Skip to main content
. 2020 Dec 6;10(12):1055. doi: 10.3390/diagnostics10121055

Table 3.

Deep learning models for segmentation.

Purpose
(Type of image)
Model Number of Training Set Images Number of Test Set Images Result Study
Segmentation of breast lesions
(B-mode image)
RDAU-NET 857 205 Precision rate: 88.58%
Recall rate: 83.19%
F1 score: 84.78
[53]
Segmentation of breast lesions
(B-mode image)
Combining DFCN with a PBAC model 400 170 Dice similarity coefficient: 88.97%
Hausdorff distance: 35.54 pixels
Mean absolute deviation: 7.67 pixels
[54]
Segmentation of breast lesions
(B-mode image)
Multi U-net algorithm 372 61 Mean Dice coefficient: 0.82
True positive fraction: 0.84
False positive fraction: 0.01
[55]

CAD, computer-assisted diagnosis; RDAU-NET, Residual-Dilated-Attention-Gate-U-net; DFCN, dilated fully convolutional network; PBAC, phase-based active contour; AUC, area under the curve.