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Abstract

Recent applications of artificial intelligence have shown great promise for improving the quality 

and efficiency of clinical care. Numerous clinical decision support tools exist in today’s electronic 

health records (EHRs) such as medication dosing support, order facilitators (e.g., procedure 

specific order sets), and point of care alerts. However, less has been done to integrate artificial 

intelligence (AI)-enabled risk predictors into EHRs despite wide availability of validated risk 

prediction tools. An interoperability standard known as SMART on FHIR (Substitutable Medical 

Applications and Reusable Technologies on Fast Health Interoperability Resources) offers a 

promising path forward, enabling digital innovations to be seamlessly integrated with the EHR 

with regard to the user interface and patient data. For the next step in progress towards the goal of 

learning healthcare and informatics-enabled spine surgery, we propose the application of SMART 

on FHIR to integrate existing and new risk predictions tools in spine surgery through an EHR 

add-on-application
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Manuscript:

Recent applications of artificial intelligence have shown great promise for improving the 

quality and efficiency of clinical care.[1, 2] For example, Lundberg et al. developed 

algorithms for prediction of intraoperative hypoxemia that performed better than 

anesthesiologists and subsequently improved anesthesiologist performance when made 

available with real-time model explanations.[3] Similarly, Hollon et al. developed algorithms 

for automated intraoperative tumor diagnosis that performed at the level of trained 

pathologists in a fraction of the time (150 seconds versus 20 minutes).[4] In spine surgery, 

applications of machine learning have included prediction and diagnosis in spinal oncology, 

trauma, infections, degenerative conditions, and adult spinal deformity.[5-19]

In 1928, L.J. Henderson reported the first medical use of a pictographic tool known as 

a nomogram.[20] A nomogram is a two-dimensional, graphical calculator. In the years 

following Henderson’s report, nomograms were applied extensively for assisted clinical 

decision making.[21-27] In fact, nomograms and risk scores were ideal for clinicians when 

patient records existed on paper alone.

Today, after the 2009 Health Information Technology for Economic and Clinical Health 

(HITECH) Act, the majority of physicians in the United States use electronic health records 

(EHRs) for everyday clinical workflow.[28] EHRs bring a unique opportunity to integrate 

clinical decision support (CDS) tools into the clinical workflow. Numerous CDS tools 

exist in today’s EHRs such as medication dosing support, order facilitators (e.g., procedure 

specific order sets), and point of care alerts.[29, 30] However, less has been done to integrate 

AI-enabled risk predictors into EHRs despite wide availability of validated risk prediction 

tools.[1]

Most risk prediction tools today exist as risk scores in published manuscripts or as web-or 

smartphone-based digital calculators by professional societies, academic medical centers, 

research study groups, or aggregating-platforms.[5, 6, 31] Clinicians that seek to use these 

systems at the point of care are often forced to interrupt their workflow, navigate to these 

separate systems, manually look-up and input the required patient information, wait for the 

results, and then return to their workflow in order to integrate the decision support guidance. 

In addition, the rise of EHRs has led to concerns of increased documentation time, impaired 

patient-physician interactions, and physician burnout.[29, 32-34] In order to realize the 

potential of AI-enabled risk prediction models, these models must be seamlessly integrated 

into EHRs such that they not only improve the performance of clinicians but also make the 

clinical workflow easier and more efficient.

An interoperability standard known as SMART on FHIR (Substitutable Medical 

Applications and Reusable Technologies on Fast Health Interoperability Resources) offers 
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a promising path forward, enabling digital innovations to be seamlessly integrated with 

the EHR with regard to the user interface and patient data.[35-39] Prior work by two 

of the authors has shown that an EHR add-on-application for neonatology using SMART 

on FHIR resulted in time savings, high clinician usability ratings, and more clinically 

appropriate interventions.[35] This app also provided guidance on the likelihood of rebound 

hyperbilirubinemia following phototherapy.[40]

For the next step in progress towards the goal of learning healthcare and informatics-enabled 

spine surgery, we propose the application of SMART on FHIR to integrate existing and 

new risk predictions tools in spine surgery through an EHR add-on-application. We propose 

the following steps to accomplish this goal: (1) determination of the capacity for native 

EHR approaches to meet clinician needs, (2) selection of algorithms for prediction in 

spine surgery with demonstrated evidence of generalizability on external validation, (3) 

automating collection of real-time data required for model prediction using FHIR data 

interfaces, (4) development of visualization interfaces to allow for individual patient-level 

predictions and model explanations, (5) pilot studies to assess the impact of a SMART on 

FHIR EHR add-on-application on structure, process and patient outcomes, (6) deployment 

of the add-on-application at multiple institutions, (7) and prospective multi-center trials to 

determine the impact of the add-on-applications on time savings, user satisfaction, clinician 

performance, and patient outcomes.
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