireland) as per the manufacturer’s instructions.
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Table 2. Summary of relevant S. cerevisiae strains used in this study.

Strain Description Genotype Reference

yZY175 Contains synthetic chromosomes
III, VI and IX-R MATα [20]

MH-1000 Industrial distillery yeast MATa/MATα [21]

Y-11878 Isolated from Jamaican cane juice MATa/MATα [22]

YB-428 Isolated from rum fermentation MATa/MATα [22]

Y-582 Isolated from dry claret wine MATa/MATα [22]

HK01 Progeny derived from MH1000 MATa ho::GAL1p—kanMX4 This study

HK02 Progeny derived from Y-11878 MATa ho::GAL1p—kanMX4 This study

HK03 Progeny derived from Y-582 MATa ho::GAL1p—kanMX4 This study

HK04 Progeny derived from YB-428 MATa ho::GAL1p—kanMX4 This study

HK01-au Uracil / adenine auxotrophic HK01 MATa ura3∆ ade2∆::kanMX4 This study

HK02-au Uracil / adenine auxotrophic HK02 MATa ura3∆ ade2∆::kanMX4 This study

HK03-au Uracil / adenine auxotrophic HK03 MATa ura3∆ ade2∆::kanMX4 This study

HK04-au Uracil / adenine auxotrophic HK04 MATa ura3∆ ade2∆::kanMX4 This study

EW00 RED-enabled yZY175 (haploid) MATα ura3∆ ade2∆::kanMX4
yfl019c::ADE2 This study

EW01 RED-enabled HK01-au X EW00
MATa/MATα ura3∆/ura3∆

ade2∆::kanMX4/ ade2∆::kanMX4
YFL019C/yfl019c::ADE2

This study

EW02 RED-enabled HK02-au X EW00
MATa/MATα ura3∆/ura3∆

ade2∆::kanMX4/ade2∆::kanMX4
YFL019C/yfl019c::ADE2

This study

EW03 RED-enabled HK03-au X EW00
MATa/MATα ura3∆/ura3∆

ade2∆::kanMX4/ade2∆::kanMX4
YFL019C/yfl019c::ADE2

This study

EW04 RED-enabled HK04-au X EW00
MATa/MATα ura3∆/ura3∆

ade2∆::kanMX4/ade2∆::kanMX4
YFL019C/yfl019c::ADE2

This study

EW01-CLB EW01 with plasmid pLM160 yfl019c::ADE2 CLB2p Cre_EBD This study

EW01-GAL EW01 with plasmid pEW_GAL1 yfl019c::ADE2 GAL1p Cre_EBD This study

EW01-SCW EW01 with plasmid pEW_SCW11 yfl019c::ADE2 SCW11p Cre_EBD This study

2.7. SCRaMbLE

The RED-assay workflow is shown in Figure 2. Strain EW01-GAL was cultivated overnight
at 30 ◦C in YPD broth, then inoculated into fresh YPD to an OD600 of 0.2 and cultivated for 3–4 h.
To induce SCRaMbLE, cells were washed twice with ddH2O and inoculated into fresh YP galactose
broth (20 g L−1 galactose) supplemented with 1 µM β-estradiol at an OD600 of 0.2. In addition to this,
EW01-GAL cultures were also prepared in YP galactose without β-estradiol and YPD with and without
β-estradiol. Cells were incubated with 200 rpm shaking at 30 ◦C and samples were taken at 0, 2, 4
and 6 h, washed twice with ddH2O and plated on YPD agar. Plates were incubated for 2–3 days at
30 ◦C before colony numbers and colors (red or white) were recorded. A random selection of eight
red and eight white colonies from each time point was analyzed by PCR to indicate the presence or
absence of chromosome arms. One pair of primers was used for each chromosome arm of the native
and synthetic Chr III and VI (Table A1).
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Figure 2. Flow diagram of the RED assay experimental procedure. RED-enabled semi-synthetic
heterozygous diploid cells, containing a synthetic copy of chr III and VI, were engineered to turn
red due to loxP-mediated loss of ADE2 (a). Cre-recombinase expression was induced for 2, 4 and
6 h to allow increased genomic rearrangement through SCRaMbLE (b). The frequency of ADE2 loss
was determined based on the appearance of yeast colonies with red pigment (c). Randomly selected
colonies were sequenced using short-read NGS technology. Custom scripts were developed to filter out
all reads not originating from the synthetic genomes (d). SCRaMbLEd chromosomes were assembled
and assessed for gene loss (e).

2.8. Genome Sequencing

Twelve white post-SCRaMbLE EW01-GAL colonies from each time point were randomly selected
from the cultures that had been plated onto YPD agar after 2, 4 and 6 h of induction. In addition,
two red colonies from each time point were selected. Each selected colony was grown overnight in
YPD broth and genomic DNA was extracted from each culture using the Thermo Scientific™ Yeast
DNA Extraction Kit as per the manufacturer’s instructions. Paired-end whole genome sequencing
was carried out at the Beijing Genome Institute (BGI), Beijing, China using the Illumina sequencing
technology BGISEQ PE100 at 30× coverage. The length of each sequencing read after adapter trimming
was 100 bp.

2.9. Detection of SCRaMbLE Events

HK01, EW00, EW01 and 48 SCRaMbLEd S. cerevisiae strains were sequenced. The determination
of SCRaMbLE events in heterozygous diploid strains such as EW01 is technically challenging given the
high sequence similarity between corresponding synthetic and ‘native’ DNA. As such, it was important
to remove reads originating from ‘native’ DNA from the read pool as they cannot be SCRaMbLEd and
could skew the interpretation of the results. A custom bioinformatics pipeline was therefore developed
to remove these sequencing. Briefly, the script (supplementary material) used Bowtie 2 [23] to map
all reads to two reference sequences—Syn III and VI of the semi-synthetic strain EW00, and Chr III
and VI of the MH-1000-derived HK01. Using filtering strategies, reads were isolated that satisfied two
requirements—firstly, they mapped with 100% similarity to Syn III or VI of EW00, and secondly, they
did not map with 100% similarity to Chr III and VI of HK01. For unpaired reads recovered this way in
the read pool, their read partner was recovered as well. These reads therefore contained sequences
exclusively generated from the synthetic chromosomes and were used to infer subsequent deletion
events. For convenience in subsequent analyses, the scripts were designed to generate a standardized
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FASTA formatted file. The bioinformatics procedure is visually represented in Figure A4. For quality
control, an additional output of the script is a log file containing information from each step of the
script, including, for example, the total number of reads and how many mapped to each reference
(with and without 100% similarity). The filtered read pool was imported into Geneious Prime 2020.0.4
(https://www.geneious.com) and mapped to a consensus sequence of Syn Chr III and VI. The missing
CDS annotations from each strain were compiled, enumerated and visualized in a heat map using
GraphPad Prism version 8.01 for Windows, La Jolla California USA, www.graphpad.com.

3. Results

3.1. Heterozygous Diploid S. cerevisiae for Rapid Evolution Detection SCRaMbLE

To enable RED in S. cerevisiae strains, at least one functional copy of ADE2 should be present
in the genome, flanked by loxP-recombination sites. This was achieved by the introduction of an
ADE2 gene cassette into the loxP-flanked YFL019C locus of the semi-synthetic yZY175 ade2∆ strain.
This RED-facilitator strain enabled the generation of four semi-synthetic strains through a simple
mating procedure with industrially relevant, ADE2-deficient yeast strains. All four RED-enabled
heterozygous diploid strains (EW01–EW04) had consistent white-cream colored colonies on YPD agar
plates, with no spontaneous red colored colonies or sectoring detected at any stage. The presence of
unique, locus-specific PCR-tags (a feature of the synthetic chromosomes [2]) implied the presence of the
native and synthetic chromosomes III and VI, in all four RED-enabled heterozygous diploids. Illumina
genome sequencing confirmed the presence of intact synthetic chromosomes III and VI, in addition to
its native counterparts. No aberrant gene or chromosomal copy-numbers were detected.

3.2. General Stress-Resistance and Ethanol Production of Heterozygous Diploid Strains

In general, the semi-synthetic heterozygous diploids shared the combined properties of both
synthetic and industrial yeast backgrounds. In addition to the ability to undergo rapid genome
evolution, facilitated by the presence of many loxP sites on the synthetic chromosomes III and VI,
the fitness of these heterologous diploids was similar to that of their respective parental diploid strains
under various stress conditions. The novel diploid strains displayed high tolerance to osmotic stress
(up to 1.5 M sorbitol), reducing conditions (up to 25 mM DTT) and presence of alcohol to up to 12%
(v/v) ethanol, respectively (Figure 3). It is noted that the growth of the haploid industrial parent
strains HK03 and HK04 was inhibited under ethanol and reducing conditions; however, the tolerance
phenotypes were recovered in their corresponding heterozygous diploid strains.

In addition to the general stress tolerance of yeast strains, ethanol production is an important trait
for many industrial S. cerevisiae strains; as such, the end-point ethanol production of the generated
diploids was assessed. The semi-synthetic nature of the EW03 and EW04 strains did not affect their
final ethanol yields compared to their corresponding diploid industrial parent strains (Figure 4). EW01
produced significantly less ethanol than its industrial diploid parent (p < 0.02), at just under 6%
v/v, compared with the ~8.5% v/v achieved by the MH1000 strain under our culturing conditions.
Interestingly, the heterozygous EW02 on average produced up to 1% v/v more ethanol than its
corresponding industrial diploid parent, Y-11878.

https://www.geneious.com
www.graphpad.com
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Figure 3. Fitness assays of generated heterologous diploid strains EW01-04, their parental haploids
(HK01–04 and yZY175) and the corresponding diploid strains (industrial diploids). Spot assays were
performed on YPD containing 10–12% (v/v) ethanol, 25 mM dithiothreitol (DTT) and 1.5 M sorbitol
incubated for 72 h.
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Figure 4. Ethanol production of S. cerevisiae industrially relevant diploids (MH1000, Y-11878, Y-582
and YB-428) and semi-synthetic heterozygous diploids (EW01-EW04). Ethanol concentration was
measured after cultivation in YPD with high glucose concentration (20 g L–l glucose) at 30 ◦C for
120 h. There was no difference in ethanol production from semi-synthetic strains compared to the
corresponding industrial diploids, except for the EW01 strain, compared to the parental MH1000 strain.

3.3. SCRaMbLE Induction and Rapid Evolution Detection

The RED-enabled strains developed in this study provide a viability-independent visual output
which reflects the scale of genome rearrangement within a post-SCRaMbLE yeast population. Based
on the visibly red colonies produced by ade2 mutants (due to the accumulation of red-pigment [24]),
our RED assay generates a visual estimation of the frequency of Cre-induced recombination, and the
subsequent gene loss of the loxP-flanked ADE2 cassette (Figure A1).

Using the RED-assay, we compared the SCRaMbLE induction dynamics of three promoters,
previously used for Cre_EBD expression. The promoters used to drive Cre_EBD expression were the
M/G1 cell-cycle phase-activated CLB2 promoter [25,26], the daughter cell-specific activated SCW11
promoter [27] and the galactose-inducible GAL1 promoter [28]. In addition to the promoter-dependent
expression patterns of the recombinase, estradiol is required for SCRaMbLE induction to allow the
nuclear-localization of the estradiol binding domain-linked Cre-recombinase [6]. As unintended
genome rearrangement can lead to preemptive genome instability, the basal recombination rate of the
EW01 strains, harboring either the pEW_CLB, pEW_SCW11 or the pEW_GAL plasmid, were evaluated
with RED (Figure 5). In the absence of estradiol, no red colonies were detected at any evaluated time
point for the strains harboring the pEW_CLB or pEW_GAL plasmids when galactose was absent
(Figure 5). Surprisingly, red colonies were observed in the EW01 strain containing the pEW_SCW
plasmid, where the number of red colonies remained below 5% of the population when no estradiol
was present (Figure 5). In the presence of galactose, but no estradiol, the EW01_GAL strain showed
a continuous increase in red colonies over time, reaching significantly higher red colony formation
frequencies compared to glucose-grown cells at 4 h and 6 h of growth (Figure 5). Up to a quarter of the
population was red after 6 h of galactose growth.
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Figure 5. Red:white ratio of S. cerevisiae heterozygous diploid EW01 colonies following SCRaMbLE for
up to six hours. Three strains were evaluated (EW01-CLB, EW01-SCW and EW01-GAL) that contained
Cre expression plasmids with CRE under the transcriptional control of promoters CLB2p, SCW11p and
GAL1p, respectively. Cultures were supplemented with 1 µM estradiol to induce SCRaMbLEing, while
the control cultures received no estradiol. EW01-GAL was cultivated in both inducing (galactose in the
absence of glucose) or non-inducing (glucose-containing) conditions. At two-hour time points from 0 h,
samples of cells were taken, washed and plated onto YPD agar. The color of colonies was recorded
after 72 h.

With the exception of the glucose-grown EW01-GAL strain, the rapid generation of red colonies
was observed after 2 h of estradiol addition (Figure 5), with more than 65% of the post-SCRaMbLE
population being red in the EW01-GAL (grown in galactose) strain after 4 h of estradiol exposure
(Figure 5). There was a gradual increase in red colony frequencies for all strains up to the 4 h time
point, after which the EW01-SCW and EW01-GAL (grown in galactose) strains had reductions in the
ratio of red colonies at 6 h after estradiol addition.

3.4. Quantitation of SCRaMbLE Events

The impact of SCRaMbLE on a genomic level was subsequently investigated using the EW01-GAL
strain, since it had the greatest versatility for Cre-induction options and demonstrated the effective
suppression of SCRaMbLE in glucose-containing media. Twelve white colonies and two red colonies
were randomly selected from each time point after estradiol addition (2, 4 and 6 h) in the galactose–grown
EW01-GAL strain (Figure 5). At each time point, the total number of colonies obtained was 63, 141 and
200, respectively. The genome of each colony was sequenced and the synthetic portion analyzed with
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custom scripts (developed in this study) to evaluate the level of SCRaMbLE that occurred. The degree of
genome rearrangement was based on the number of genes lost per genome in each SCRaMbLEd colony.

The analysis of sequencing data from red-pigmented colonies revealed that, in general, large
amounts of genetic material were lost on both synthetic chromosomes. At least 50%, and up to 78%,
of all CDSs had been deleted in all analyzed red strains (data not shown). This phenomenon of large
amounts of DNA loss in red colonies was supported by the absence of synthetic chromosome-specific
PCR products obtained from a larger set of 24 red and 24 white colonies (Figure A2). The absence of
PCR amplification products from targets on both chromosome arms might suggest a high frequency
of complete loss of synthetic chromosomes in red colonies. Interestingly, red colonies obtained after
two hours of SCRaMbLE displayed extensive gene loss, similar to those analyzed at the 4 and 6 h
time points.

With the exclusion of two outlier strains, which had lost the majority of synthetic chromosome VI,
a significant variation in gene-loss frequencies was observed between the white colonies evaluated at
each time point, with 7–60 gene deletions per strain (Figure 6). On average, strains had 26 deletions after
2 h of induction, which increased to 33 at 4 h of estradiol introduction. In accordance with the RED assay,
the average number of gene deletions decreased to 19 per strain for the 6 h time point. A genomic heat
map (Figure A3), showing the frequency of gene loss across synthetic chromosomes III and VI, revealed
a non-random distribution of gene deletion events over the length of both synthetic chromosomes.

Microorganisms 2020, 8, x FOR PEER REVIEW 12 of 18 

 

The analysis of sequencing data from red-pigmented colonies revealed that, in general, large 
amounts of genetic material were lost on both synthetic chromosomes. At least 50%, and up to 78%, 
of all CDSs had been deleted in all analyzed red strains (data not shown). This phenomenon of large 
amounts of DNA loss in red colonies was supported by the absence of synthetic 
chromosome-specific PCR products obtained from a larger set of 24 red and 24 white colonies 
(Figure A2). The absence of PCR amplification products from targets on both chromosome arms 
might suggest a high frequency of complete loss of synthetic chromosomes in red colonies. 
Interestingly, red colonies obtained after two hours of SCRaMbLE displayed extensive gene loss, 
similar to those analyzed at the 4 and 6 h time points. 

With the exclusion of two outlier strains, which had lost the majority of synthetic chromosome 
VI, a significant variation in gene-loss frequencies was observed between the white colonies 
evaluated at each time point, with 7–60 gene deletions per strain (Figure 6). On average, strains had 
26 deletions after 2 h of induction, which increased to 33 at 4 h of estradiol introduction. In 
accordance with the RED assay, the average number of gene deletions decreased to 19 per strain for 
the 6 h time point. A genomic heat map (Figure A3), showing the frequency of gene loss across 
synthetic chromosomes III and VI, revealed a non-random distribution of gene deletion events over 
the length of both synthetic chromosomes.  

 
Figure 6. The number of deleted genes in white EW01_GAL colonies obtained after two, four or six 
hours of estradiol exposure. Each black dot represents an individually sequenced SCRaMbLEd 
EW01_GAL colony. 

4. Discussion 

SCRaMbLE is a novel genome evolution system associated with the synthetic Sc2.0 strains, 
allowing the combinatorial deletion, duplication and translocation of multiple genes at a time. Not 
only is SCRaMbLE a valuable tool for studying epistatic interactions between genes, it has also been 
demonstrated as a useful approach to generate large libraries of novel strains with improved 
industrial phenotypes [7,12,15,29]. However, this indiscriminatory rearrangement of functional 
genomic units frequently results in inviable or unfit phenotypes due to the loss of essential genes or 
the disruption of fitness-related metabolic pathways. To harness SCRaMbLE for the development of 
next generation industrial strains, precise control is required to limit the loss of promising strains 
due to excessive gene loss. Currently, strategies to indicate the degree of genomic SCRaMbLEing are 

Figure 6. The number of deleted genes in white EW01_GAL colonies obtained after two, four or
six hours of estradiol exposure. Each black dot represents an individually sequenced SCRaMbLEd
EW01_GAL colony.

4. Discussion

SCRaMbLE is a novel genome evolution system associated with the synthetic Sc2.0 strains,
allowing the combinatorial deletion, duplication and translocation of multiple genes at a time. Not only
is SCRaMbLE a valuable tool for studying epistatic interactions between genes, it has also been
demonstrated as a useful approach to generate large libraries of novel strains with improved industrial
phenotypes [7,12,15,29]. However, this indiscriminatory rearrangement of functional genomic units
frequently results in inviable or unfit phenotypes due to the loss of essential genes or the disruption of
fitness-related metabolic pathways. To harness SCRaMbLE for the development of next generation
industrial strains, precise control is required to limit the loss of promising strains due to excessive gene
loss. Currently, strategies to indicate the degree of genomic SCRaMbLEing are based on the evaluation
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of cell viability and time-consuming whole genome sequencing analysis [8], though both approaches
are of limited use in industrial yeast strains, which are predominantly diploid. Here, a simple method
called rapid evolution detection (RED) was developed for use in semi-synthetic heterozygous yeast
strains. RED allows the qualitative detection of the genomic rearrangements that occurred within a
SCRaMbLEd population through the generation of visually distinct red-pigmented yeast colonies.

SCRaMbLE-mediated genomic rearrangements occur exclusively in synthetic DNA at the
gene-flanking loxP sites. Here, a RED-enabled semi-synthetic haploid strain (EW00) was constructed
and used as a modular add-on to generate semi-synthetic heterozygous yeast strains with industrial
backgrounds. Similar to other strain-breeding reports [30], the four semi-synthetic diploid strains
generated here displayed a minimal loss of beneficial phenotypes (and even heterosis). Although a
limited number of phenotypes were evaluated here, our results suggest that the heterozygous synthetic
DNA had a low impact on the general fitness of the resulting strains, and that it is possible to introduce
SCRaMbLE-capability into any industrial S. cerevisiae strain.

To restrict excessive genome rearrangement, SCRaMbLE was originally designed with an inducible
control mechanism, whereby Cre-recombinase would only be expressed in newly formed daughter cells
and only activated in the presence of estradiol [2]. This was achieved by fusing the Cre-recombinase
to the murine estradiol-binding domain (EBD), which sequesters Cre-recombinase in the cytosol.
The controlled addition of estradiol to the culture medium facilitates the movement of Cre-EBD into
the nucleus, where Cre recombinase is able to act upon the loxP sequences of the synthetic genome [2].
However, reports from our group and other Yeast 2.0 consortium members have suggested that
SCRaMbLE might occur even in the absence of estradiol. RED revealed low, but detectable, ADE2
deletion events for strains harboring CLB2p and SCW11p Cre-EBD expression plasmids in the absence
of estradiol. Even at a low frequency, this could lead to unintended gene loss or even the loss of
whole chromosomes without Cre-induction [6,15], and could affect the long-term stability of strains.
Additional evidence of this leakiness was observed in RED-enabled strains grown on agar plates (in the
absence of estradiol), with the infrequent appearance of the red sectoring (Figure A1) of otherwise
white colonies—a strong indicator of genome instability [31]. The unintended SCRaMbLE initiation in
the absence of estradiol is likely to be Cre-EBD concentration-dependent, as the strong induction of the
recombinase expression from the GAL1 promoter surpassed the cytosolic sequestering ability of the
estrogen-binding domain. This observation shows the versatility of the GAL1p expression system for
Cre-induction, by providing options for a stepwise adjustment in SCRaMbLE strength, in addition to
the effective suppression of SCRaMbLE in glucose-containing media.

The custom bioinformatic pipeline developed in this study was able to effectively differentiate
short DNA reads originating from the synthetic portion of heterozygous S. cerevisiae strains, allowing
the enumeration of gene deletion events after SCRaMbLE. The genome sequencing data supported the
visual RED assay results. Using this simple method to visually report on the frequency of genomic
rearrangements in a post-SCRaMbLE population, we were able to detect the leakiness of several
Cre-expression systems and establish the induction timeframes for optimal SCRaMbLEing rates.
Our results also demonstrated the importance of selecting appropriate sampling times, as prolonged
SCRaMbLE induction could ultimately reduce the frequency of genomic rearrangement within the
population. One reason for this observation could be linked to the loss of cell viability due to the
increased chance of essential gene loss and/or the excessive disruption of cellular metabolism over
extended periods of SCRaMbLE. It is thus conceivable that cells with fewer rearrangements or those
which have escaped the influence of Cre-recombination (due to plasmid loss or mutations) would have
a competitive advantage over cells with rapidly changing genomes.

Assuming an equal chance of recombination at any given loxP site, SCRaMbLEd synthetic haploid
strains would have lost on average seven to eight genes, upon reaching 90% cell lethality due to
essential gene loss. This value was in alignment with previous reports for SCRaMbLEd haploid strains
that had up to eight gene deletions per strain [6]. In the heterozygous strains evaluated in this study,
SCRaMbLEd populations were generated with, on average, 33 gene deletions per strain. Considering
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that some strains had up to 60 gene deletions, the opportunity to obtain highly modified genomes
is significantly enhanced by the higher viability of these strains. SCRaMbLEing in heterozygous
diploid strains has been established as a powerful tool to generate novel phenotypes (including in
interspecies diploids [9]), but whether this increased genomic diversity of SCRaMbLEd heterozygous
strains outweighs the potential masking effects of the native chromosome remains to be determined.

In conclusion, RED was developed as a modular system to monitor and report on the occurrence
and level of SCRaMbLEing in a population that provides information visually without the need to
sequence strains. Heterozygous diploids were developed by combining industrially relevant haploids
with a RED-enabled strain containing synthetic DNA, and were shown to be generally as fit as
their industrial parent. Through the breeding strategy used here, or protoplast fusions, synthetic
chromosomes can be introduced to any industrial S. cerevisiae strain and be RED-enabled. Furthermore,
RED proved a valuable resource to rapidly evaluate various SCRaMbLE induction systems and
induction optimizations. In future studies, RED could be harnessed to determine the effects of different
growth conditions or strain backgrounds on the magnitude of SCRaMbLE in a population, or assist in
future genome minimization efforts [2].

Supplementary Materials: The shell scripts that was used to separate Synthetic Yeast Illumina DNA reads from a
heterologous diploid strains can be accessed at https://github.com/HeinrichKroukamp/Wightman-et-al-2020-script.
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between red and white colonies is observed.
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Figure A2. Detection of PCR markers on the native and synthetic chromosomes of SCRaMbLEd
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maintaining native chromosome integrity.
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Figure A4. Summary of bioinformatics pipeline to filter sequencing reads of SCRaMbLEd heterozygous
diploid S. cerevisiae. Reads are mapped to reference sequences from both parental chromosomes (a)
and are filtered by reads that were a 100% match to the reference (b). Pools of reads are compared and
reads that uniquely match to the synthetic reference are separated (c). The final read pool is converted
into FASTQ for convenient direct use in other software (d).
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Table A1. Primers used in this study.

Primer Name Forward

HO_ampl-F TCACGGCTAACTCTTACGTTATG
HO_ampl-R GTATGTACCAGAAGCACGTGAAG
HO_conf-F ATGCTTTCTGAAAACACGACTATTC
HO_conf-R ACAGCATCAAACTGTAAGATTCCG
Cre-F+PacI CTACTTAATTAAATGTCCAATTTACTGACC

Cre-CassetteR GAATTCGATATCAAGCTTATCGA
ADE2 F AAGCCGAGAATTTTGTAACACC
ADE2 R TCCTCGGTTCTGCATTGAGC

ADE2 + YFL019C F CTTTGCTCTATATTCGAGTCAGGCTCCACCAGTCATTTCGTCGCCCAATGTGTCCATCTG
ADE2 + YFL019C R ATCATAAAAACCTTACGCCATCTGTGGGACTCGTCATAGGACGAGCCGTTGATGAGGTTA

Ura3 F GCGAGGCATATTTATGGTGAAG
Ura3 R TGGAACTCTTGTTGTTCTTTGG
MatA-F ACTCCACTTCAAGTAAGAGTTTG

MatAlpha-F GCACGGAATATGGGACTACTTCG
MatLocus-R AGTCACATCAAGATCGTTTATGG
NatIII left F TTAGGGACGCATCTGTGAACTC

NatIII & SYNIII left R GTTTGGAGACTTTGGATCATCC
NatIII right F CTCTTCGGGGTACTCTTTACCT

NatIII & SYNIII right R GTTGAAGTCACATCGTCACAGT
NatVI left F CAGGATGTACTGATAGGACGTT
NatVI left R GTAGCATACGCACTCCGAAC

NatVI Right F CCTTGCTAGCATCCAAACTTTC
NatVI Right R GATGGACTGGTGACGCAAG

SynIII left F TCCGAGATGCTAGCGTTAATAG
SynIII right F AGCAGCGGTTATAGCTTGCCA
SynVI right CAAGACTGGGTGAACGCTCAA
SynVI right GCTTTGGCCTCTATTCAAACCT
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