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A B S T R A C T   

Exposure to air pollution is a leading health risk factor. The variance components and contributions of indoor 
versus outdoor source determinants of personal exposure to air pollution are poorly understood, especially in 
settings of household solid fuel use. We conducted a panel study with up to 4 days of repeated measures of 
integrated gravimetric personal exposure to PM2.5 and black carbon in 787 men and women (ages 40–79) living 
in peri-urban villages in northern (Beijing and Shanxi) and southern (Guangxi) China. We simultaneously 
measured outdoor PM2.5 and collected questionnaire data on sociodemographic characteristics and indoor 
pollution sources including tobacco smoking and solid fuel stove use. We obtained over 2000 days of personal 
exposure monitoring which showed higher exposures in the heating season (geometric mean (GM): 108 versus 
65 μg/m3 in the non-heating season for PM2.5) and among northern participants (GM: 90 versus 59 μg/m3 in 
southern China in the non-heating season for PM2.5). We used mixed-effects models to estimate within- and 
between-participant variance components and to assess the determinants of exposures. Within-participant 
variance in exposure dominated the total variability (68–95%). Outdoor PM2.5 was the dominant variable for 
explaining within-participant variance in exposure to PM2.5 (16%). Household fuel use (PM2.5: 8%; black carbon: 
10%) and smoking status (PM2.5: 27%; black carbon: 5%) explained the most between-participant variance. 
Indoor sources (solid fuel stoves, tobacco smoking) were associated with 13–30% higher exposures to air 
pollution and each 10 μg/m3 increase in outdoor PM2.5 was associated with 6–8% higher exposure. Our findings 
indicate that repeated measurements of daily exposure are likely needed to capture longer-term exposures in 
settings of household solid fuel use, even within a single season, and that reducing air pollution from both 
outdoor and indoor sources is likely needed to achieve measurable reductions in exposures to air pollution.   

1. Introduction 

Air pollution is a leading global concern for human health (Health 

Effects Institute, 2019). Exposure to fine particulate matter (PM2.5) air 
pollution is independently associated with the development of cardio- 
respiratory diseases and other adverse health outcomes throughout 
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the life course including low birth weight and neurocognitive outcomes 
(Bourdrel et al., 2017; Health Effects Institute, 2019). Air pollution ranks 
as the 5th leading risk factor for global mortality, responsible for an 
estimated 4.9 million premature deaths in 2017 (Health Effects Institute, 
2019). Low- and middle-income countries comprise a substantial share 
of this burden, accounting for over 90% of PM2.5-attributable deaths 
(Health Effects Institute, 2019). 

The source contributors to air pollution are diverse, even in rural and 
peri-urban settings (Secrest et al., 2017). Outdoor emissions sources like 
traffic, industry, and agricultural burning are large contributors to PM2.5 
in these settings (Karagulian et al., 2015; Liao et al., 2017). Indoor 
sources like tobacco smoking and household use of solid fuel stoves 
(used in 47% of homes globally for cooking) emit high levels of PM2.5 
into homes and communities (Health Effects Institute, 2019). The rela
tive contribution of indoor versus outdoor sources to exposures to PM2.5 
is poorly understood, particularly in low and middle-income countries, 
in large part due to the relatively few studies with measured personal 
exposures (Carter et al., 2017). Understanding the determinants of 
exposure has important implications for air pollution interventions and 
policies. Recent intervention studies, for example, hypothesized that 
pollution from traffic and poor outdoor air quality limited the effec
tiveness of household stove interventions in measurably reducing ex
posures to PM2.5 (Secrest et al., 2017; Yip et al., 2017; Pilishvili et al., 
2016; Pope et al., 2017; Liu et al., 2018). 

Although an increasing number of studies have measured personal 
exposures to PM2.5 in settings of solid fuel burning (Shupler et al., 2018), 
very few have included repeated measures of exposure (McCracken 
et al., 2009; Arku et al., 2015; Baumgartner et al., 2019; Sanchez et al., 
2019; Baumgartner et al., 2011). Instead, most studies involved a single 
short-term (24- or 48-h) measurement (Carter et al., 2017) and focused 
on PM2.5 mass but were unable to evaluate specific components of PM 
that could indicate its toxicity (e.g., black carbon). This limits our un
derstanding of how to best assess ‘usual’ exposure to air pollution in 
settings of household solid fuel use, which is the metric most relevant for 
epidemiologic and intervention studies. There is also a lack of air 
pollution exposure data for important population subgroups. Men, for 
example, account for nearly half of the modelled disease burden 
attributable to household air pollution (Institute for Health Metrics and 
Evaluation, 2020), but few studies have measured men’s exposure to 
PM2.5 in a setting where solid fuel stoves were used (Sanchez et al., 
2019; Arku et al., 2018; Shupler et al., 2020). Measurements of PM2.5 
exposures in exclusive clean fuel users relative to users of solid fuel in 
the same setting are rare, which is important for more realistically 
estimating the potential air quality and health benefits of clean energy 
interventions (Shupler et al., 2018; Shupler et al., 2020). 

Leveraging 2246 measurement days of personal exposure to PM2.5 
and black carbon from 787 participants enrolled in the INTERMAP 
China Prospective (ICP) study, this study aims to 1) characterize the 
levels and seasonal patterns of air pollution exposures for men and 
women living in northern and southern China, 2) describe the variability 
in exposures within- and between-participants, and 3) evaluate the 
contribution of indoor and outdoor sources of air pollution to personal 
exposures. 

2. Methods 

2.1. Study design and population 

The ICP study design and population are described in detail else
where (Yan et al., 2019). In brief, 787 adults (ages 40–79, 55% female) 
from 17 villages in three provinces in northern (Beijing and Shanxi) and 
southern (Guangxi) China were enrolled into the study in 2015 and 2016 
(Supplementary Fig. S1). These regions were selected for study 
because of their diversity in geography and environmental risk factors 
for disease, including household fuel use. Coal fuel is commonly used for 
residential heating in northern China and is a large contributor to 

household and outdoor air pollution (Health Effects Institute, 2019; Liao 
et al., 2017), whereas the southern province of Guangxi is sub-tropical 
and does not have a distinct heating season. Biomass (i.e., wood and 
crop residues) stoves are used for cooking in all three sites, often 
alongside low-polluting electric and gas-powered stoves. Detailed in
formation on household energy use practices in our study homes is 
published elsewhere (Carter et al., 2019). 

Most ICP study participants were originally enrolled into the Inter
national Study of Macro/Micronutrients and Blood Pressure (INTER
MAP), a cross-sectional study which randomly selected households in 
the study villages between 1995 and 1997, and then randomly selected 
one adult from each household to participate. We re-enrolled 575 of the 
680 surviving INTERMAP participants (85% participation rate) into the 
ICP study (ages 60–79; 53% female), in addition to 212 adults (88% 
participate rate) ages 40–59 that were randomly selected from the same 
villages to evaluate cohort differences in environmental risk factors over 
time. We obtained written informed consent from all participants. 
Ethical approvals were obtained from all investigator institutions 
(McGill: #A08-M37-16B; Fu Wai Hospital: #2015–650; Imperial: 
#15IC3095, Peking: #00001052–15017, Tsinghua: #20140077). 

2.2. Data collection 

Measurement campaigns were conducted in Shanxi in August 2015 
and November 2015; Beijing in December 2015 and September 2016; 
and in Guangxi in November 2016. We conducted two campaigns in the 
northern sites to capture the heating and non-heating seasons, which can 
impact household energy use and air pollution exposures (Carter et al., 
2017). 

For data collection, participants travelled to clinics that were cen
trally located in their villages, typically by foot or electric bicycle. 
Trained staff carried out the study measurements using the same stan
dardized procedures across all sites (Yan et al., 2019). At the first clinic 
visit in each campaign, participants were fitted with personal air mon
itors and completed questionnaires on individual and household char
acteristics including energy use. Participants returned to the clinic after 
24-h to exchange the air monitors for new ones and returned again after 
a second 24-h period to return their monitors. Staff conducted home 
visits if participants was unable to travel to the clinics. Outdoor air 
quality and ambient temperature were measured throughout the cam
paigns. Descriptions of these study measurements are summarized 
below and detailed information is published elsewhere (Yan et al., 
2019). 

2.2.1. Personal exposure to PM2.5 
We obtained 2246 measurements of integrated 24-h exposure to 

PM2.5 using Harvard Personal Exposure Monitors (H-PEM) (Mesa Labs, 
USA) that housed ZefluorTM 37 mm PTFE filters (Pall Life Sciences, USA) 
and were attached downstream from a personal sampling pumps (Apex 
Pro and TUFF™, Casella Inc; USA) operated at 1.8 L/min (Demokritou 
et al., 2001). Air monitors were placed inside waistpacks that partici
pants were asked to wear at all times possible and to keep within 2 m 
while sleeping, sitting, or bathing (Supplementary Fig. S2). In a sub
sample of exposure measurements (n = 1595, 76% of all measurements), 
we added a pedometer (HJ-321 Tri-Axis, Omron; Japan) to the waist
pack to monitor compliance in wearing them. Participants with 24-h 
step counts of < 500 steps were considered potentially non-compliant 
in wearing the air monitor on that day (n = 47, 3%). 

Pump flow rates were measured at the start and end of each sampling 
period using a rotameter that was field calibrated at the beginning and 
middle of each measurement campaign using a primary gas flow stan
dard (mini-BUCK Calibrator M− 5; A.P. Buck Inc.; Orlando, FL, USA). 
For quality control and to address potential contamination, we collected 
~ 7% field blank filters that were placed inside identical H-PEMs and 
cyclones, subject to the same field conditions, and analyzed using the 
same protocol as the filter samples. 
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2.2.2. Outdoor PM2.5 
We obtained real-time outdoor PM2.5 measurements for our study 

period from nearby government air monitoring stations equipped with 
reference-quality monitors (i.e., tapered element oscillating microbal
ance (TEOM); (http://beijingair.sinaapp.com). Hourly data from all 
stations within 50 km of the village centers were inverse distance 
weighted (power function of 1) to calculate a mean hourly concentration 
for each study village. We then calculated 24-h average outdoor PM2.5 
values that corresponded with the date and time of the personal 24-h 
exposure measurements. Personal exposure measurements generally 
started at 10:00am and ended at 10:00am of the next day so outdoor 
PM2.5 averages ran from 10:00am to 10:00am of the next day. We also 
measured village-level integrated gravimetric PM2.5 during one data 
collection campaign at each study site. The gravimetric monitors were 
positioned at least 4 m from the ground in a location that was 1) central 
to each village, 2) at least 30 m from a household chimney, and 3) at 
least 100 m from other PM2.5 emission sources including local industry 
and major roadways. We placed PTFE filters into either H-PEMs or cy
clones (Mesa Laboratories, USA) that were attached to sampling pumps 
with flow rates of 1.8 or 3.5 lpm, respectively. The filters were collected 
every 24-h and replaced with new ones. Village-level measurements of 
PM2.5 were highly correlated with values estimated from government 
sensors on the same day (n = 42 days of paired observations; Pearson r 
= 0.87; RMSE = 45.4) (Supplementary Fig. S3). To quantify outdoor 
PM2.5, we used the village-level measurements when available (34% of 
study days) and used the estimated PM2.5 values for the remaining days. 

2.2.3. Laboratory analysis of PTFE filters for PM2.5 and black carbon 
Gravimetric analysis was used to determine the PM2.5 mass on filter 

samples and blanks. Following at least 24-h of conditioning in a tem
perature and humidity-controlled environment at the Wisconsin State 
Hygiene Laboratory (Madison, WI), the filters were weighed in duplicate 
using a microbalance (MX-5; Mettler-Toledo, Columbus, OH, USA). If 
the difference between the first two weights exceeded 15 μg, a third 
measurement was obtained, and the two closest weights were averaged 
for statistical analysis. The microbalance’s zero and span were checked 
after every batch of 10 filters. Pre-sampling filter weights were sub
tracted from the post-sampling weights. The filter mass (μg) was divided 
by the volume of air (m3) pulled through the filter during sampling to 
calculate the PM2.5 concentration. 

Black carbon was measured on filters using an Aethalometer 
(SootScanTM Model OT21 Transmissometer, Magee Scientific; USA). 
Black carbon is a component of PM2.5 and a product of incomplete 
combustion that may more strongly associated with adverse health 
outcomes than the mass of PM2.5 (Baumgartner et al., 2014; Janssen 
et al., 2011). The optical method estimates black carbon by evaluating 
the attenuation of light through the sample and blank PTFE filters 
compared with that of a reference filter. To equate the optical black 
carbon measurements to elemental carbon, we applied the U.S. EPA 
sigma of 4.2 and used an empirical correction factor based on the black 
carbon-elemental carbon associations in previous air pollution cam
paigns in rural China that used the same filter media (Baumgartner et al., 
2018). Specifically, we applied the linear correction factor of 0.092 with 
adjusted observed values ranging from 0.0085 to 11.4 μg/m3. The cor
rected black carbon mass loadings (µg/cm2) were converted to con
centration (µg/m3) by multiplying the mass loading (µg/cm2) by the 
area of each filter (9.03 cm2), and then dividing the mass by the volume 
of air sampled (m3). 

Season-specific blank values for PM2.5 and black carbon were 
calculated for each study site and subtracted from the net filter weights 
and attenuated infrared values, respectively. We replaced negative 
blank-corrected values (PM2.5: n = 15 filters, <0.01%; black carbon: n =
33 filters, <1%) by randomly assigning a value between 0 and half the 
limit of detection, which was 4 µg for PM2.5 and 0.22 µg/m3 for black 
carbon. We excluded filters from the statistical analysis if they were 
damaged (n = 3 for PM2.5 and n = 1 for black carbon; <0.01% of filter 

samples); could not be matched to a participant due to data entry errors 
(n = 21; <0.01%); had net weights that exceeded a realistic 24-h mass, 
indicating infiltration of larger-sized particles onto the filter, filters 
being switched, or unseen filter damage (n = 7; <0.01%); or failed to 
capture at least 10-h of the 24-hr target due to pump failure (n = 108; 
4.8%). An unrealistic weight was defined as net weights <0 μg or over 
2500 μg. Filters exceeding these weights were flagged and assessed for 
any abnormalities (e.g., filter damage or visible dust). For the main 
analysis, we used a 10-h cut-off for completeness because this time 
period captured most of the daytime hours. Of the 148 samples that ran 
for <23 h but more than 10 h, 70 ran for 10 to 19.2 h (19.2 h = 80% of 
the 24-h sampling time), and 78 samples ran between 19.2 and 23 h. The 
remaining filter-based measurements were considered ‘complete’ and 
included in the statistical analysis. 

2.2.4. Meteorological data 
We obtained real-time temperature and dew point temperature data 

from the U.S. National Oceanic and Atmospheric Administration 
(https://www.ncdc.noaa.gov/isd/products). Relative humidity was 
estimated based on the temperature and dew point temperature the 
using the weathermetrics package in R (Anderson and Peng, 2012). We 
used inverse distance weighting (power function of 1) from all meteo
rological stations within 100 km of each study village to estimate the 
daily temperature and relative humidity. To evaluate the accuracy to 
these data, we compared them to the outdoor temperatures measured 
during the participants clinic visits using local meteorological stations 
(Yan et al., 2019) (n = 99 days; Pearson r = 0.97; RMSE = 4.5) (Sup
plementary Fig. S4). We used the estimated temperatures for statistical 
analysis because they were highly correlated with measured tempera
ture and also allowed us to time-match meteorological data with expo
sure measurements. 

2.2.5. Questionnaires 
Staff administered questionnaires in Mandarin-Chinese to collect 

information on variables potentially related to energy use and exposures 
to air pollution including age, gender, ethnicity, education, occupation, 
marital status, tobacco smoking, and household income. We drew 
questions from the INTERMAP study that were re-tested with local 
residents to ensure that questions were being interpreted as intended 
(Yan et al., 2019). We also collected comprehensive information on 
household fuels, energy devices, and ventilation using an image-based 
questionnaire that included pictures of all stoves and fuels used in the 
region. Detailed information on the energy questionnaire is provided 
elsewhere (Carter et al., 2019). Briefly, respondents indicated whether 
they were currently using a given energy device or fuel and, if so, 
described the frequency and purpose of use. Energy devices that burned 
coal, wood, and/or agricultural residues were categorized as ‘solid fuel’ 
stoves, while stoves powered by gas or electricity were considered ‘clean 
fuel’ stoves. All devices were classified into one of the following cate
gories: solid fuel cookstoves, clean fuel cookstoves, solid fuel heating 
stoves, and clean fuel heating stove. Participants were categorized as 
‘exclusive clean cooking fuel’ users if they reported using clean fuel 
regularly and reported no use or rare use (i.e., holidays or when hosting 
guests) of solid fuel. The remaining participants were classified as users 
of solid fuel for cooking. Solid fuel stove use was further divided into any 
indoor use or only outdoor use. Heating fuel included the same cate
gories as cooking with the addition of a fourth category to indicate no 
heating or cooling-specific device in the home. For cooking fuel, 
outdoor-only solid fuel use and indoor solid fuel use were combined into 
a single category due to a small sample size. 

2.3. Statistical analysis 

Air pollution summary statistics were calculated by season, study 
site, gender, and energy use. Pollution exposures exhibited positive 
skewness, whereas the corresponding natural log-transformed values 
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were approximately normally distributed and were thus used for sta
tistical analyses. We evaluated whether measurement sequence may 
have systematically impacted exposure using scatterplots and paired t- 
tests that compared the first and second measurement day for each 
season and site. 

2.3.1. Estimating with-individual and between-individual exposure 
variability 

We used a series of mixed-effects regression models to leverage the 
repeated measures of air pollution and partition the total variance in 
exposure into its within-individual and between-individual components. 
We started with the following base (intercept-only) model: 

ln(Yik) = β0 + bi + εik  

where ln(Yik) is the kth measurement of log-transformed pollution (PM2.5 
or black carbon) for participant i, bi is the participant random effect and 
εik is the remaining error with variance components of σb

2 and σε
2, 

respectively. These can be roughly interpreted as the variance between- 
individuals (σb

2) and the variance within-individuals (σε
2). We estimated 

the intraclass correlation coefficient (ICC; i.e., the proportion of total 
variability in exposure attributed to between-individual differences) by: 
σb

2/(σb
2 + σε

2). These models assume that the bi and the εik are independent 
and normally distributed with variances of σb

2 and σw
2 , respectively, and 

have a compound symmetry correlation structure. 

2.3.2. Explaining variability in exposure to PM2.5 and black carbon 
We evaluated the proportion of each variance component explained 

by indoor and outdoor sources of air pollution and by other socio- 
demographic and environmental variables by comparing the base 
(intercept-only) model to a set of models containing an increasing 
number of independent variables. We evaluated variables that were 
determined a priori to be associated with exposure to air pollution in past 
studies (see variables listed in Table 1) (Baumgartner et al., 2011; Ni 
et al., 2016). We imputed missing data on yearly income for 93 partic
ipants (12%) using multiple imputation with the MICE package in R (Sv 
and Groothuis-Oudshoorn, 2010). Separate models were conducted for 
exposure to PM2.5 and black carbon. 

To assess the models’ explanatory power and the fit of data, the 
proportion of within-individual variance explained (R2

within) was 
calculated by subtracting from 1 the ratio of residual within-individual 
variance under each alternative mixed model to that of the base model, 
as described elsewhere (Xu, 2003). Between-individual variance 
explained (R2

between) was calculated in an analogous way. To evaluate 
the prediction accuracy of these models, we excluded a random 20% 
subsample of observations to create the appearance of missing data. The 
remaining data were used to estimate the full model with all covariates 
and then predict the excluded observations. We ran each model 100 
times, each run dropping a different random 20% subset of the data. For 
each model run, we calculated the root mean square error (RMSE) and 
Spearman correlation between predicted and measured exposures. The 
final estimates are the averages of 100 runs. 

The linear mixed-effects regression models were conducted in R (R 
Core Team. R, 2013, version 3.4.2) using the lme function from the nlme 
package (Pinheiro et al., 2017). Collinearity among the independent 
variables was investigated using Pearson correlation matrices and 
variance inflation factors, and the assumptions of normality of residual 
errors and homoscedasticity were evaluated by graphical analysis of 
residuals. To assess assumptions of linearity for continuous independent 
variables, we generated response functions using natural cubic spline 
models with 2 and 3 degrees of freedom (Wang and Yan, 2017); (R Core 
Team. R, 2013). All response functions were consistent with a linear 
association and thus replaced by linear functions. Marginal and condi
tional R2 values (Nakagawa and Schielzeth, 2013) were calculated to 
compare the results from the PM2.5 and black carbon prediction models. 

We conducted a number of sensitivity analyses for the PM2.5 

modelling. We also conducted separate models by gender and season, 
and limited the analysis to exposure observations where the measure
ment duration was within ± 10% of the 24-h target (n = 1969; 95% of 
observations). To assess whether use of outdoor PM2.5 from the gov
ernment monitors versus village-level measurements impacted our re
sults, we restricted the regression analyses to exposure measurements 
taken on the same day as village-level outdoor PM2.5 (n = 619; 30% of 
observations), and compared those results to models including outdoor 
PM2.5 from government monitors. To assess potential non-compliance 

Table 1 
Characteristics of study participants by study site [n (n%) or mean (standard 
deviation, sd)].  

Characteristic Guangxi (n ¼
239) 

Beijing (n ¼
258) 

Shanxi (n ¼
290) 

Age (years), mean (sd) 63.4 (9.4) 63.6 (7.6) 62.0 (8.7) 
Gender 
female 128 (53.6) 149 (57.8) 157 (54.1) 
male 107 (44.8) 108 (41.9) 133 (45.9) 
missing 4 (1.7) 1 (0.4) 0 
Ethnicity 
Han 122 (51.0) 255 (98.8) 290 (100.0) 
Zhuang 113 (47.3) 0 0 
other 0 2 (0.8) 0 
missing 4 (1.7) 1 (0.4) 0 
Occupation 
subsistence farming 34 (14.2) 200 (77.5) 213 (73.4) 
other work outside the 

home 
30 (12.6) 15 (5.8) 21 (7.2) 

not working outside the 
homea 

171 (71.5) 42 (16.3) 56 (19.3) 

missing 4 (1.7) 1 (0.4) 0 
Martial status 
married/cohabitation 175 (73.2) 229 (88.8) 255 (87.9) 
widowed 51 (21.3) 24 (9.3) 31 (10.7) 
divorce/separated/ 

unmarried 
9 (3.8) 4 (1.6) 4 (1.4) 

missing 4 (1.7) 1 (0.4) 0 
Household income in the past year 
<2000 yuan 29 (12.1) 135 (52.3) 199 (68.6) 
≥2000 yuan 206 (86.2) 122 (47.3) 91 (31.4) 
missing 4 (1.7) 1 (0.4) 0 
Highest education attained 
no formal education 29 (12.1)29 

(12.1) 
61 (23.6) 30 (10.3) 

primary school 101 (42.3) 86 (33.3) 137 (47.2) 
early high school/college 105 (43.9) 110 (42.6) 123 (42.4) 
missing 4 (1.7) 1 (0.4) 0 
Tobacco smoking 
current smoker 40 (16.7) 56 (21.7) 85 (29.3) 
non-smoker w/ household 

smoker 
59 (24.7) 77 (29.8) 72 (24.8) 

non-smoker w/o household 
smoker 

136 (56.9) 125 (48.4) 133 (45.9) 

missingmissing 4 (1.7) 0 0 
Fuel used for cookingb 

exclusive clean fuel 69 (28.9) 163 (63.2) 129 (44.5) 
solid fuel, indoor 154 (64.4) 81 (31.4) 155 (53.4) 
solid fuel, outdoor only 1 (0.4) 1 (0.4) 0 
missing 15 (2.1) 13 (5.0) 6 (2.1) 
Fuel used for space heatingb 

exclusive clean fuel 70 (29.3) 61 (23.6) 88 (30.3) 
solid fuel, indoor 0 170 (65.9) 151 (52.1) 
solid fuel, outdoor only 0 11 (4.3) 29 (10.0) 
no device 154 (64.4) 3 (1.2) 16 (5.5) 
missing 15 (2.1) 13 (5.0) 6 (2.1) 

a Includes housekeeping, retired, and unemployed. 
b Clean fuel includes natural gas, liquified petroleum gas (LPG), and electricity; 
solid fuel includes coal and biomass. For cooking fuel use, participants were 
assigned to the following categories: (1) exclusive clean fuel (i.e., use of gas or 
electricity and no or only rare use of solid fuel (i.e., holidays or when hosting 
guests); (2) solid fuel, indoor stove (i.e., use of at least 1 solid fuel stove indoors), 
or (3) solid fuel, outdoor only (i.e., use of solid fuel stove but only outdoors). For 
heating, we added the additional category of “no device” (i.e., no heating- 
specific devices in the home). 
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wearing personal samplers, we restricted the regression analyses to 
samples with associated step counts greater than 500 steps. 

3. Results 

3.1. Characteristic of the study participants 

Participants ranged in age from 40 to 79 years (mean: 63) and were 
55% female (Table 1). Most participants in the north (Beijing, Shanxi) 
were subsistence farmers (76%), while most participants in Guangxi 
were either retired or not working (73%). Exclusive use of clean fuel for 
cooking (48%) was more common than exclusive use of clean fuel for 
heating (38% among those reporting space heating). Nearly half (49%) 
of men were tobacco smokers. Very few women smoked (2%), though 
45% of non-smoking women lived with at least one smoker. 

3.2. Personal exposures to PM2.5 and black carbon 

We obtained 2073 complete 24-h measurements of personal expo
sure to PM2.5 (92% of attempted), of which 1291 were collected in the 
non-heating season and 782 in the heating season. Of the 787 study 
participants, 778 of the 787 participants had at least 1 complete PM2.5 
measurement and 703 had 2 complete measurements. In the northern 
sites with 2 seasons of measurements, 370 participants had 3 complete 
measurements and 223 had 4 complete measurements. Most (97%) post- 
sampling pump flow rates were within ± 10% of the target flow rate. 

Daily (24-h) exposures to PM2.5 and black carbon ranged from 0.01 
to 1528 and 0.00–12 μg/m3, respectively. Overall, 92% of 24-h PM2.5 
exposure measurements were higher than the World Health Organiza
tion (WHO) guideline of 25 μg/m3 (88% in Guangxi; 90% in Beijing; 
96% in Shanxi), and 79% of exposure measurements were higher than 
outdoor PM2.5 on the same day (68% in Guangxi; 74% in Beijing; 90% in 
Shanxi). We found low to moderate correlations between exposures to 
PM2.5 and black carbon on the same day (r = 0.49) and between the 
same pollutant on the first and second measurement days (r = 0.44 for 
PM2.5; r = 0.40 for black carbon), with little difference by season 
(Supplementary Fig. S5). The correlation between daily personal 
exposure and outdoor air pollution concentrations from the same day 

was low (r = 0.33 for PM2.5; r = 0.40 for black carbon). 
In the northern sites (Beijing and Shanxi), air pollution exposures 

were similar in the heating season but higher in Shanxi in the non- 
heating season (Fig. 1). Guangxi participants had the lowest exposures 
to PM2.5, however, their exposures to black carbon were similar to or 
higher than northern participants in the same season (Supplementary 
Table 1). Air pollution exposures were higher among men (Table 2), 
though this gender difference was largely eliminated after accounting 
for active tobacco smoking (Supplementary Fig. S6). Participants 
exclusively using clean fuel for cooking, heating, or all energy use had 
exposures that were similar to users of solid fuel (Table 2). 

3.3. Outdoor PM2.5 

Daily outdoor PM2.5 (from government monitors) ranged from 6 to 
407 μg/m3 (geometric mean (GM): 67) (Supplementary Table S2, 
Supplementary Fig. S7). In the heating season, Beijing and Shanxi had 
similar outdoor PM2.5 (GM: 55 and 54 μg/m3, respectively). In the non- 
heating season, Shanxi had the lowest outdoor PM2.5 (GM: 22 μg/m3 

compared with 38 μg/m3 in Guangxi and 45 μg/m3 in Beijing). Average 
(GM) personal exposures were consistently higher than average outdoor 
PM2.5 in the same season (+38 μg/m3 in Beijing heating season; +49 μg/ 
m3 in Shanxi heating season; +17 μg/m3 higher in Guangxi non-heating 
season; +17 μg/m3 in Beijing non-heating season; and + 59 μg/m3 in 
Shanxi non-heating season). 

3.4. Variance components of personal exposure to PM2.5 and black 
carbon 

In the base intercept-only models, the proportion of total variability 
in air pollution exposure attributed to between-individual differences 
was low to moderate (range of ICCs: 0.05–0.32), with consistently 
greater within-individual variability than between-individual vari
ability (Table 3). Compared with models including all observations, the 
ICCs were similar for gender-specific models (range: 0.05–0.14) but 
higher in season-specific models (0.29–031), indicating that day-to-day 
measurements within the same season are more similar than measure
ments for the same individual in different seasons. The ranges of ICCs 

Fig. 1. Distributions of average 24-h exposures to A) PM2.5 and B) black carbon in peri-urban Chinese adults (n = 787), by season and study sitea. The red line 
indicates the World Health Organization’s 24-h PM2.5 guideline of 25 μg/m3. aWe averaged repeat exposure samples from the same season so that each participant 
only contributed one measurement per season. The y-axis for PM2.5 was limited to 650 μg/m3 to facilitate visual comparison, which excluded 3 observations (710, 
838, and 1241 μg/m3). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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were similar for models predicting PM2.5 (0.08–0.29) versus black car
bon (0.07–0.32). 

3.5. Model fit and performance 

The within-individual variance remained much larger than the 
between-individual variance, even after including outdoor air quality 
and other time-varying variables in the models (σε

2 = 0.65–1.11; σb
2 =

0.05–0.13) (Table 4). Outdoor PM2.5 explained the largest proportion of 
within-individual variance relative to the PM2.5 intercept-only model 
(+16%). The addition of other time-varying variables including season, 
outdoor temperature, and relative humidity had limited additional 
explanatory power (+2% for PM2.5 and + 5% for black carbon). Indoor 
sources (smoking status and household fuel type) and study site 
explained the largest proportion of between-individual variability in 
PM2.5, while outdoor PM2.5 had little impact. Adding indoor sources and 
other time-invariant variables into the black carbon models had little 
impact on the explained between-individual variance. Socio- 
demographic variables including age, gender, occupation, marital sta
tus, education, and income had little to no explanatory power. 
Compared with the intercept-only models, the full models explained an 
additional 20% and 5% of within-individual variance and an additional 
46% and 11% of between-individual variance in exposure to PM2.5 and 
black carbon, respectively. 

The RMSE between the natural logged-transformed predicted and 
measured air pollution exposures decreased as covariates were succes
sively added into the models (from 0.86 to 0.77 for PM2.5 and from 1.02 

to 0.92 for black carbon when comparing the base and full models, 
respectively), indicating small increases in predictive validity (Table 4). 
We also observed small increases in the Spearman correlation (from 0.60 
to 0.66 for PM2.5 and from 0.55 to 0.60 for black carbon). 

We continued to observe strong seasonal and regional patterns in 
pollution exposures in the multivariable models (Table 5). Exposures to 
PM2.5 and black carbon in the non-heating season were 63% lower (95% 
CI: − 72%, − 51%) and 78% lower (95% CI: − 84%, − 69%) than the 
heating season, respectively, even after accounting for outdoor air 
quality, temperature, and humidity. Participants in Beijing and Shanxi 
had 38% and 70% higher exposure to PM2.5 than participants in 
Guangxi, respectively, though the opposite trend was observed for black 
carbon (compared with Guangxi, black carbon exposures were 13% and 
18% lower in Beijing and Shanxi, respectively). 

Indoor sources including household fuel type and smoking patterns 
were strongly associated with exposures. Participants exclusively 
cooking with gas and electric stoves had 15% lower exposure to PM2.5 
and black carbon than users of solid fuel stoves. Compared with par
ticipants using solid fuel heating stoves indoors, participants with out
door stoves had 25% lower (95% CI: − 37%, − 10%) exposure to PM2.5 
and 20% lower (95% CI: − 35%, − 0.5%) exposure to black carbon, 
though no differences were observed for users of clean fuel heating 
stoves or without heating-specific stoves. Poor outdoor air quality was 
associated with higher exposure [6% higher PM2.5 (95% CI: 5%, 7%) and 
8% higher black carbon (95% CI: 7%, 9%) per 10 μg/m3 increase in 
outdoor PM2.5]. Participants that were male, had lower household in
comes, or that worked outside of the home had 2–14% higher exposures 

Table 2 
Geometric mean [and 95% confidence intervals] personal exposures to PM2.5 and black carbon (μg/m3) in peri-urban Chinese adults by season, gender, and household 
fuel use.   

Heating seasona Non-heating seasona 

Exposure group Nparticipants (Nfilters) PM2.5 Black carbon Nparticipants (Nfilters) PM2.5 Black carbon 

All participants 443 (785) 108 [100,116] 1.7 [1.6,1.8] 738 (1291) 65 [62,68] 1.1 [1.0,1.1] 
Men 201 (340) 122 [110,135] 1.7 [1.5,2.0] 320 (566) 72 [67,77] 1.1 [1.0,1.2] 
Women 241 (444) 98 [88,108] 1.6 [1.5,1.8] 412 (723) 61 [58,64] 1.0 [1.0,1.1] 
Exclusive use of clean fuelb 

for cooking  238 (431)  101 [91,113]  1.8 [1.6,2.0]  336 (584)  64 [60,69]  1.0 [0.9,1.1] 
Use of solid fuelb for cooking 197 (344) 113 [103,124] 1.6 [1.4,1.7] 376 (672) 67 [63,71] 1.2 [1.1,1.3] 
Exclusive use of clean fuel  

for heating  116 (208)  108 [95,122]  1.7 [1.5,2.0]  205 (363)  67 [62,73]  1.2 [1.1,1.4] 
Use of solid fuel for heating, 

indoor stoves  271 (482)  109 [100,119]  1.7 [1.5,1.9]  301 (522)  71 [65,76]  0.9 [0.8,1.0] 
Use of solid fuel for heating, 

outdoor stoves  35 (60)  86 [54,137]  1.4 [1.0,1.9]  33 (55)  71 [57,88]  0.8 [0.6,1.1] 
Exclusive use of clean fuel 

for cooking and heating  73 (134)  114 [97,133]  1.9 [1.6,2.2]  165 (286)  66 [61,72]  1.3 [1.2,1.4] 
Use of solid fuel for cooking 

and/or heating  362 (641)  105 [97,114]  1.6 [1.5,1.8]  547 (970)  66 [62,69]  1.0 [0.9,1.1] 

PM, particulate matter. 
a Heating season includes measurements from northern sites only; non-heating season includes measurements from all 3 sites. The 2 24-h measurements were 

averaged to estimate ‘daily’ within-season exposure for each participant. We used the single 24-h measurement if 2 complete measurements were not available. 
b Clean fuel refers to gas and/or electricity and solid fuel refers to use of biomass and/or coal. 

Table 3 
Estimates of between-individual and within-individual components of variance of 24-h measurements of personal exposure to PM2.5 and black carbon from random 
intercept-only models.   

Models predicting PM2.5 Models predicting black carbon  

All obs Women Men Heating Non-heating All obs Women Men Heating Non-heating 

Mean (ln(µg/m3); 
95% CI 

4.3 
4.2–4.3 

4.2 
4.1–4.2 

4.4 
4.3–4.4 

4.6 
4.5–4.6 

4.1 
4.1–4.1 

0.1 
0.1–0.2 

0.1 
0.0–0.1 

0.2 
0.1–0.2 

0.4 
0.3–0.5 

− 0.1 
− 0.1–0.0 

Between-individual variance (σb
2) 0.10 0.07 0.12 0.35 0.21 0.10 0.12 0.07 0.35 0.33 

Within-individual variance (σε
2) 0.80 0.83 0.77 0.76 0.48 1.10 1.04 1.19 0.85 0.80 

ICC 0.11 0.07 0.14 0.32 0.31 0.08 0.10 0.05 0.29 0.29 

CI, confidence interval; ICC, intraclass correlation coefficient; obs, observations; PM, particulate matter. 
Notes: The ICC is the proportion of total variability in exposure attributed to between-individual differences. 
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to air pollution, though the differences were not statistically significant. 
The gender-specific models were very similar to the full models with 

the exception of outdoor solid fuel heating stove use which, compared 
with use of indoor solid fuel heating stoves, was associated with lower 
exposures in women (-37%; 95% CI: − 51%, − 20%) but not in men 
(Supplementary Table S3). Season-specific models suggest that out
door air quality may have a larger impact on exposure in the non- 
heating season than the heating season (10% versus 4% higher expo
sure per 10 μg/m3 increase in outdoor PM2.5). We did not observe any 
qualitative differences in our results after excluding observations that 
did not capture ± 10% of the target 24-h sampling time, or when 
comparing results from models with measurement versus estimated 
outdoor PM2.5 (Supplementary Table S4). 

4. Discussion 

We conducted one of the largest and most comprehensive household 
air pollution exposure studies to date, which included over 2073 mea
surements of 24-h personal exposures to PM2.5 and black carbon from 
778 participants. By conducting repeated measurements across seasons, 
we were able to describe the levels and variability in PM2.5 exposures in 
peri-urban men and women living in 3 diverse provinces of China and 
also assess the explanatory contribution of indoor and outdoor sources 
to variability and levels of personal exposures. 

Personal exposures to PM2.5 in our study were within the range of 
exposures observed among non-smoking women cooking with biomass 
stoves in southwestern China (range of GMs: 47–91 μg/m3 in summer 
and 107–201 μg/m3 in winter)(Baumgartner et al., 2019; Baumgartner 
et al., 2014; Ni et al., 2016) but were higher than exposures among 
urban Chinese (range of means: 33–93 μg/m3)(Lin et al., 2020; Lei et al., 
2020; Chen et al., 2020). Outdoor PM2.5 was high in our study settings, 
exceeding the WHO’s 24-h Air Quality Guideline on 56% of study 
measurement days. Though our finding that personal exposures were 

consistently higher than outdoor air pollution, particularly in northern 
China, highlights the contribution of indoor sources to exposures in 
settings with poor outdoor air quality. 

Large and consistent differences in outdoor air quality and exposures 
were observed by geographic region. Of our 3 study sites, Guangxi 
participants (southern China) had the lowest exposures to PM2.5 in the 
non-heating season but the highest exposures to black carbon. This 
result may be in part due to the higher proportion of Guangxi partici
pants exclusively using clean fuel stoves (31% versus 19% in the 
northern sites) and their more common use of biomass stoves which can 
emit proportionally higher levels of black carbon compared with coal 
stoves (Zhang et al., 2018; Shen et al., 2010). Guangxi participants also 
lived in homes that were closer to major roadways (3–11 km) and sec
ondary roads, which may also have influenced their exposures to black 
carbon (Google. Google Maps Guangxi, China, 2020; Zheng et al., 2017). 
Planned chemical analysis of a sub-sample of PTFE filters from the study 
will provide a better understanding of the source-specific contributors to 
exposures in our study. 

In northern China, air pollution exposures were twice as high in the 
heating season than the non-heating season, a result that is likely in part 
attributable to space heating stove emissions and potentially due to less 
time spent outside the home. The role of these very high seasonal ex
posures on health, particularly for cardiovascular diseases, should be 
further investigated. Seasonal variability of cardiovascular diseases is 
well-documented in China and elsewhere, showing mostly a peak in 
winter months (Fares, 2013; Stewart et al., 2017). The exact causes of 
these seasonal differences are not fully understood, though environ
mental factors like air pollution are strongly associated with cardio
vascular outcomes and thus may play some role (Fares, 2013). Replacing 
traditional coal and biomass space heating stoves with electric or gas 
appliances may therefore benefit both outdoor and indoor air quality 
and population health in northern China (Barrington-Leigh et al., 2019). 

Both active smoking and environmental tobacco smoke were 

Table 4 
Model prediction and fit of linear mixed effect models predicting personal exposure to PM2.5 and black carbon (BC) in peri-urban Chinese adults.    

Prediction Fit        

Within- 
individual 
variance (σe

2) 

Between- 
individual 
variance (σb

2) 

R2
within

a R2
between

b ICC 
(ρ)* 

RMSE Spearman 
correlation 

Base random intercept model 
ln(Yik) = β0 + bi + εik  

PM2.5 0.81 0.10 Ref Ref 0.11 0.86 0.60 
BC 1.11 0.09 Ref Ref 0.07 1.02 0.55 

Base + outdoor PM2.5 

ln(Yik) = β0 + β1(outdoor)i + bi + εik  

PM2.5 0.68 0.13 0.16 − 0.32 0.16 0.78 0.66 
BC 0.95 0.10 0.00 0.00 0.10 0.94 0.62 

Base + outdoor PM2.5 + temp. + RH 
ln(Yik) = β0 + β1(outdoor)i + β2(temp.)i + β3(RH)i + bi + εik  

PM2.5 0.68 0.13 0.17 − 0.36 0.16 0.77 0.67 
BC 0.94 0.12 0.01 − 0.11 0.11 0.93 0.63 

Base + outdoor PM2.5 + temp. + RH + season 
ln(Yik) = β0 +

β1(outdoor)i + β2(temp.)i + β3(RH)i + β2(season)ik + bi + εik  

PM2.5 0.66 0.10 0.18 − 0.01 0.13 0.77 0.65 
BC 0.91 0.11 0.05 − 0.06 0.11 0.91 0.64 

Base + outdoor PM2.5 + temp. + RH + season + fuelc 

ln(Yik) = β0 + β1(outdoor)i + β2(temp.)i + β3(RH)i + β4(season)i +

β5(fuel)ik + bi + εik  

PM2.5 0.66 0.09 0.19 0.07 0.12 0.77 0.65 
BC 0.91 0.10 0.05 0.05 0.10 0.91 0.61 

Base + outdoor PM2.5 + temp. + RH + season + fuelc + smoke 
ln(Yik) = β0 + β1(outdoor)i + β2(temp.)i + β3(RH)i + β4(season)i +

β5(fuel)ik + β6(smoke)ik + bi + εik  

PM2.5 0.66 0.06 0.19 0.35 0.09 0.78 0.64 
BC 0.91 0.09 0.05 0.10 0.09 0.92 0.61 

Base + outdoor PM2.5 + temp. + RH + season + fuelc + smoke + site 
lln(Yik) = β0 + β1(outdoor)i + β2(temp.)i + β3(RH)i + β4(season)i +

β5(fuel)ik + β6(smoke)ik + β7(site)ik + bi + εik  

PM2.5 0.65 0.05 0.20 0.46 0.07 0.78 0.66 
BC 0.91 0.09 0.05 0.11 0.09 0.92 0.60 

Full model: Base + outdoor PM2.5 + temp. + RH + season + fuelc +

smoke + site + all other covariatesd 

ln(Yik) = β0 + β1(outdoor)i + β2(temp.)i + β3(RH)i + β4(season)i +

β5(fuel)ik + β6(smoke)ik + β7(site)ik + β8(X)ik + bi + εik  

PM2.5 0.65 0.05 0.20 0.46 0.07 0.77 0.66 
BC 0.91 0.09 0.04 0.11 0.09 0.92 0.60 

PM, particulate matter; BC, black carbon; ICC, intraclass correlation; R2, coefficient of determination; temp, temperature; RH, relative humidity. 
a Within-individual variance explained relative to the intercept-only model. 
b Between-individual variance explained relative to the intercept-only model. 
c Variables for cooking and heating fuel were added separately into the models. 
d Includes participant age, gender, occupation, marital status, education, and income. 
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important contributors to exposure, with the former impacting men and 
the latter impacting women. Men in our study had higher exposures than 
women, on average, though exposures among non-smoking women and 
men were similar. Policy organizations including the WHO consistently 
highlight the high levels of household air pollution exposures among 
women and children (World Health Organization, 2018), but very few 
studies have measured exposure in men (Shupler et al., 2018; Kaptoge 
et al., 2019; Balakrishnan et al., 2019). The gender-specific results from 
our study align with measurements of PM2.5 exposure in largely non- 

smoking men in peri-urban India, which were similar to women (55 
versus 58 µg/m3). By comparison, women in a small exposure study 
conducted in rural Ethiopia and Uganda had exposures to PM2.5 that 
were 5–6 times higher than men in the same villages. Women in our 
study sites were usually the primary cooks, though men can be in close 
proximity to cooking stoves even if they are not cooking themselves. 
Men also participated in other household energy tasks. For example, 
men were often responsible for operating space heating stoves where 
they can be episodically exposed to high levels of pollution during fuel 
loading. This practice is reflected in our gender-specific models, where 
use of an outdoor solid fuel heating stove (compared with an indoor 
solid fuel stove) was associated with proportionally lower exposure in 
women (-37%; 95% CI: − 51, − 20) than in men (-10%; 95% CI:-31, − 18), 
likely because men were still highly exposed to outdoor stove emissions 
during re-fueling. 

Participants living in homes without smokers had considerably lower 
exposures than smokers (30% lower for PM2.5 and 13% lower black 
carbon). The proportionally larger difference for PM2.5 may be due to 
the large organic fraction in tobacco smoke (Schauer, 2003) which 
contributes to higher PM2.5 but not higher black carbon. A somewhat 
surprising finding in the crude (unadjusted) analysis was that partici
pants in homes exclusively cooking or heating with clean fuel stoves still 
had high exposures to PM2.5 (GM: 76 µg/m3; range: 11 – 392 µg/m3) that 
were similar to participants using solid fuel stoves (GM: 81 µg/m3; 
range: 3 – 838 µg/m3). After statistically accounting for outdoor air 
quality and other variables, exclusive users of clean fuel cookstoves and 
heating stoves had only modestly lower exposures than indoor solid fuel 
users (-3 to − 15% for PM2.5). These results provide further empirical 
evidence that poor outdoor air quality and other behavioral factors can 
mask the benefit of clean energy use, but also highlight the importance 
of evaluating all major sources of air pollution in intervention studies to 
better understand their relative contributions to exposures and also have 
more realistic expectations of the air pollution exposure benefits of a 
clean stove interventions in settings where other sources are also 
present. 

We observed high within-individual variability in 24-h exposure 
across seasons and within the same season, particularly when compared 
with between-individual variance. Based on our mixed-effects models, 
we partly attribute this finding to the high day-to-day variability in 
outdoor air quality, though a large portion of within-individual variance 
remained unexplained in the full models. The ICCs in our base and 
covariate-adjusted models (PM2.5: 0.11–0.16; black carbon: 0.08–0.11) 
were lower than those observed for carbon monoxide exposure among 
children in The Gambia (ICC = 0.33) (Dionisio et al., 2012), but over
lapped with those among adults in Guatemala (carbon monoxide ICC: 
0.11–0.33) (McCracken et al., 2009) and peri-urban India (PM2.5 ICC: 
0.0–0.22) (Sanchez et al., 2019). As expected, the ICCs in our study were 
higher in the season-specific models, but still indicated poor reliability 
(range: 0.29–0.32). Overall, our results indicate that a single day of 
measured exposure is not likely representative of longer-term exposure, 
which is the exposure metric most relevant for many chronic health 
outcomes including cardiovascular diseases (Health Effects Institute, 
2019; Jaganathan et al., 2019). They also highlight the challenges of 
identifying the impact of any given source on personal exposure in these 
complex air pollution settings where behaviors like time spent in 
different locations or doing certain activities are likely important de
terminants of exposure that are not easily captured by traditional survey 
methods and measurements (Milà et al., 2018). 

Notable strengths of this study include the comprehensive dataset of 
over 48,000 h of personal exposure monitoring in 3 diverse provinces of 
China which includes measurements of exposure among men and 
exclusive clean fuel users in villages using solid fuel energy. Despite the 
considerable practical and logistical challenges of conducting large 
panel studies of exposure in these settings (Clark et al., 2013), we were 
able to obtain at least 2 days of measured air pollution exposures for 
90% of participants and 4 days for 60% of northern China participants, 

Table 5 
Associations between personal exposures to air pollution and selected socio
demographic, energy use, and environmental variables.a   

Percent (%) change in 
PM2.5 based on log 
regression* (95% CI) (n ¼
2022 filters) 

Percent (%) change in 
black carbon based on log 
regression* (95% CI) (n ¼
2026 filters) 

Age, per year − 0.2 [− 0.8,0.4] 0.0 [− 0.7, 0.8] 
Gender 
male (ref: female) 4.6 [− 6.1, 16.5] 6.5 [− 6.5, 21.4] 
Occupation   
agriculture (ref)   
other work outside 

the home 
5.9 [− 10.3, 24.9] 14.1 [− 6.6, 39.3] 

not working 
outside the home 

− 3.2 [− 13.1, 7.8] − 6.1 [− 17.6, 7.0] 

Annual 
household 
income   

(yuan)   
<20000 (ref: 
≥20000) 

3.1 [− 5.9, 13.0] 1.6 [− 9.1, 13.6] 

Education   
college/high (ref)   
primary 0.4 [− 8.7, 10.5] 4.5 [− 6.9, 17.3] 
no school − 5.4 [− 17.2, 8.1] 7.2 [− 8.8, 26.1] 
Smoking status   
smoker (ref)   
non-smoker w/ 

household 
smoker 

− 26.2 [− 36.3, − 14.4]*** − 1.3 [− 17.5, 8.2] 

non-smoker w/o 
household 
smoker 

− 30.4 [− 38.0, − 21.8]*** − 12.8 [− 24.2, 0.3]* 

Cooking fuel   
clean fuel use (ref: 

any solid fuel) 
− 15.4 [–22.3, − 8.0]*** − 14.8 [–23.1, − 5.6]*** 

Heating fuel   
indoor solid fuel 

(ref)   
outdoor solid fuel 

use 
− 24.6 [− 36.98, − 9.8]*** − 19.9 [− 35.0, − 0.5]** 

only clean fuel − 2.8 [− 12.3, 7.7] 5.6 [− 6.7, 19.6] 
no devices − 1.6 [− 16.6, 16.3] 2.1 [− 16.5, 24.8] 
Season   
non-heating (ref: 

heating) 
− 62.8 [− 71.8, − 50.9]*** − 78.0 [− 84.2, − 69.3]*** 

Outdoor PM2.5, 

per 10 μg/m3 
5.8 [4.7, 6.9]*** 7.9 [6.6, 9.2]*** 

Ambient RH, per 
1% 

0.8 [0.5, 1.1]*** 0.0 [− 0.3, 0.4] 

Ambient 
temperature, 
per 1 ◦C 

3.4 [2.2, 4.6]*** 5.5 [4.1, 7.0]*** 

Site   
Guangxi (ref) 37.9 [15.0, 65.3]***  
Beijing  − 12.8 [30.0, 8.5] 
Shanxi 69.9 [43.1, 101.6]*** − 18.4 [–33.7, 0.3]* 
Marginal R2 0.24 0.17 
Conditional R2 0.29 0.24 

*p-value < 0.10; **p-value < 0.05; ***p-value < 0.001; obs, observations. 
a Regression of log-air pollution exposure can be converted to the percent (%) 

change in exposure using the equation ([expβ – 1] x 100), where β is the change 
in log-transformed pollution exposure associated with a one-unit change in the 
independent variable. 
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which allowed us to evaluate the within-individual and between- 
individual variance in daily exposure. These results contribute to the 
very limited evidence on representativeness of short-term measurement 
of exposure for longer-term exposure estimation in field studies of 
household air pollution. Further, the additional assessment of very 
detailed energy use and outdoor PM2.5 allowed us to evaluate the in
fluence of indoor versus outdoor sources to personal exposures, which 
are contributions to exposures that remain poorly understood in many 
settings, especially relative to one another. 

Our study is not without limitations. Though we achieved high 
compliance in wearing the air monitors (98% in participants randomly 
selected for compliance monitoring with a pedometer), it is possible that 
some participants altered their daily activity patterns while wearing 
them. We also cannot rule out the possibility that wearing the monitors 
or visiting the clinics may have changed participants’ behaviors. We 
were unable to account for time-varying behaviors which are likely 
important determinants of exposure in our study participants such as 
stove use on the measurement days or time-activity patterns. Combined 
use of GPS monitors or Bluetooth signal receivers can track participant 
location during measurement and allow investigators to better assess 
activity patterns in field studies(Liao et al., 2019), though the required 
data processing and analysis can be time-intensive in large studies like 
this one. We were limited to 2 days of measurement per season due to 
study logistics and participant burden in wearing the monitors, which 
limited our ability to assess ‘long-term’ exposure over weeks or months. 
The recent development of quiet and less bulky PM2.5 monitors may ease 
some of the logistical and participant burdens of longer-term measure
ments. In addition to the detailed fuel and stove use data collection in 
this study, future studies could also collect information on home venti
lation which was not collected in this study. 

5. Conclusion 

Personal exposures to PM2.5 across all seasons and study sites were, 
on average, higher than the WHO’s 24-h PM2.5 air quality guideline and 
higher than the relatively high levels of outdoor PM2.5. Our repeated 
measures show that within-individual variance dominated the total 
variability in personal exposures across all study sites, genders, and 
seasons. Repeated daily measurements of exposure are thus needed to 
capture ‘usual’ daily exposure for epidemiological and intervention 
studies in these settings, even within a single season. Our results also 
indicate that measurably reducing air pollution exposures in these study 
settings will likely require reductions in emissions from both indoor and 
outdoor air pollution, which are linked to different air pollution miti
gation policies and interventions. 

CRediT authorship contribution statement 

Martha Lee: Data curation, Formal analysis, Writing - original draft, 
Writing - review & editing. Ellison Carter: Resources, Data curation, 
Writing - review & editing. Li Yan: Data curation, Writing - review & 
editing, Project administration. Queenie Chan: Writing - review & 
editing, Project administration. Paul Elliott: Funding acquisition, 
Writing - review & editing. Majid Ezzati: Funding acquisition, Writing - 
review & editing. Frank Kelly: Funding acquisition, Writing - review & 
editing. James J. Schauer: Resources, Data curation, Writing - review & 
editing. Yangfeng Wu: Resources, Funding acquisition, Writing - review 
& editing. Xudong Yang: Resources, Funding acquisition, Writing - 
review & editing. Liancheng Zhao: Resources, Funding acquisition, 
Writing - review & editing. Jill Baumgartner: Conceptualization, 
Methodology, Writing - original draft, Supervision, Project administra
tion, Funding acquisition, Writing - review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 

interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

This publication was supported by the Wellcome Trust, UK (grant 
103906/Z/14/Z); National Natural Science Foundation of China, China 
(grant 81473044 and Innovative Research Groups grant 51521005); the 
Canadian Institutes for Health Research (grant 137535); and the Fonds 
de la recherche en sante du Quebec, Canada. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.envint.2020.106297. 

References 

Arku, R.E., Dionisio, K.L., Hughes, A.F., Vallarino, J., Spengler, J.D., Castro, M.C., et al., 
2015. Personal particulate matter exposures and locations of students in four 
neighborhoods in Accra, Ghana. J. Eposure Sci. Environ. Epidemiol. 25 (6), 557. 

Arku, R.E., Birch, A., Shupler, M., Yusuf, S., Hystad, P., Brauer, M., 2018. Characterizing 
exposure to household air pollution within the Prospective Urban Rural 
Epidemiology (PURE) study. Environ. Int. 114, 307–317. 

Anderson, G., Peng, R., 2012. weathermetrics: Functions to convert between weather 
metrics (R package). 
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