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Thoracic great vessels such as the aorta and subclavian
arteries are formed through dynamic remodeling of embryonic
pharyngeal arch arteries (PAAs). Previous work has shown that
loss of a basic helix-loop-helix transcription factor Hey1 inmice
causes abnormal fourth PAA development and lethal great ves-
sel anomalies resembling congenital malformations in humans.
However, how Hey1 mediates vascular formation remains
unclear. In this study, we revealed that Hey1 in vascular endo-
thelial cells, but not in smooth muscle cells, played essential
roles for PAA development and great vessel morphogenesis in
mouse embryos. Tek-Cre–mediated Hey1 deletion in endothe-
lial cells affected endothelial tube formation and smoothmuscle
differentiation in embryonic fourth PAAs and resulted in inter-
ruption of the aortic arch and other great vessel malformations.
Cell specificity and signal responsiveness of Hey1 expression
were controlled through multiple cis-regulatory regions. We
found two distal genomic regions that had enhancer activity in
endothelial cells and in the pharyngeal epithelium and somites,
respectively. The novel endothelial enhancer was conserved
across species and was specific to large-caliber arteries. Its tran-
scriptional activity was regulated by Notch signaling in vitro and
in vivo, but not by ALK1 signaling and other transcription factors
implicated in endothelial cell specificity. The distal endothelial
enhancer was not essential for basal Hey1 expression in mouse
embryos butmay likely serve forNotch-dependent transcriptional
control in endothelial cells together with the proximal regulatory
region. These findings help in understanding the significance and
regulation of endothelialHey1 as a mediator of multiple signaling
pathways in embryonic vascular formation.

Transcription factors play essential roles in complex arrays
of developmental events and are implicated in the etiologies of

various human diseases (1, 2). Multiple upstream signals regu-
late their expression and function in a cell type– and stage–spe-
cific manner, which in turn deeply influences cellular differen-
tiation, proliferation, and movement through transcriptional
control of downstream target genes. We and others previously
identified the Hey family of basic helix-loop-helix transcrip-
tional repressors that were enriched in the embryonic cardio-
vascular system (3–8). Among three family members, the mice
null for Hey2 die soon after birth, showing cardiac malforma-
tions and abnormal chamber gene expression (9–12). Com-
bined loss ofHey1 andHey2 resulted in embryonic lethality due
to impaired vascular network formation (11, 13, 14). In addi-
tion, we recently reported that the Hey1 deficiency caused le-
thal anomalies of the thoracic great vessels (15), which were
similar to human congenital defects observed as isolated cardi-
ovascular anomalies or as a manifestation of multiorgan syn-
dromes such as 22q11.2 deletion syndrome (16). Hey1 null
mice should serve as a new experimental model for human
great vessel malformations, which possesses unique as well as
overlapping features compared with existing mouse models
(17–27). However, the relative importance of Hey1 actions in
vascular cell types is not fully elucidated.
Among a variety of cellular signaling pathways involved in

embryonic development, it was first demonstrated that Notch
signal activation stimulated the expression of Hey family genes
through the Rbpj-dependent transcriptional control (28, 29).
Hey1 appears sensitive to Notch signaling in vivo, and the dele-
tion of Rbpj or theNotch ligandDll1 results in down-regulation
of Hey1 expression in mouse embryos (5, 30–32). In addition,
bone morphogenetic protein (BMP)-ALK receptor signaling
activates theHey1 andHey2 transcription, which acts synergis-
tically with Notch signaling in endothelial cells (33–35). Mem-
bers of the Hey genes are under the control of other signaling
pathways, such as those mediated by transforming growth fac-
tor b, hepatocyte growth factor, fibroblast growth factor, and
Wnt (36–39). Despite these lines of evidence, it is not clear how
these upstream signaling pathways control cell type specificity
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of the Hey family expression in various embryonic tissues. For
example, Hey1 and Hey2 are mutually exclusive in the atrial
and ventricular myocardium, whereas they look co-regulated in
the atrioventricular canal and endocardium (3, 4). Expression
in the pharyngeal epithelium is observed only forHey1, whereas
that in the dorsal ganglion is specific toHey2. Detailed analyses
of transcriptional regulation are necessary to further dissect
distinct and complementary roles ofHey family genes in differ-
ent embryonic tissues.
In this study, we generated Hey1 conditional knockout

(cKO) mice and demonstrated that the Hey1 expression in en-
dothelial cells was indispensable for proper pharyngeal arch ar-
tery (PAA) development and great vessel morphogenesis. We
further performed a bacterial artificial chromosome (BAC)-
based enhancer screen and identified distal enhancers that
were specific to different cell types with Hey1 expression. The
novel endothelial enhancer possesses transcriptional activity
recapitulating endogenous endothelial expression in large-cali-
ber arteries downstream of Notch signaling. These data will
provide important information to further understand Hey1
function and its regulatory mechanisms in cardiovascular de-
velopment and disease.

Results

The Hey1 gene in endothelial cells is essential for thoracic
great vessel development

To clarify a cell type that requiresHey1 function for the great
vessel formation, we generated a novel Hey1 cKO mouse line
(Fig. S1). Hey1 is expressed in both endothelial and smooth
muscle cells in developing vasculature (14), so we ablated the
Hey1 gene in endothelial and smooth muscle cells using Tek-
Cre and Tagln-Cre mice (40, 41), respectively. The Tek-Cre–
mediated Hey1 deletion in endothelial cells caused abnormal-
ities of great vessel structure, namely interruption of the aortic
arch type B (IAA-B), right-sided aortic arch (RAA), and aber-
rant origin of the right subclavian artery (ARSA) at embryonic
day 18.5 (E18.5) and postnatal day 0.5 (Fig. 1, A and B), which
reproduced congenital anomalies observed in Hey1 null mice
(15). We did not detect morphological defects of the heart
and signs of circulation failure in Tek-Cre–mediated cKO
embryos. Micro-CT analysis clearly showed the three-dimen-
sional image of unordinary running and branching of the
aorta in cKO embryos with RAA at E18.5 (Fig. 1C and Movies
S1 and S2). On the other hand, the Hey1 deletion in vascular
smooth muscle cells did not affect great vessel morphogene-
sis (Fig. 1, A and B). These results indicated that endothelial
Hey1 expression was indispensable for the thoracic great ves-
sel formation.

Loss of endothelial Hey1 expression leads to disrupted
tubular structure of fourth PAAs

IAA-B, RAA, and ARSA are all attributable to the fourth
PAA defects at early developmental stages (42). We then ana-
lyzed the structures of pharyngeal arches and PAAs of endothe-
lial cKO embryos. In control embryos, third, fourth, and sixth
PAAs were well-formed in corresponding pharyngeal arches by
E10.5 (Fig. 2A). In contrast, the disruption of endothelial tube

structure was observed in fourth PAAs of endothelial cKO
embryos at E10.5 and E11.5 (Fig. 2A), whereas the size and
structure of pharyngeal arches were maintained. Pan-endothe-
lial (Pecam1) and arterial endothelial (Nrp1 and Gja5) markers
were clearly expressed in the disorganized vasculature (Fig. 2,A
and B). Quantitative RT-PCR analysis of Pecam11 endothelial
cells indicated that other endothelial marker genes were also
expressed at normal levels inHey1 cKO as well as null embryos
(Fig. S2, A and B), suggesting that general endothelial cell dif-
ferentiation was not compromised. Migration and distribution
of neural crest–derived cells, which were marked with Tfap2a
(AP2a) and Crabp1, were not altered by the Hey1 deficiency
(Fig. S3, A and B); on the other hand, the expression of a
smooth muscle marker Acta2 (a smooth muscle actin) was
almost undetectable in the affected fourth PAA (Fig. 2C). These
characteristics were identical to that inHey1 null embryos (15),
substantiating the importance of endothelial Hey1 for fourth
PAA-derived great vessel formation.
Great vessel anomalies occurred in some endothelial cKO

mice but not in others (Fig. 1B), which was unrelated to the
extent of Hey1 down-regulation because its mRNA level in
Pecam11 cells did not markedly vary among cKO embryos
(Fig. S2A). As is generally accepted for other genetic models
showing great vessel malformations (24, 43–45), it is likely that
endothelial Hey1 deficiency predisposes cKO mice to fourth
PAA defects. cKO embryos retained ;30% of Hey1 transcripts
in the Pecam11 endothelial cell population, whereas null
embryos showed only negligible Hey1 mRNA expression (Fig.
S2A). As described in its original paper (40), the Tek-Cre-medi-
ated recombination of the Rosa allele was observed in all identi-
fiable endothelial cells by E10.5 (Fig. S4); however, the Hey1
floxed allele should have relatively low efficiency of Cre-medi-
ated recombination. Theremay bemosaicism of theHey1 allele
recombination, although it is difficult to examine it with single-
cell resolution. Nevertheless, it is of note that even a partial
reduction of endothelial Hey1 expression was enough to affect
fourth PAA development.

Hey1 expression in embryonic tissues is regulated through
multiple cis-regulatory regions

Considering the importance of endothelial Hey1 expression
for proper vascular development, we attempted identification
of tissue-specific enhancers for Hey1 transcription to under-
stand how Hey1 expression was regulated during embryonic
development. The BAC construct that encompassed ;173 kb
surrounding mouse Hey1 gene (2140 to 133kb) was used for
F0 transgenicmouse LacZ reporter analysis (Fig. 3A). As shown
in Fig. 3 (A and B) and Fig. S5 (A and B), the full-length BAC-
LacZ reporter (designated as “a”) showed transcriptional activ-
ity that reproduced endogenousHey1 expression in the cardio-
vascular system, pharyngeal epithelium, and somites at E9.5.
A shorter reporter that lacked the2140 to243 kb region (b)
lost the activity in the atria, pharyngeal epithelium, and
somites but was positive specifically in large-caliber arteries,
including PAA, the dorsal aorta, and intersomitic vessels. On
the other hand, the deletion without the 243 to 20.3 kb
region (c) did not drive the reporter expression in these
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arteries, whereas it retained the activity in the pharyngeal epi-
thelium and somites. These results suggested presence of
multiple cis-regulatory regions for Hey1 transcription in dif-
ferent embryonic tissues.
The BAC-LacZ reporter analysis located the pharyngeal/

somitic enhancer to the region between 2140 and 243 kb.
Consistently, a 0.6-kb fragment in the 250 kb region showed
robust enhancer activity in the pharyngeal epithelium and

somites (Fig. S6A). The activity of full-length BAC-LacZ re-
porter was reduced by the lack of the 0.6-kb fragment selec-
tively in these tissues, whereas that in the vasculature wasmain-
tained (Fig. S6A). In addition, CRISPR/Cas9-mediated excision
of the corresponding area significantly decreased endogenous
Hey1 expression in a tissue-specific manner (Fig. S6B), clearly
indicating its sufficiency and necessity as a new pharyngeal/
somitic enhancer.

Figure 1. Loss of endothelialHey1 leads to thoracic great vessel malformations. A, Hey1 endothelial cKO (Hey1fl/D;Tek-Cre1) mice showed IAA-B, whereas
control (Hey1wt/fl;Tek-Cre1) and smooth muscle cKO (Hey1fl/D;Tagln-Cre1) mice had normal great vessel structures at E18.5. Ao, aorta; RCCA/LCCA, right/left
common carotid artery; RSA/LSA, right/left subclavian artery. Scale bars, 1 mm. B, summary of great vessel phenotypes at E18.5 and postnatal day 0.5 (P0.5). C,
front and right/left anterior oblique views of micro-CT images at E18.5. Right-sided aortic arch and unordinary branching were observed in an endothelial cKO
(Hey1fl/D;Tek-Cre1) mouse. Asc, ascending aorta;Desc, descending aorta. Three-dimensional movies are available in the supporting information.
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Hey1-proximal region responds to vascular signals but is
insufficient for endothelial specific transcription in vivo

BAC-LacZ studies indicated that the endothelial enhancer
was present between243 and20.3 kb (Fig. 3, A and B), and we
further examined how endothelial Hey1 transcription was con-
trolled in mouse embryos. It was previously reported that the
HEY1 expression was synergistically activated by Notch and
ALK1 signaling in endothelial cells (Fig. S7A) (34). Transcrip-
tional activity driven by the proximal region (20.5 to10.2 kb)
was up-regulated by the Notch 1 intracellular domain (N1ICD)
expression and BMP9 treatment (Fig. 4A) in luciferase reporter
assays, which was consistent with the previous finding using
BMP6 (33). The proximal region contained three potential
Rbpj-binding sites, one of which was required for transcrip-
tional activation (Fig. 4A and Fig. S7B).
Because Notch and ALK1 signaling pathways are heavily

involved in endothelial differentiation and vascular formation
(34, 35), we first tested the importance of the proximal region
for endothelial specific transcription in mouse embryos. Unex-
pectedly, the proximal region did not show reproducible
enhancer activity in the vasculature of LacZ reporter embryos
(Fig. 4B and Fig. S7C). More importantly, the ablation of proxi-
mal region from the full-length BAC-LacZ reporter did not

reduce the activity in vascular endothelial cells (Fig. 4B and Fig.
S7C), strongly suggesting that the proximal region could serve
for signal responsiveness but was insufficient to achieve endo-
thelial transcription in vivo.

A distal endothelial enhancer is located 18 kb upstream of
the mouse Hey1 gene

With this result, it was the best conceivable that an additional
enhancer for endothelial Hey1 expression was present in the
region between 243 and 20.3 kb. We then analyzed publicly
available ChIP sequencing (ChIP-Seq) (Gene Expression Om-
nibus, under accession number GSE88789) data sets and found
the transcriptional coactivator p300 binding 18 kb upstream of
the mouse Hey1 gene in embryonic endothelial cells (Fig. 5A)
(46). Indeed, the ablation of a 1.6-kb sequence at the 218 kb
region clearly deprived the full-length BAC-LacZ reporter of
vascular transcriptional activity at E9.5 (Fig. 5 (A and B) and
Fig. S8A). In addition, the LacZ reporter analysis indicated that
the 1.6-kb fragment had highly specific enhancer activity in em-
bryonic vasculature (Fig. 5 (A and B) and Fig. S8A). A detailed
analysis using the reporter mouse lines revealed that the tran-
scriptional activity was restricted to endothelial cells of large-

Figure 2. Embryonic fourth PAA formation is disrupted by endothelial Hey1 deficiency. A, immunohistochemistry of Pecam1 and Nrp1 revealed defec-
tive tubular structure of fourth PAAs (arrows) in endothelial cKO (Hey1fl/D;Tek-Cre1) embryos at E10.5 and E11.5. B, Gja5 immunohistochemistry at E11.5 also
showed the impaired endothelial tube formation of fourth PAAs. Expression levels of these endothelial markers remained unchanged. C, expression of a
smooth muscle marker Acta2 was almost undetectable in the affected fourth PAA. PAAs are numbered. Note that the staining of different markers is shown
using serial sections for E11.5. Scale bars, 100mm.
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caliber arteries, such as PAAs and the dorsal aorta at E9.5 and
E10.5 (Fig. 5C and Fig. S8B).
The 1.6-kb sequence was highly conserved among species

(Fig. 5A). A comparable 1.9-kb fragment in the human HEY1
216 kb region also showed LacZ reporter expression in vascu-
lar endothelial cells, suggesting relevance of the new, distal en-
dothelial enhancer in human gene regulation (Fig. 5 (A and B)
and Fig. S8C). To characterize the distal enhancer specificity,
we further established an EGFP reporter line using the mouse
218 kb fragment. Similar to the LacZ reporter lines (Fig. 5C),
the EGFP mice showed intense fluorescent signals in endothe-
lial cells of large-caliber arteries, but not in the cardinal veins
(Fig. 5D). Endogenous Hey1 mRNA level was significantly
higher in EGFPhigh cells of the Pecam1high endothelial popula-
tion, and the expression of arterial endothelial genes was also
enriched in EGFPhigh endothelial cells (Fig. 5, E and F).

The newly identified distal enhancer drove endothelial tran-
scription that recapitulated endogenous Hey1 expression in
large caliber arteries. Contrary to our expectation, however,
CRISPR/Cas9-mediated excision of this region did not cause
significant decrement of endogenous Hey1 mRNA level in
mouse embryos (Fig. S9, A and B). These results suggest that
the proximal region or an unidentified enhancer may compen-
sate the lack of the distal endothelial activity, whereas it was
technically difficult to test such a hypothesis in mouse embryos
by deletingmultiple candidate regions around theHey1 gene.

Hey1 distal endothelial enhancer is controlled by Notch
signaling

Last, we examined regulatory mechanisms of the distal
enhancer for its endothelial activity. In a screen for potential
transcriptional regulators based on the consensus binding

Figure 3. Hey1 expression in embryonic tissues is regulated through multiple cis-regulatory regions. A, a schematic of BAC-LacZ reporters for F0 trans-
genic mouse analyses is shown with the numbers of embryos with positive signals in vascular endothelial cells/embryos positive in any tissues. B, representa-
tive images of E9.5 transgenic embryos are shown with endogenous Hey1mRNA expression detected in in situ hybridization. b-Gal activity by the full-length
BAC-LacZ reporter (a) reproduced endogenous Hey1mRNA expression in the dorsal aorta (DA), atrium (A), sinus venosus (SV), pharyngeal arch (PA), somites,
and floor plate (FP) of neural tube (NT). Deletion of the2140 to243 kb region resulted in the loss of activity in the atrium, pharyngeal epithelium, and somites
(b), whereas that of the243 to20.3 kb region diminished the activity in DA, PAA, and intersomitic vessels (ISV) (c). Sections of whole-mount in situ hybridiza-
tion are displayed to compare mRNA expression and reporter activity in PAAs. Arrowheads, PAAs with significant signals.Magnified views of DA are also shown
at the bottom. PAAs are numbered. OV, otic vesicle. Scale bars in whole-mount images, sections, and magnified DA images are 500, 200, and 50 mm, respec-
tively. Results of other F0 embryos are displayed in Fig. S5.
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motif analysis, Foxc1, Foxc2, and N1ICD showed highest
induction of the luciferase reporter expression driven by the
distal enhancer (Fig. 6, A and B). The responsiveness to Foxc
proteins was assigned to a 430-bp fragment (Fig. S10A) and
three binding sites (Fig. 6, A and C). Nevertheless, their muta-
tions in the 1.6-kb enhancer did not affect LacZ reporter
expression in mouse embryos (Fig. 6D and Fig. S10B). In
marked contrast, mutations in Rbpj-binding sites abolished the
response to N1ICD in luciferase analysis (Fig. 6C and Fig. S11
(A and B)) and resulted in the complete loss of LacZ reporter
activity in the embryonic vasculature (Fig. 6D and Fig. S11C).
These Rbpj-binding elements are present in the corresponding
genomic region of various species, suggesting that they are
functional in humans and other creatures (Fig. S11A). There
are no consensus motifs for SMAD binding in the distal
enhancer, and ALK1 signaling did not show synergy with
Notch signaling for the distal enhancer activation (Fig. 6E),
unlike its effect for the proximal region (Fig. 4A).

As previously reported (31),Hey1mRNA expression in multi-
ple embryonic tissues, including PAAs and the aorta, was mark-
edly decreased in Rbpj null embryos, whereas severe develop-
mental defects made its interpretation difficult (data not shown).
We then analyzed whether the distal endothelial enhancer activ-
ity was dysregulated in Rbpj null embryos by intercrossing them
with EGFP reporter mice. As shown in Fig. 6F, vascular EGFP
expression was suppressed to a virtually neglectable level with
the Rbpj null background even in E8.5 embryos showing rela-
tively mild developmental defects. These results verified com-
plete Notch dependence of the distal endothelial enhancer and
further indicated its usefulness as a surrogate to monitor the
Notch signal activity in the embryonic vasculature.

Discussion

In this study, we demonstrate that the conditional deletion of
Hey1 in endothelial cells causes abnormalities of thoracic great

Figure 4. Hey1 proximal region responds to vascular signals but is insufficient for endothelial transcription in vivo. A, luciferase reporter assays in
human umbilical vein endothelial cells revealed that the N1ICD expression and the BMP9 treatment synergistically induced the transcriptional activity driven
by the proximal region, which required a Rbpj-binding site. The sequence of mouse Hey1 proximal region is shown in Fig. S7. **, p, 0.01; ns, not significant. B,
in F0 transgenic mouse reporter analyses, the proximal region was insufficient for endothelial transcription (d) and dispensable for the full-length BAC-LacZ re-
porter activity in vascular endothelial cells (e). Scale bars, 500mm. Results of other F0 embryos are displayed in Fig. S7.
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vessel morphogenesis. Embryonic arterial defects occur
only in fourth PAAs, which is identical to those observed in
Hey1 null mice (15). Fourth PAAs are prone to be disorgan-
ized during remodeling due to unique characteristics,
including a nonmuscular region where the expression of a
smooth muscle actin is reduced or absent (22, 47). Left and
right fourth PAAs normally form a part of the aortic arch
and right subclavian artery, and their defects cause IAA-B

and ARSA, respectively. RAA results from the connection of
right fourth PAA to the aorta, which compensates for the
abnormal involution of left fourth PAA. It is still unclear
how the Hey1 deficiency in endothelial cells acts as a predis-
posing factor for such abnormalities. Among numerous sig-
naling factors implicated in fourth PAA development (17,
19–21, 23, 24, 27, 48–51), Hey1 may be functionally inter-
connected with endothelial regulatory genes, such as Plxnd1

Figure 5. A distal region of mouse Hey1/human HEY1 functions as an endothelial enhancer. A, the p300 ChIP-Seq result using E11.5 endothelial cells
and genomic conservation proposed the mouse Hey1 218 kb region as an endothelial enhancer candidate. B, the BAC-LacZ reporter lacking the 218 kb
region (f) did not induce robust b-gal activity in the vasculature of E9.5 embryos. Both the mouse218 kb region (g) and the human216 kb region (h) showed
vascular activity in DA, PAAs, and ISV. Summary of the results is shown in A, and the results of other F0 embryos are displayed in Fig. S8. C, Tg mouse lines con-
firmed endothelial activity of the218 kb-LacZ reporter in DA and PAAs (numbered). The floor plate of neural tube (NT) also expressed the LacZ reporter. LV,
left ventricle;OFT, outflow tract; RV, right ventricle. D, the218 kb-EGFP reporter Tg embryos recapitulated arterial endothelial expression of the LacZ reporter.
CV, cardinal vein; FG, foregut. Scale bars in the whole-mount images and sections of B, C, and D are 500 and 200mm, respectively. E, EGFPhigh and EGFPlow pop-
ulations of Pecam1high endothelial cells were sorted from E10.5 embryos. F, real-time PCR analysis revealed that EGFPhigh cells had high expression of Hey1
and arterial markers (Cxcr4, Efnb2, Gja4, Gja5, Dll4, Jagged1, and Hey2), although the expression levels of pan-endothelial (Cdh5 and Pecam1) and venous
(Ephb4) genes were equivalent between EGFPhigh and EGFPlow cells. *, p, 0.05; **, p, 0.01; ns, not significant.
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and Edn1. We performed RNA-Seq analysis of embryonic
endothelial cells from Hey1 endothelial cKO as well as null
mice, but the results did not show the disturbance of a single
gene or a few genes that explained vascular abnormalities by
the Hey1 deficiency. There was no significant enrichment
that could be directly linked to the pathogenesis in gene on-
tology or KEGG pathway analysis (data not shown). ChIP-
grade antibodies against Hey1 are not available, but ChIP-
Seq was previously performed using FLAG-tagged HEY1
overexpression in cultured cells (52, 53). These studies sug-
gested possible Hey1 target genes, including Dll4, Kdr, and

Foxc1, but the expression of those candidate genes did not
change in endothelial cells of Hey1 cKO and null embryos
(data not shown). Mosaicism of the Hey1 allele recombina-
tion may have made such expression analyses difficult, and a
specific population of endothelial cells in a particular region
of the embryos might be more sensitive to the Hey1 dosage.
Importance in endothelial cells is also evident for comple-
mentary functions by Hey1 and Hey2 at earlier vascular
formation because their loss in endothelial cells reproduces
vascular defects and embryonic lethality observed in double-
null mice (14). Advanced technologies such as multiomics

Figure 6. Hey1 distal endothelial enhancer is controlled by Notch signaling. A, the p300 ChIP-Seq result, genomic conservation, and binding sites for
Foxc1/c2 and Rbpj at the218 kb region ofmouseHey1 gene are shown. B and C, expression of N1ICD or Foxc1/c2 dose-dependently induced the luciferase re-
porter activity driven by the218 kb distal enhancer in 293T cells. Mutations in Rbpj- or Foxc-binding sites abolished the transcriptional activation and were
used for LacZ reporter assays shown inD. **, p, 0.01; ns, not significant. D, the LacZ reporter activity driven by the218 kb enhancer was lost by themutations
of Rbpj sites, but not by those of Foxc1/c2 sites, in E9.5 embryos. Results of other F0 embryos are shown in Figs. S10 and S11. E, in human umbilical vein endo-
thelial cells, the N1ICD expression, but not the BMP9 treatment, induced the transcriptional activity of the 218 kb enhancer. Rbpj site mutations resulted in
the loss of induction. F, endothelial EGFP expression by the218 kb enhancer was almost undetectable in RbpjD/D mouse embryos at E8.5 and E9.5. Scale bars
inD and F, 500mm.

Endothelial Hey1: Great vessel development and enhancer

J. Biol. Chem. (2020) 295(51) 17632–17645 17639

https://www.jbc.org/cgi/content/full/RA120.015003/DC1
https://www.jbc.org/cgi/content/full/RA120.015003/DC1


analyses at the single-cell level may give a clue to downstream
signaling pathways that are central to Hey-dependent endothe-
lial functions.
Whereas the Hey1 deletion in smooth muscle cells did not

cause great vessel anomalies, that does not necessarily negate
its supportive functions in smooth muscle cells. Consistently,
the incidence of great vessel anomalies appeared lower in endo-
thelialHey1 cKOmice compared with null mice (15). Although
significant retention of Hey1 transcripts in endothelial cells,
probably due to low recombination efficiency of the Hey1
floxed allele, can explain low phenotypic penetrance in cKO
mice, Hey1 functions in smooth muscle cells or other cell types
may also be required for proper fourth PAA development.
However, it is noteworthy that Hey1-deficient phenotypes are
clearly distinguishable from neural crest–related abnormalities.
IAA-B and other great vessel malformations are often observed
in patients with 22q11.2 deletion syndrome, and TBX1 is one of
the most important genes in the minideletion region (19, 54–
56). Tbx1 transcription factor is required for migration, prolif-
eration, and/or survival of neural crest–derived cells, and its
mutant mice are defective also in the outflow tract, thymus,
and craniofacial structures (19, 44, 55–57). In sharp contrast,
Hey1 null (15) as well as endothelial cKOmice (Fig. S3) did not
show abnormalities in neural crest–derived cell behavior as
well as malformation of the pharyngeal arches, cardiac out-
flow tract, and other neural crest–related structures. Mouse
embryos with inactivation of Notch signaling in neural crest–
derived cells showed down-regulation of Hey family expres-
sion in the smooth muscle layer of PAAs, but the fourth PAA
defects only rarely occurred in these mutant mice (58). Fur-
thermore, the heterozygous Tbx1 deletion in the pharyngeal
epithelium leads to great vessel abnormalities (59), indicating
that Tbx1 and Hey1 control distinct signaling pathways for
PAA development in different cell types.
The present study further elucidates that Hey1 transcription

in embryonic tissues is controlled through multiple cis-regula-
tory regions. In particular, endothelial Hey1 expression essen-
tial for vascular development appears maintained through at
least two complementary regions. The proximal region adja-
cent to exon 1 responds to both Notch and ALK1 signaling but
is not sufficient to implement endothelial transcription in
mouse embryos. The novel enhancer at the distal 218 kb
region is solely regulated by Notch signaling and can reproduce
the endogenous Hey1 expression pattern in endothelial cells.
Nonetheless, the distal enhancer does not single-handedly con-
trol endothelial Hey1 transcription because its deletion does
not alter Hey1 mRNA level in embryonic endothelial cells. In
silico analysis of ChIP-Seq data (46) indicates a couple of addi-
tional p300-binding sites around the Hey1 locus (data not
shown), although they are located outside the minimal 243 to
20.4 kb region determined in BAC-LacZ analysis. As is often
seen with essential regulatory genes for embryonic develop-
ment (60, 61), it is likely that the proximal, distal, and possibly
additional regulatory regions supply the place of each other to
ensure robustHey1 expression in endothelial cells.
Hey1 and other Hey family genes have been recognized as

typical Notch downstream genes enriched in the cardiovascular
system (3, 28), and both theHey1 proximal region and distal en-

dothelial enhancer have Rbpj-binding elements that mediate
Notch responsiveness. Notch signaling is implicated in early
steps of endothelial differentiation, such as arterial-venous
specification and tip cell–stalk cell interaction (62, 63). In addi-
tion, fluid shear stress activates Notch signaling and up-regu-
lates the expression of Notch target genes, includingHey1 (64).
It is known that an adequate range of blood flow into develop-
ing PAAs is necessary for proper morphogenesis of great vessel
structure (65), and Notch-dependent Hey1 expression is prob-
ably an important factor that responds to the variable blood
flow during drastic PAA remodeling. The present study sug-
gests that a decrement of Hey1 expression in endothelial cells
can predispose embryos to PAA defects. Strict regulation of
Hey1 expression is likely crucial to prevent congenital malfor-
mations of thoracic great vessels.
TheHey1 distal enhancer activity in arterial endothelial cells

is abolished by the mutations of Rbpj-binding sites and is
clearly repressed in Rbpj null embryos. Other arterial endothe-
lium enhancers show different modes of Rbpj dependence. The
Dll4 enhancer is regulated by Notch signaling in combination
with SoxF and Ets factors, but its activity is influenced neither
by the Rbpj site mutations nor by Rbpj deficiency (66, 67). The
Notch1 and Ece1 endothelial enhancers do not contain Rbpj
sites but display arterial specificity by the actions of SoxF, Ets,
and Foxc factors (68, 69). On the other hand, Rbpj acts as a
transcriptional repressor in venous endothelial cells for the
Flk1 arterial enhancer (70). Such a diversity of regulatorymech-
anisms is certainly important for unique characteristics of their
expression.
During embryonic development,Hey1 is expressed in various

other tissues, such as the pharyngeal epithelium, somites, and
cardiac atrium (3, 4). This study further identified a distal
enhancer for the pharyngeal epithelium and somites. Marked
reduction of endogenousHey1 expression by its deletion clearly
shows importance as a specific enhancer, but a low level of
Hey1 mRNA is still detectable in these tissues. Because the
BAC-LacZ reporter activity in these two areas is suppressed by
the lack of proximal region (Fig. 4B), the proximal region may
serve for Hey1 transcription also in the pharyngeal epithelium
and somites. In addition, Hey1 expression restricted to the
atrium of the heart is particularly interesting because its family
gene Hey2 is differentially expressed in the ventricle (3, 4). We
recently reported that ventricular Hey2 expression was con-
trolled by Tbx20 and Gata family proteins through its distal
enhancer (71). Although the full-length BAC apparently con-
tains transcriptional activity in the atrium, we have not speci-
fied where the Hey1 atrial enhancer is located. Studying
the precise mechanisms of Hey1 transcriptional regulation
will help understand how tissue-specific gene expression is
achieved in the cardiovascular system and other organs dur-
ing embryonic development.
Increasing evidence supports the importance of the HEY

family in human physiology and disease. Their expression is of-
ten dysregulated downstream of Notch signaling in various dis-
eases (72–74). In addition, a fusion ofHEY1 andNCOA1 causes
chondrosarcoma and aberrant HEY1 expression is correlated
with the metastasis, therapeutic response, and patient survival
in multiple cancer types (38, 75–78). A variant near the HEY2
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locus is associated with clinical characteristics of Brugada syn-
drome (79), and HEY2 also acts as a key factor for the differen-
tiation of pluripotent stem cells into ventricular myocytes (80).
It is tempting to hypothesize that variations in the protein-cod-
ing or enhancer regions of the HEY1 gene affect its molecular
function or expression level in human patients with isolated
great vessel anomalies. HEY1may also be associated with clini-
cal variability of 22q11.2 deletion syndrome as a modifier gene.
It will be of clinical interest to examine possible involvement of
HEY1 in such entities of human congenital diseases.

Experimental procedures

Mouse strains

The founder mice with theHey1 floxed allele were generated
as follows (Fig. S1). The targeting vector was designed to delete
exons 2, 3, and 4 of theHey1 gene by Cre-mediated recombina-
tion and was electroporated into HK3i ES cells (81) with two
single guide RNAs (Table S1) and the human optimized Cas9
expression plasmid px330 (Addgene plasmid 42230) (82).
Recombinant ES cells were injected into eight-cell stage
embryos to produce chimera mice. The Pgk-Neo cassette
flanked by FRTs was removed by crossing the chimera mice
with Flp-expressing female mice (Jackson Laboratory, JAX
003800). PCR primers for the genotyping are shown in Fig. S1
and Table S1. The Hey1(loxP) line information is available at
RRID:SCR_019138 (accession no. CDB1302K). Tek-Cre (JAX
008863) and Tagln (SM22a)-Cre (JAX 004746) mice were used
for the tissue-specific deletion (40, 41).
The mouse lines with the enhancer deletion at theHey1218

or 250 kb region were generated by CRISPR/Cas9 genome
editing. Human optimizedCas9mRNA or Alt-R S. p. Cas9 Nu-
clease 3NLS (Integrated DNA) was introduced into BDF1 fertil-
ized eggs with two single guide RNAs (Table S1) (83). The tar-
geted regions were PCR-amplified for the sequencing at the F0
and F1 generations. Mice at the F1 and later generations were
used for expression and phenotype analyses.
All animal experiments were approved by the institutional

animal care and use committees of the National Cerebral and
Cardiovascular Center and RIKENKobe Branch.

Micro-CT imaging

A contrast reagent eXIA 160XL (Summit Pharmaceutical
International) was introduced from the right ventricle of E18.5
embryos, and micro-CT images were taken with an 8-mm pixel
size using SkyScan 1276 (Bruker).

Fluorescence and magnetic activated cell sorting (FACS and
MACS)

E10.5 mouse embryos were minced and incubated in 0.1%
collagenase type II (Worthington, catalog no. 4176) with mix-
ing and suspension. The dissociated cells were filtered through
a BD Falcon Cell Strainer (70 mm, catalog no. 352350) and
resuspended in 0.1% BSA and 2 mM EDTA in Ca21/Mg21-free
PBS. For FACS, the cells were incubated with phycoerythrin–
or APC-Cy7–conjugated a-mouse CD31 (Pecam1) antibody
MEC13.3 (BioLegend, catalog no. 102507 or 561814) and

FITC-conjugated a-mouse CD45 antibody 30-F11 (BioLegend,
catalog no. 103107), followed by sorting with FACS Aria (BD
Biosciences). For MACS, the cells were incubated with CD31
microbeads (Miltenyi Biotec, catalog no. 130-097-418) and
sorted using MS columns (Miltenyi Biotec, catalog no. 130-
042-201).

Expression analysis

Total RNA was extracted from the FACS- or MACS-sorted
cells using NucleoSpin RNA XS (Macherey Nagel), and cDNA
was synthesized using the PrimeScript RT reagent kit (Takara).
Real-time PCR analysis was performed with KAPA SYBR FAST
qPCRMaster Mix (Kapa Biosystems) and a LightCycler 96 sys-
tem (Roche Applied Science). 18S rRNA was used as a refer-
ence. Primer sequences are listed in Table S1. The following
antibodies were used for immunohistochemistry on frozen
sections: a-Pecam1 (MEC13.3, BD Pharmingen, catalog no.
550274), phycoerythrin-conjugated a-Pecam1 (MEC13.3, Bio-
Legend, catalog no. 102507), a-Nrp1 (Abcam, catalog no.
ab81321), a-Gja5 (Invitrogen, catalog no. 36-4900), Cy3-conju-
gated a-Acta2 (Sigma, catalog no. 6198), and a-Tfap2a (Devel-
opmental Studies Hybridoma Bank, catalog no. 3B5). Whole-
mount in situ hybridization was performed as we described
previously (71). Statistical analysis was performed using Stu-
dent’s t test.

LacZ reporter analysis

A BAC clone encompassing the mouse Hey1 gene, RP23-
255P16, was purchased from Advanced GenoTechs Co. The
BAC-LacZ reporter construct was generated by inserting the
nuclear localization signal (nls)-LacZ-poly(A) fragment at
the first ATG site of the Hey1 gene as we reported previously
(84). Deletion BAC series were prepared with the kanamycinR

insertion. Plasmid-based LacZ reporters of the proximal region
and distal enhancers were made using the nls-LacZ-poly(A)
and hsp68 promoter-nls-LacZ-poly(A) vectors, respectively.
Rbpj-binding sites in the218 kb enhancer were mutated as fol-
lows: site 1, ACGTGATGGGAATTGGA ! ACGTGActt-
tAATTGGA; site 2, GGAGCGTGGGAACCCCG ! GGA-
GCGctttAACCCCG. Foxc-binding sites were mutated as fol-
lows: site 1, AGCTTTATTGAGATACA ! AGCTTaAagGA-
GATACA; site 2, TCACTTAAAATATGTGA ! TCACT-
TAActTtTGTGA; site 3, TAGAATATTTTCATTTT !
TAGAAaAagTTCATTTT. Transgenic mice were generated
using standard methods (71). In brief, the circular BAC re-
porter or linear enhancer reporter fragment (1–3 ng/ml) was
injected into the pronuclei of BDF1 fertilized eggs. b-Gal reac-
tion of mouse embryos was performed as we described previ-
ously (71).

Luciferase reporter analysis

A DNA fragment of the 218 kb enhancer was inserted into
the pGL4.10[luc2] plasmid containing the MLP promoter (85).
Human umbilical vein endothelial cells were seeded in the
EGM2 medium (Lonza) 24 h before the transfection, and the
plasmids for the luciferase, CMV-b-gal, and mouse N1ICD
expression were introduced using Lipofectamine PLUS and
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LTX reagents (Life Technologies, Inc.). After 1 h of transfec-
tion, the cells were preconditioned in the EBM2 medium
(Lonza) containing 0.2% BSA and 0.2% fetal bovine serum for 4
h, followed by the treatment with BMP9 (R&D Systems) or ve-
hicle. Transfection of 293T cells was performed according to
our previous report (86). Luciferase and b-gal activities were
measured using FLUOStar Omega (BMG LABTECH). Tripli-
cated assays were independently performed three times, which
gave reproducible results. Statistical analysis was performed
using Tukey’s test.

Data availability

All data are contained within the article and supporting
information.
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